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If a two-manifold M is wildly imbedded S3, it gives
rise to a pair of noncompact three-manifolds of a special
type. This type is considered in detail and a homeomor-
phism classification theorem for it is derived. This result
is then used to decide whether there is a homeomorphism
of S° to itself, which takes M onto another, given two-
manifold.

Introduction. In recent years much work has been done on wild
imbeddings of two-spheres in three-spheres. The survey article [5]
gives an excellent bibliography of this work. Relatively little of
this work, however, involves the homotopy type of such imbeddings
or algebraic characterizations of them. Two papers which make
some use of these are [3] and [6]. In this paper we develop some
of this theory. An imbedding of S* in S® gives rise to a pair of
noncompact three-manifolds with boundary. If these three-manifolds
are trail irreducible (this term will be defined in §1) and the set of
wild points of S* is totally disconnected, we can develop a useful
uniform homotopy theory which allows us to determine the homeo-
morphism type of the manifold from the homotopy type. Homeo-
morphisms of the three-manifolds may then be sewn together to
form a homeomorphism theorem for the imbedding. Although the
case of two-spheres imbedded in S® is historically of greatest interest,
there is nothing restricting our methods to that case, so we shall
develop the theory for finitely many closed two-manifolds imbedded
in S®. We also derive a method for showing that an imbedding
is trail irreducible. Using this method we show the existence
of uncountably many distinct imbeddings for which the theorems
hold. In particular we show that they hold for Alexander’s horned
sphere.

1. Notation and definitions. Suppose M,, ---, M, are closed
two-manifolds and that they are disjointly (and possibly wildly) im-
bedded in S®. Let M =M U---UM,. Then S* — M has k+ 1
components. Let T be one component. Let I = {(x, ¥, 2) € R z = 0}.

DEFINITION. A point p of M N T is tame from T if there is a
homeomorphism h: (I, 0I) — (T, M) with peh(3I). A point of M N T
is wild from T if it is not tame from T.
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It is easy to show that a point p € M, is tame in the usual sense
if and only if it is tame from each component of S® — M,. Except for
points of M which are wild from T, T would be a three-manifold.
Thus it is useful to make the following definition.

DEFINITION. Let M be a finite set of closed two-manifolds,
imbedded in S®. Let T be one component of S* — M. Let W be the
set of all points of M which are wild from 7. T — W is a manifold
imbedding.

Alternatively T — W is the largest three-manifold in 7.

A manifold imbedding inherits a metric from S® and this metrie
will be maintained throughout. It is convenient to deal with a par-
ticular kind of map between manifold imbeddings.

DEFINITION. Suppose X and Y are metric spaces. A continuous
map f: X — Y is proper if the inverse image of a compact set is
compact. A map is p if it is proper and uniformly continuous in
the respective metrices. A p-homotopy is a homotopy which is p-
uniform.

We shall be concerned with manifold imbeddings with the following
two restrictions.

DEFINITION. Let A be a manifold imbedding. It is tratil <rre-
ducible if given a sequence {l,} of loops which are null homotopic in
A and have diam (I,) — 0, then the loops are null homotopic in sets
{X,} with diam (X,)— 0. If A is a manifold imbedding, we shall
refer to A — A as the wild point set of A. Our second restriction
is that the wild point set of A be totally disconnected. (If the wild
point set is totally disconnected, trail irreducibility is equivalent to
end irreducibility as defined in [4]. However, trail irreducibility is
more appropriate in our context.)

We shall generally follow Waldhausen’s terminology for three-
manifolds, [12]. A surface K is properly imbedded in a three-
manifold A if KNoA =0K. A system of surfaces in A is the union
of surfaces imbedded disjointly in A. A surface K, piecewise linearly
imbedded in A, is compressible if it is either a two-sphere bounding
a three-cell in A4, or if the homomorphism 7,(K)— m,(4) induced by
inclusion, is not injective. It is 4mcompressible if it is not compres-
sible. A system of surfaces is incompressible if each component is
incompressible. A three-manifold, A4, is irreducible if any two-sphere
piecewise linearly imbedded in 4 bounds a three-cell. It is boundary
iwrreducible if 0A is incompressible in A. Let K be a system of
surfaces properly imbedded in A. Then K has a regular neighbor-
hood, U, which may be coordinatized as Kx I with K= Kx{1/2}. Let
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X be an arbitrary space. A map f: X — A is transverse with respect
to K if f induces in f~%(U) the structure of a line bundle and f
maps each fiber homeomorphically onto a fiber. If X is a subset
of A which is a submanifold of 8% X will denote the closure of X
in S% while el (X) will denote the closure of X in 4, i.e., XN A. The

frontier of X, Fr(X), iscl(X)Nel(4 — X). Also X°= 8 — (S* — X).

