Pacific Journal of

Mathematics

SYMMETRIC SUBLATTICES OF A NOETHER LATTICE

MICHAEL E . DETLEFSEN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 77, No. 2, 1978

SYMMETRIC SUBLATTICES OF A NOETHER LATTICE

MicHAEL E. DETLEFSEN

In this note we investigate questions about partitions
of positive integers arising from multiplicative lattice theory
and prove that the sublattice of RL(A, (4,,---, 4, is a
prime sequence in a local Noether lattice) generated by the
elementary symmetric elements in the 4,/’s is a z-lattice.

0. Introduction. If A4, A, ---, 4, is a prime sequence in L,
a local Noether lattice, then the multiplicative sublattice it generates
is isomorphic to RL,, the distributive local Noether lattice with
altitude k. We denote this sublattice of L by RL(A;). In RL(A4),),
every element is a finite join of products A7t452.-. A5k for (r, -+, 7=
(r,) a k-tuple of nonnegative integers. Minimal bases for an element,
T, in RL(A,) are unique and determined by the exponent k-tuples
of the elements in the minimal base for 7. We examine the sub-
lattice of L generated by the elementary symmetric elements in
the prime sequence A, ---, A,. This multiplicative sublattice is a
w-domain (Theorem 7.1).

Unless otherwise stated, all k-tuples will be nonnegative integers.
A k-tuple (r,) is momnotone if and only if 7, = 7., for 1 =14 > k.
(r) = (s;) and (#;) + (s;) refer to componentwise equality and addi-
tion respectively. (r)=,(s;) means r,=s, for 1 =1, ---, k. We
write (r;) =, (s;) to mean the first nonzero entry in (#;, — s,) is strictly
positive (lexicographic order). If (e) is a k-tuple we write ¢f for
Sk .ie; and er* for 3k, er. Throughout this note 4, ---, 4, is a
prime sequence in L and RL(A,) is the multiplicative sublattice it
generates.

1. The symmetric sublattice. If T is a principal element in
RL(A)) and ¢ is in S,, the permutation group on 1, ---, k, we define
T,(T") to be the principal element in RL(A,) obtained by replacing
A% by the factor AN (A1) in T for each ¢ from 1 to k. If
C,V--+-VvC, is a minimal base for C in RL(A), then C, =
(C), V «+- V(C,),. C°is defined similarly. Note that for each ¢ in
S, and for C in RL(A,), (C,)¢ = (C?%,=C. Hence C,=C’"'. An
element C in RL(A,) is a symmetric element if and only if C, = C
for each g in S,.

THEOREM 1.1. The set of all symmetric elements in RL(A))
Jorms a multiplicative sublattice of RL(A;) which is closed under
residuation.
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Proof. We show that F,, the set of elements fixed by the map

o from RL(A,) to RL(A,) defined Cx»’iC” for g in S, is a residuated
multiplicative lattice. For then the set of symmetric elements which
is the intersection of all of the F,’s for ¢ in S, is also a multiplica-
tive sublattice.

Let g be any permutation in S, and ¢ be defined as above. ¢
is well defined and preserves join by definition. Since (C,)’ =(C?),=C
for each C in RL(A,), ¢ is a bijection.

Let B=ITA% and C = ITA% be principal elements in RL(A)).
Then (BC) = IMAJ, = AV 1, - ITA ;) = B°-C? and (BAC) =
(ITAP> ooyt = [TATT D = [TAY o, A ITA 1, = B A C?. Since ele-
ments in RL(A,) are joins of principal elements and multiplication
and meet distribute over join, ¢ preserves products and meet.

Finally, the fact that ¢ preserves residuals and that F, is a
multiplicative sublattice of RL(A,) readily follows from the fact that
¢ is a multiplicative lattice isomorphism.

REMARK. If B is a principal element in RL(A,) such that B? = B,
then B is a principal element in F,. However, F, contains enough
principal elements to make it a Noether lattice only if g is the
identity in S, (cf §7) for £ > 1.

2. Elementary symmetric elements. For ¢t =1, ---, k, a,, the
tth elementary symmetric element in A, ---, A, is the join of all
products of A, ---, A, with ¢ distinct factors. In this section we
investigate the chain 0 < a, < --- < a, < I of elementary symmetric
elements in RL(A,).

We say the weight of a principal element in RL(A,) is the maxi-
mum of its exponents. If J is a t-tuple (4, ---,7,) with 4; < 4;,,
and t £k then we denote by (J) the set of all (k — t)-tuples
(Jy ++* Ju—s) such that {5, ---, 5.} 0 {e, -+ -, 3.} is empty.