DEFINITION. An exhausting sequence {C,} for a three-manifold
A, is a sequence of compact, piecewise linear submanifolds of A with:

(1) Fr(C,) a system of surfaces, properly imbedded in A4,

(2) UC,= A4,

(3) C,cC,,, —FrC,,,.

2. Some basic lemmas. First we shall establish some basic
lemmas about manifold imbeddings.

LEMMA A. A manifold imbedding A is trreducible if and only
if w,(A) = 0.

This is a simple application of the sphere theorem, [10].

LEMMA B. Suppose R and @ are closed n-cells and f: (R, OR) —
(@, 0Q) i3 a map with f|0R a homeomorphism of OR onto 0Q. Then
f 18 homotopic rel 0R to a homeomorphism of R onto Q.

Since f|0R is a homeomorphism, we may coordinatize R, and @
as n-cubes by homeomorphisms u: BR*— R and v: R* — Q such that
fouldR" = v|oR*. Then we define the homotopy by:

H(x) =1 —t)f(x) + tx .

LemMmA C. Let A be trail irreducible manifold tvmbedding with
totally disconnected wild point set. Then A has an exhausting
sequence {C,} such that:

(1) FrC, intersects no compact component of 0A,

(2) FrC, is incompressible in A,

(8) No component of cl(A — C,) (the closure in A) is compact,

(4) C, is connected,

(5) For any €>0, there is an n such that every component of
A — C, has diameter less than e.

Let W be the set of wild points of A. Let {C,} be an exhausting
sequence for A. The wild point set of A, W, is totally disconnected,
so by [8] (2.94) for any € > 0 there is a finite open covering {U,, - - -, U}
of W by disjoint subsets of S® of diameter less than e. Since A —
(U, U---U U, is compact, for » sufficiently large it is contained in
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C,. BEach component of A — C, is contained in some U, and so has
diameter less than ¢; this is condition (5). Also this shows that for
W totally disconnected, trail irreducible is equivalent to the term
referred to as end irreducible in [4]. Therefore, A satisfies the
conditions of [4] Lemma 3.1, so it has an exhausting sequence satis-
fying (1)-(4). We have shown that any exhausting sequence satisfies

(5).

LEMMA D. A trail trreducible manifold imbedding with totally
disconnected but momempty wild point set can be mneither simply
connected, nor have a boundary component which is a two-sphere
minus a single point.

Let A be trail irreducible manifold imbedding with totally dis-
connected wild point set. Pick a wild point we A. Suppose A4 is
simply connected. Let {l,} be a sequence of loops in A converging
to w. Since A is simply connected, the [, are null homotopic in A.
Since A is trail irreducible and diam (I,) — 0, there is a sequence,
{X,}, of subsets of A with [, null homotopic in X, and diam (X,) — 0.
Since this holds for any sequence of loops converging to any point
of A - A% A is 1 — ULC; therefore, by [3] Theorem 6, the wild
point set of A is empty, which is a contradiction.

Suppose L is a component of 0A which is a two-sphere minus
a single point w. Let {l,} be a sequence of simple loops in L, con-
verging to w, with w in the smaller component of L — I,. Then [,
is null homotopic in L. Sinece A is trail irreducible, there is a
sequence of singular, piecewise linear disks {D,} converging to w
with oD, = 1,. By the loop theorem, [10], !, bounds a simple disk,
D,, contained in a closed regular neighborhood of D, (in A). We
may assume D, N L =1,. Let L, be the larger component of L — [,.
Since D, U L, is a piecewise linear two-sphere in A4, there is a piecewise
linear two-sphere S, < A° which is parallel to D, U L, with the cor-
responding points no more than 1/n apart. Then {S,} is a sequence
of two-spheres homeomorphically approximating L, so by [2] Theorem
11.1, L is tame from A;i.e., w was not a wild point at all.

The next two results are of some independent interest. The
first is a generalization of Waldhausen’s homeomorphism theorem
([12], Theorem 6.1) to the case of manifolds which are not boundary
irreducible but are imbedded in S°. The second says that the homology
of a manifold imbedding is what we would expect it to be.

LEmMMA E. Let A and B be compact, connected three-manifolds,
piecewise limearly tmbedded 1m S°. Let f: (A, 0A) — (B, 0B) be a map
such that:
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(1) fym(A)— m(B) 18 injective,
(2) For any component J of 0A, f takes J homeomorphically

onto a component of oB,
(8) m(A) =0, m(B) =0, and 0A + @.

Then f ts homotopic rel A to a map, g, such that either:

(A) ¢ s @ homeomorphism of A onto B, or

(B) A s homeomorphic to KxI for a closed surface K, and
9(A) C 0B.

By [11] Theorem 1, if f: (A4, 0A)— (B, 0B) is a map satisfying
the conditions of this theorem, it is homotopic reldA to a map
g: A— B with either:

(a) g a covering map, or

(b) conclusion (B).

Suppose g is an n-sheeted covering map. Let V,, ---, V,, be the
components of S° — B. Let K be a component of 0V,. Since K is
a closed two-manifold, S* — K has two components. Since B° and
V¢ are locally separated by K, they are in different components of
S® — K. Therefore, dV;, = BNV, is contained in the intersection of
the closures of the components of S* — K, that is in K. Consequently,
0V, is connected. Each 0V, is the image of n components of 0A.
Sewing a copy of V, to A at each component of f!(0V;) gives an
n-sheeted covering space of S = BUV, ---,V,. Thus m =1 and

¢ is a homeomorphism.

LEMMA F. Let A be a manifold imbedding. Let g = genus
(A — A°), and let m be the number of components of A — A°. Then

H((A)=2° and Hy,A)= Z™".

Let M = A — A°, which has m components denoted M, ---M,,
having genuses g,, - -+, g, respectively;let g =g, + -+ + ¢,. Applying
the Poincare and Alexander duality theorems to S® — M, S* — M,, ---,
S2— M, gives H,(A°) = Z™*, and H,(S* — M) = Z*.

Let B, -+-, B, be handle bodies with boundaries of genuses
g, **°, gn respectively. Let X be the union of A and B, -+, B,
with 0B, associated homeomorphically to M,; X is compact. If z is
an interior point of A or some B,;, it has an open neighborhood
homeomorphic to B. Suppose x € M,. By |[3] Theorem 5, x is contained
in an open disk in M, which is contained in some two-sphere, S,
imbedded in S®. Let U be the component of S® — S containing points
in A° which are close to 2. Let Y be the union of U with a closed
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three-cell, whose boundary is S. By [9] Theorem 2, Y is a three-sphere.
However, a small neighborhood of 2 in Y is homeomorphic to a
small neighborhood of # in X. Therefore, X is a closed three-manifold,
so we may apply the Poincare and Alexander duality theorems to
it. Since we know the homology of the B,, we obtain H,(4).

3. Homeomorphism type of manifold imbeddings.

THEOREM 1. Let A and B be irreducible and trail irreducible
manifold imbeddings with totally discommected but nonempty wild
point sets. Let f: (A, 0A) — (B, 0B) be a p-unifold map such that:

(1) fyem(A) > w(B) is imjective,

(2) For I, a component of 0A, and J, the component of B
containing f(I), fy: 7(I) — w(J) s an isomorphism.

Then f is p-homotopic to a homeomorphism of A onto B by a
homotopy which takes 0A into 0B. If f|0A is already a local
homeomorphism, we may choose the homotopy fixed on 0A.

Let I, ---, I, be the components of dA, and J, ---,J;, be the
components of B. Then there is a function, z, such that f(I,) < J,.
Let f*= f|I,. Since A is irreducible, none of the I, is a two-sphere.
By Lemma D no I is simply connected. Thus f* is p-homotopic to
a map f¢ such that either:

(a) f¢ is a homeomorphism of I, onto J,,, or

(b) I,=S8"X R' and there is a simple loop ! cJ,, with one
component of J,,, — ! homeomorphic to S'x R* and fi(s, u) =
(f«s, 0), |u]) in the respective coordinatizations, and f{|S'x 0 is a
homeomorphism onto I[. (In neither case is the metric of S' X R! or
S'x R* the product metric. Although d((s, u), (—s, u))—0 as u— oo,
the two-manifolds are topologically equivalent.)