THEOREM 2.1. The elementary symmetric elements together with
0 and I form a sublattice closed under residuation. In particular

I of t=p

a;. a =
(@ a,) a, if t>p.

Proof. From [8, p. 84] we have for t > p

(@za,) =V VL)V o V(A Ay Ay N e NAy - 4y)

where there are C(k, p) (the binomial coefficient) join symbols each
having indices in (J,), ---, (J,) for J; one of the C(k, p) ordered p-
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tuples which can be chosen from {1, ---, k}. Each intersection has
weight one and by symmetry, (a.:a,) = a, for some ». Since a, <
(a,: a,) we only need show that a,, £ (a,: a,)-

Let A, -+ A, , be any element in the minimal base for a,_, and
A, -+ A, be the product of the first p of these (p =t —1). Then
their product A} --- A} --- A, , is an element which is not less
than or equal to any element in the minimal base for a,. Hence

at~1 g (at: a’P)'

REMARK. From the Reciprocity Theorem [9, Theorem 5.1] we
can define a multiplication on the chain of elementary symmetric
elements by (a,: a,) = a, if and only if a, = a,-a,, i.e., a,0, = Cmox (p.o1-
This new multiplication makes every element in the chain idempotent
and the order becomes a < b if and only if a-b = a for nonzero
elements different from I.

3. The minimal base for maf: majorization. In this section we
determine the minimal base for a product of the elementary sym-
metric elements in RL(A,). We first dispense with the powers of
the a..

LeMMA 8.1. For t <k, a; is the join of all powers of the A,’s
whose exponents are bounded above by e and whose exponent sum
18 te. ap = A;--- AL

Proof. For k> 1, let (k) be any k-tuple of nonnegative integers
summing to te and bounded above by e¢. By symmetry we assume
(k) is monotone. There are at least ¢ nonzero k,’s no more than ¢
of whieh are equal to e. Let

k—1 1215t 1 1515t
and w, =

v, = .
k, t<1=Zk 0 t<i1k.

Then (v,) + (w,) = (k) and by induction I7A} and ITAY: are elements
in the minimal base for a;' and a, respectively. Hence their pro-
duct which has (k;,) as its exponent k-tuple is in the minimal base
for a{. The converse follows by writing down a product in af and
observing the conditions hold.

LEmMMA 3.2. ITA}7 1is in the minimal base for Ia% if and only
if there is a monmnegative k X k matriz whose tth row sum 1is e,
whose ith row ts bounded above by e, and whose jth column sum
18 1.
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Proof. If IA} = C, --- C, where C; is in the minimal base for
aii, then C, = ITA% where 7,; < e, and >,;7,; = t¢,. Then II,.C;, =
I1;A% where r; = >, ri; for =1, ---, k. (7;;) is the desired matrix.
The converse follows easily.

The existence of the matrix described in Lemma 3.2 is determined
by the following generalization of the Gale-Ryser theorem on (0, 1)-
matrices [7, p- 63].

DEFINITION 3.3. If I = (e, €, ---, ¢,) is a k-tuple of nonnegative
integers, an M-matriz is a matrix of nonnegative integers with &
rows whose ¢th row entries are bounded above by ¢, A k xt M-
matrix is maximal with row sums (f,) if each row is maximal in
the lexicographic order of ¢-tuples.

In Lemma 3.4 (7)) is the monotone permutation of (r;). If the
condition of the lemma holds we say (7;) is majorized by (s;) and
write (r;) < (s;).

LEMMA 3.4. If (t;;) is the maximal k X t M-matriz with row
sums (f,) and column sums (s;), then there exists an M-matrix (r;;)
with column sums (r;) 1f and only &of Sir;<Sys; forv=1, «--,t—1
with equality when v = t.

Proof. The proof follows mutatis mutandus from {5, p. 1030].

Lemmas 3.2 and 3.4 allow us to characterize the elements in the
minimal base for [Ta.

THEOREM 38.5. The minimal base for Ilas in RL(A,) s the join of
all products of the A,’s whose exponent k-tuples are majorized by (ef).

Proof. The maximal k X k (e)-matrix with row sums (¢¢;) has
column sums e¢f. Hence (7,) < (¢F) if and only if there exists an
(¢;)-matrix with row sums (¢;) and column sums (). But this holds
if and only if I7TA7 is an element in the minimal base for a:.

REMARK. For k¥ < 8 we have determined that the product ITa:
has as a minimal base the join of all products of the A;,’s whose
exponent k-tuples are bounded above by ef, bounded below by e,
sum to Y ie; and whose breadth is less that or equal to >3f (tk — t*)e,.
The breadth of ITAj: is >,.;|r; — r;|. However this characteriza-
tion does not hold for k£ > 3.