This is the two dimensional analogue of [4] Theorem 3.4. Doing
this for each component of dA and using regular neighborhoods of
0A and 0B, we may extend the homotopies to a p-homotopy of all
of A. We want f, to be a local homeomorphism on 0A4. (Since it
induces an isomorphism on fundamental groups, this implies that it
is a homeomorphism on components of 0A.) If f were already a
local homeomorphism on 04, we could have skipped this first step.
All succeeding homotopies will be fixed on 0A, so the final comment
in the statement of the theorem is justified. The restriction f|0A
can fail to be a local homeomorphism only if (b) occurs for one or
more components of 0A. We shall first prove the theorem assuming
(a) occurs for all components of 7A4.
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Since A and B are trail irreducible and have totally disconnected
wild point sets, we may construct exhausting sequences {C,} for A
and {D,} for B satisfying the conditions of Lemma C. By choosing
subsequences we may also assume that:

f(C)c D, —FrD,,
fo_l(Dn) c Ca,m+1 — Fr C'n+1 .

By [12] (1.3) there is a map f, which is homotopic rel 04 to f, by
a homotopy which moves (C,,, — C;) only within (D,,, — D,_,), and
such that f, is transverse to Fr D, and f'(FrD,) is a system of
incompressible surfaces properly imbedded in 4. By (5) of Lemma
C, the maximal diameter of the components of B — D, goes to zero,
so the homotopy from f, to f, is p-uniform. Let C, = f7!(D,). Using
(5) of Lemma C, we may choose subsequences so that each component
of Fr' D, has diameter so small that it can neither intersect two
components of 0B, nor separate two components of dB. (Since a
manifold imbedding is constructed by using finitely many disjoint
closed two-manifolds, the minimal distance between components of
oB and the minimal diameters of components of 0B are both greater
than 0.) This gives each component of Fr D, or oD, intersecting
exactly one component of dB. (This technique is used in [4] Theorem
3.4.)

The sequence {C,} satisfies (1), (2), and (6) of Lemma C. By
choosing a subsequence, we may assume that each component of
Fr C,, or oC, intersects exactly one component of 04. Let R be the
largest component of C,. Pick p,eJ;, for each component J, of 9B.
By choosing a subsequence, we may assume all the f;'(p,) are con-
tained in a single component of G, and that no component of A — R
intersects two components of d0A.

Suppose H is a component of Fr C,, and K is the component of
Fr D, containing fi(H). If K is a disk, we may use Lemma B to find
a homeomorphism of H onto K, homotopic rel6H to f,|H. If K is
not a disk, its nonempty boundary, 0K, is taken homeomorphically
onto 0H, so we may apply [12] (1.4.3) to get a homeomorphism,
which is homotopic reloH to f,|H. K° and H° have neighborhoods
K*=K°xIand H*= H° x I such that diam ({y} x I)—0 as ¥ approaches
oK or 0H respectively, and K* and H* are contained in regular
neighborhoods of K and H. Using these neighborhoods, we may
extend the homotopies over all of A to get a map f,, homotopic to
firel 0A, with f, a homeomorphism on each component of Fr C,.

Let P be a component of C,,, — C, and @ be the component of
D,,, — D, containing f,(P). Then Fr P and Fr Q are incompressible,
80 P and Q are irreducible, and x,(P)— 7,(A) is injective. Since f,
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is injective, 7,(P)— 7(Q) is also injective. By the choice of {C,}
each component of P intersects exactly one component of 04, so f,
is a homeomorphism on components of dP. Therefore we may apply
Lemma E to f,|P to get a map g, homotopic reldP to f,| P such
that either:

(A) g, is a homeomorphism of P onto @, or

(B) P= K x I for some closed surface K, and ¢,(P)CoQ.

We may do this same construction for P and @ components of C,
and D, respectively. Let R be the largest component of C,. If
P +# R, P can intersect only one component of 04, so f, is a homeo-
morphism on 0P, and g, is a homeomorphism. Patching all the g,
together, we get a map g: A — B which is homotopic reldd to f,
and agrees with g, on P. Since the diameter of components of
B — D, goes to zero, the homotopy is p-uniform. If (A) applies to
R, g is a homeomorphism and we are done.

Suppose (B) applies to B. Then ¢R has two components, so 0A
has two components, which are taken to the same component of oB.
Let R, = R, and for each n let R, be the component of C, containing
R, .. Then {R,} is an exhausting sequence for A. We may apply
Lemma E to get maps g¢,: B, — D, which are homotopic rel oE, to
fil R, and satisfy either (A) or (B). Since f, is not a homeomorphism
on AN R, it can not be a homeomorphism on any JR,, so (B)
applies to each of them. Therefore, there are closed surfaces {K,}
such that R, = K, X I. Since R, is a component of C,, each component
of Fr R, is a component of Fr C,. Accordingly Fr R, is incompressible
in 4, so w,(R,) — w,(A) is injective. This gives K, X {1/2} incompres-
sible in A. Therefore, the inclusion map R, — R, ., induces an injection
(K, — w(K,.). This injection can be induced by a covering map
of K, onto K,,.,. Since a closed two-manifold can not cover another
closed two-manifold of greater genus, genus K,,, < genus K,. By
dropping some initial terms we may assume that genus K, is a fixed
constant, ¢, for all =.

Since genus K, is constant, 7,(K,) — 7w(K,,) is an isomorphism
for all ». Therefore, 7,(K,) — w,(R,) is an isomorphism, and so also
w,(K,) — m,(A). By the Hurewic theorem H (K,) — H,(A) is an isomor-
phism, so H,(4) = Z*°. Then by Lemma F, genus (4 — A°) = 2.

Let I, and I, be the components of 0A intersected by K, x 0
and K, x 1 respectively. Since I, is a closed two-manifold and its
set of wild points is totally disconnected, I, has a connected, compact
submanifold I, such that genus I} = genus I,. For = sufficiently
large, , UL, Cc R, — Fr R,. Let Il be a component of oI;; it bounds
a disk D in I,, By Lemma F genus (I, UI) = genus o0R,, so
must bound a disk, F,, in each o0R,. Therefore, £, — D. Since E,
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and D are simply connected this is a homeomorphic approximation.
By [2] Theorem 11.1, D is tame from A. However, this is true for
any component of oI/, so I, and I, are tame. This, however, is a
contradiction.

Now let us lift the restriction that f, be a homeomorphism on
each component of 0A. Let e(f) be the number of components of
0A for which (b) applies. We have shown that the theorem holds
if e(f) = 0. Suppose f: A — B is such that e(f) is minimal for which
the theorem fails. Pick a component I of 04 with I = S'x R' and
a loop I’ in a component J of 6B such that one component of cl (J— ')
is homeomorphic to S* x B with fi(s,t) = (s, |t|) in the respective
coordinate systems. (Again the metrics are not the product metrics.)
Let {D,} be an exausting sequence for B satisfying (1)-(5) of Lemma
C. By the method used above we may assume that {f;'(D,)} is an
exhausting sequence for A satisfying (1), (2), and (5). For « sufficiently
large no component of B — D, (or A — f;*(D,)) intersects more than
one component of 4B (or dA) and the two points of I — I are in
different components of A — f;'(D,). For m sufficiently large S'x
[m, «YcB—D,; let Il = 8'x {m}. Let B be the component of
cl (B — D,) containing [; it is a manifold imbedding. The surjection
H(B' — B'°) — H,(B') of Lemma F commutes with the H,(0B’) — H,(B)
induced by inclusion, so ! is null homologous in B. Therefore, [
bounds a piecewise, linear incompressible surface K, properly imbedded
in B. By [12] (1.3) f, is homotopic rel 0A to a map f, transverse to
K with f7*(K) a system of incompressible surfaces properly imbedded
in A. (We may choose the homotopy fixed off some compact neigh-
borhood of f;'(K), so the homotopy is p-uniform.) Let S* X {—m}
and S'x {m} in I be denoted A, and A, respectively. Since X, and
A, are in distinet components of A — f7(D,), they must be in distinet
components of fi'(K), which we denote L, and L, respectively. Since
each component of A — f7*(D,) intersects only one component of 64,
oL, I i.e., N, = 0L,.

The space K U S* X [m, o) is a closed two-manifold, so it separates
S® into two pieces. Therefore, B — K has two components, which
we shall denote B; and B; with f,(I) — fi\(I) © B}; 0B, is connected.
Similarly A — L, — L, has three components A;, A;, and 4;. Two of
these components (say A, and A,) must be so small as to have con-
nected boundaries. Let A; = cl(A4;) and B, = ¢l (B;). We can index
them so that:

fi(A), fi(4) C B,y ,
S X (—o0, —m)C A4, §* X (m, =) A4,,
Li=ANA,, L =4NA,.
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The restriction f,]| A4, is a p-uniform map with

e(fi] Ao) + e(fil A) + e(fi] 4;) = e(f) — 1.

L, and L, are incompressible, so 7,(4,) and 7,(4,) are mapped injectively
into 7 ,(B,) by fi., and A, and A4, are irreducible and trail irreducible.
Thus we may apply the theorem for e(f,|4,) < e(f) to get homeo-
morphisms g¢;: A;— B, (for 1=0, 2) which are p-homotopic rel 94, to f,|A4..
Pick peoL, and consider 7,(4, »). Let m be a loop in A4, with
m(0) = p. Then there is a loop m’ in A, such that m and m’ are
taken to the same loop in B, by f,. In the coordinate system of 0A4,
p =9 X {1}, and m'(0) = p" X {—1}. We may extend m’ along p X
—[1,1] to p, giving a loop m” based at p. Then g,om and g,om”
are homotopic loops in B. However, g, and g, are homotopic to f,| 4,
and f,|A4,, and f.. is injective, so m is homotopic to m” in A. Let
C = {(x, y) e R* 2* + 4* < 1}. There is a piecewise linear map 7: C—
A with m being the restriction of = to the upper half circle and m”
being 7 restricted to the lower half circle. We may assume 7 isin
general position, and »7*(I,) has as few components as possible. In
particular no component of #7'(L,) is a contractible loop. Since
r~(L,) N 0C is just two points, 7 *(L,) must be a single arc in C from
(1, 0) to (—1,0). The restriction of » to the subdisk between that
arc and the upper half circle is a homotopy of m to a loop in L,.
Consequently the map w,(L,) — 7,(4,) is surjective. Since x,(L,) —
7, (A,) was already injective, it is an isomorphism. By Lemma F,
if genus L, = ¢ and the genus of the components of 0A entirely
contained in A4, is ¢, then H,(A4,) = Z° + Z°. By the Hurewize
theorem %,(H,(L,) = Z*. Since %, commutes with the map given
in Lemma F, ¢,(H,(L,) is the first summand of H,(4,), so ¢ = 0.
Therefore, H, is simply connected, and A, is, too. This contradicts
Lemma D. Therefore, the case e(f) > 0 can not occur, which com-
pletes the proof of the theorem.

DEFINITION. Let M and N be closed two-manifolds imbedded in
S A map f: (S}, M) — (S%, N) preserves the imbedding if f(S*— M)c
(S* — N), and each component of S* — M goes into a distinet com-
ponent of S® — N.

Let M and N be connected and f: (S M)— (S, N) be a map
which preserves the imbedding. The manifolds M and N each give
two-manifold imbeddings which we shall denote A4, 4, and B, B,
respectively, with f(A7)cC Bf. Let W be the set of wild points of
(S, M) and V the wild points of (S%, N). Let V' = f(W)UV and
W’ = f~(V'). Then f induces maps on the homotopy groups:
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Juim (M —~W') —— (N -V"),
S (A?) — w(B?) .

These commute with the maps induced by inclusions:

M-W —A —A47,
N—-V' ——B,«— B .

(The backward arrows induce isomorphisms.)

THEOREM 2. Let f: (S, M)— (8%, N) be a map preserving the
imbedding such that:

(1) The A, and B; are trail irreducible,

(2) fam(A9)— m(B?) 18 an injection for each 1,

(3) W' and V' are totally disconnected,

(4) fuaM—W)—za(N—V') is an isomorphism,

(5) Ifn(M —W')=0, then f: m,(M)— 7,(N) is an isomorphism.
Then there 1s o homeomorphism g: (S%, M) — (S%, N) which i3 homo-
topic to [ by a homotopy, H, such that each H, preserves the imbedding.
If fIM is a homeomorphism onto N, then the homotopy may be
chosen fixed on M.

We shall first dispose of the case 7.( M —W') =0. If W' = @,
then each A, is a closed three-cell. The map 7,(M)—7,(N)is nontrivial
so Nc f(M). Therefore, V' = ¢ also, and each B, is a closed three-
cell. Since f,: m(M)— m(N) is an isomorphism, f|M is homotopic
to a homeomorphism onto N. Using regular neighborhoods, we may
extend the homotopy over all of S®. Then we may use Lemma B
to get a homotopy rel M to a homeomorphism of all S®. Suppose
W' = @; then W’ has one point, and M is a two-sphere. Applying
Lemma D to each A;, we see that M must be a tame two-sphere.
Since Nc f(M), V' consists of one point also. By the same argument
N is a tame sphere, too. However, this contradicts the construction
of W’ and V.

Consider f' = f|M —W'. By the two dimensional analogue of
of [3] Theorem 8.4, f’ is homotopic to a homeomorphism f: (M — W’) —
(N-V"). {f f|M is already a homeomorphism, we may choose
the homotopy fixed.) Using regular neighborhoods of M — W’ in
St —W' and N -V’ in S — V', we may extend the p-homotopy over
W? —W’. Since the homotopy is p-uniform, we may further extend
it to a homotopy of S® into S®. Let f,: S®* — S®be the resulting map.
Then fy(M)c N. Since V' is totally disconnected, for any ve V'
there is a sequence of points {p,} in N —V’ converging to ». Since
fo is a p-uniform homeomorphism on M — W', {f;'(»,)} is a sequence



266 F. R. SINAL

of points converging to some unique we€ W’'. Therefore, f,|M is a
homeomorphism. We may assume that f, is a homeomorphism on
an open regular neighborhood of M — W".

We wish to show that V' =V and W' =W. Supposeve V' —7V.
Then there is a tame disk EC N with veE° andoENV' = @. Its
inverse image, D = f;'(F), is a closed disk with oD N W’ = @. Since
W' is totally disconnected, by [8] (2.94) we have a sequence of open
sets {U,} such that:

(1) U,cD°,

(2) wnbcU,,

(3) U, has finitely many components, none having diameter
greater than 1/n,

(4) D —U, is a connected compact two-manifold.

Let L be a component of U,. Since oL is a simple loop, f,(0L)
is a simple loop in E. Therefore, f,(dL) is null homotopic in both
B, and B,. Since f.: 7 (A?) — m,(B?) is injective for each 4, oL is
nullhomotopic in both A, and A,. Since A, is trail irreducible, oL
bounds a simple closed disk in A, of diameter d(n), where lim d(n) = 0.
Therefore, we may replace D by a disk D, in A? parallel to D with
no point more than d(n) from the corresponding point in D. The
sequences {D;} and {D),} homeomorphically approximate D from each
side so by [2] Theorem 11.1, D is tame. However, this contradicts
the choice of ve V'. If we W' — W is chosen, the argument proceeds
in the same way except instead of f, being injective we use that
it is a homomorphism. In like manner we can show that f, takes
points which are wild from one side to points which are wild from
only one side.

Let fi=f,]A;. Then f% (4, 04,)— (B, dB,). Since f,is a homoeo-
morphism on M, f¢|0A, is also a homeomorphism, and x,(0A4,) — =,(0B,)
is an isomorphism. The conditions require A, and B, to be trail
irreducible, so f* satisfies the conditions of Theorem 1. Let H' be
a p-homotopy relod, taking f* to a homeomorphism g: 4; — B,.
Define a homotopy H’ rel M by

Hi(x) = Hi(w) weA,
So(x) rxeM.

Then g = H, is the desired homeomorphism from S® onto S:2.
4. Some examples. The theorems we have proven apply only

to trail irreducible manifold imbeddings with small wild point sets.
We would like to produce examples of such manifold imbeddings.
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Therefore, we must develop some methods of showing that a given
manifold imbedding satisfies these conditions. The next result is a
converse to Lemma C.

LEMMA G. Suppose A is a manifold imbedding with an exhausting
sequence {C,} such that:

(1) FrC, is imcompressible in A,

(2) The maximum of the diameters of the components of A — C,
goes to zero.

Then A 1is tratil 1rreducible with totally disconmnected wild point
set.

Suppose {C,} is such an exhausting sequence for 4. If w and
v are wild points of A, the distance between them is greater than
zero, so for n sufficiently large, by (2), they are in different components
of A — C,. The minimal distance between components of A — C, is
greater than zero, so we may contain each component of A — C, in
disjoint open subsets of S°. Therefore, the wild point set of A is
totally disconnected.

Suppose {D,} is a sequence of singular disks, piecewise linearly
imbedded in A4, with 0D, — w, a wild point of A. For each n there
is an m(n) such that for m = m(n), 0D, N C, = &; also m(n) — .
Since FrC, is incompressible in A, we may replace D, by a disk
with the same boundary but not intersecting C,. Thus D, is contained
in a single component of A — C,, and so diam (D,) — 0. Therefore,
A is trail irreducible.

This lemma has the following corollary, which is more convenient
for calculations with specific manifold imbeddings.

THEOREM 3. Suppose A is a manifold imbedding with a sequence
of compact submanifolds {R,} such that:

(1) FrR, is nroperly and piecewise linearly imbedded in A,

(2) A=UR,,

(3) RNR;= @ for [t —j|>1,

(4) R,N R, is a system of surfaces with one component for
each component of R,

(5) If H is a component of R,NR;,, and U and V are the
components of R, and R,,, containing H, then H 1is incompressible
wm UU YV,

(6) R, ts connected,

(7) The maximal diameter of the components of Unz, B. goes
to zero as n goes to oo,
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Then A is a trail irreducible manifold imbedding with totally
disconnected wild point set.

Let C, = U, R,. Then it is straightforward to show that {C,}
satisfies the conditions of Lemma F.

Alexander’s horned sphere is formed by taking the outside of
Figure 1. The two shaded sections of the tubes are then replaced
by a pair of tubes linked as in Figure 2. The new shaded areas
are again replaced by pieces as in Figure 2. This process is repeated
infinitely many times. The limiting surface is Alexander’s horned
sphere. The outside gives a manifold imbedding which is not a three-
cell. Let R, be the outside of Figure 1. Let R, be the two pieces
that are added in the shaded areas. Let R, be the four pieces that
are added in the new shaded areas, and so forth. Let U and V
be components of R, and R,.,, respectively, with UNV %= @. Then
7, (U) is free on two generators, ¢ and b. Also w,(V) is free on
two generators, x and y. 7 (UN V) is free on one generator, which
goes to b and ayx~'y~'. Then by van Kampen’s theorem z,(UU V)
is free on the three generators, a,z, and %. Thus {R,} satisfies
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FIGURE 4
B
\ ' l“ <
B_ B,
FIGURE 5

condition (5) of Theorem 8. The other conditions are easily verified.
Therefore, the manifold imbedding formed by Alexander’s horned
sphere is trail irreducible.

Alford and Ball [1] give examples of two-spheres with one wild
point and penetration index of any desired positive odd integer.
They form these by joining together arcs as in Figures 8 and 4. To
obtain one of penetration index 2» + 1, piece together m — 1 copies
of Figure 4. Each succeeding one is placed in the cavity on the right
of the previous one and has the number of arcs entering from the
left increased by two. When the number of arcs entering has been
increased from three to 2» + 1, and infinitely many copies of Figure
3. The author has shown by direct group manipulations that the
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intersection of two pieces is incompressible in their union. This whole
construction is then inserted in B, of Figure 5. We can construct
a copy of Figure 5 for each integer with a wild point in B, of any
desired penetration index p; (odd and positive). These may be joined
together along B, and B_ and imbedded in S®. The union of the
one-complexes from each piece form a single one-complex, d. Let
A be a closed regular neighborhood of @ (in S* less the wild point
in each B,). Then A — A° is a two-sphere imbedded in S* with a
countable, totally disconnected set of wild points. We may choose
any subset of the odd positive integers and make it the set of
penetration indices of the isolated points of A — A°. A is a closed
three-cell, so the distinction between these two-spheres is that they
give rise to different manifold imbeddings containing S* — 4°. TUsing
Theorem 3, we can show that these are trail irreducible and have
totally disconnected wild point sets. Therefore, there are uncoun-
tably many trail irreducible manifold imbeddings with totally dis-
connected wild point sets.

4. Concluding remarks. Theorem 2 has only been stated for
the case where M and N have one component each. This is the case
of greatest interest. Although there is no technical difficulty in
extending the theorem to the case where M and N have finitely many
components, the statement of the conditions for the theorem would
be exceeding complicated.

Theorem 2 determines if a given map from (S%, M) to (S% N)
is homotopic to a homeomorphism, under some restrictions on the
imbeddings. In effect it says that if two imbeddings are of the
same homotopy type, they are homeomorphic. The author has gen-
eralized [4] (4.6) to obtain necessary and sufficient algebraic conditions
for a map preserving imbedding structure to exist between two given
imbeddings, which induces the given homomorphisms of homotopy
groups. In other words, the homeomorphism type of (S% M) can be
determined entirely algebraically.
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