4. P(a, a, +++, a,), A multiplicative sublattice. Let P(a, ---,
a;) = P(a;) be the set of all finite joins of products of the elementary
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symmetric elements in A4, ---, A,. We will show that this set is
the multiplicative sublattice generated by a,, « -, a,.

If (u;,) and (v;) are k-tuples we define the distance between them
as d({u,), (v)) = > |u; — v;|. The lemma which follows will aid us
in identifying the minimal base for the meet of two products to the
a;’s.

LEMMA 4.1. Let (u,) and (v;,) be k-tuples majorized by monotone
k-tuples (r;) and (s;), respectively. Then if w, = max (u,; v;) for
i=1 -k

(1) d((us), (w) = |} — s¥| of and only if w = max (v}, sf).

(2) d((wy), (v)) = |rF — sl

(8) d{(uy), (v,)) > |r¥ — s¥| implies there exist k-tuples (u,) and
(T;) such that (w,) =z, (max (@, 7)) and d((@,), (¥,)) = |r¥ — s¥|.

Proof. (1) 2-wy=23u+ v+ u,—v])=r—s +|rF — s =
2(max (v¥, sf)) if and only if > |u, — v,] = |r¥ — 87| since for any
two integers a, b 2(max (a, b)) =a + b + |a — b|.

(2) |rf—sf=uF—of| =12 —v) = 2w, — v, = d((u,), (vy)).

(8) d(uy), (v)i> |ut — v¥| implies there exist indices 4, and <,
such that w, <wv, and w;, > v,. Let (u;), (v) be the monotone rep-
resentatives of (u,), (v,) respectively. If ¢; <4, then vi > wui =i, > v
so that v, = vi, + 2. Let (¢!) be the k-tuple equal to (v:)for ¢ = i/,
iy, b, = v; — 1 and ¢, = v;, + 1. Then (¢) is majorized by (). If
(t,) is obtained by reversing the permutation (v,) — (v') and applying
it to (¢') then (¢,) is also majorized by (s;). So

max (u;, v,), T+
max (U, t,) = ..
v, — 1, 1 =1,
and d((«,;), (t.)) < d{(w,;), (v;)). By induction on d, there exist (i), (7,)
such that d((@,), (7)) = |rf — sf| and max (@, 7,) < max (u;, t;) <
max (u,;, v,) for ¢ =1, ---, k. The proof is complete if 7; < 7.

Otherwise %, > ¢; which implies that ¢;" < ¢;. The proof is similar
if the latter holds.

Now suppose that (e,) and (f,) are k-tuples, then IIai and Ilaf
are elements of P(a,). The next theorem characterizes the elements
in the base for their meet in terms of the exponents of the A,’s.

THEOREM 4.2. If Ia¥ and Iafi are elements of Pla;) with
fi* z ef* then Iai A Halt = {ITA%|(v) < (f¥) and (v;) =,(u;) for
some (u;) < (ef)}.

Proof. Since RL(A,) is distributive, the meet described in the
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theorem is the join of all products of the 4, whose exponent %-tuples
are (max («,;, v;) for (ui)<(e) and (v) < (fH. If d((w), (v,)) is
greater than f}* — e¢}*, then (max (u,, v,)) =, (max (%, 7;)) for some
(#,) and (7,) majorized by (ef) and (fF) respectively. Hence the
product of the A,’s with exponent k-tuple (max (u,, v;)) can be left
out of the minimal base for the meet. But d((u,), (v;) > fi* — er*
if and only if (v,) 2, (u;). Hence the elements left in the minimal
base for the meet have the form desired.

To show that the meet of two products of the a,’s is again such
a product, we need

LEMMA 4.3. Let (ef) and (fF) be monotone k-tuples and t¥ =
max (e}*, f¥*) — max (e}, f1%) for i =1, -+, k where we agree that
ef., = f,ch1 = 0. Then (t¥) is also monotone.

Proof.
max (e f**) + max (3z+2, fz+2
> max (ef* + ef, f* + fx*
= max (2e}%, 21 5%)

- 2 max (614_1, f1,+1 .

Sothat tf = ¢}, for e =1, -+« k — L.

THEOREM 4.4. Let (e;) and (f,) be k-iuples, then the meet of
Ha% and ali ©s the product ITa% where t¥ is given im Lemma 4.8.

Proof. We may assume that e¢}* = ff*. From above it suffices
to show that the set B = {(u,)|(u;) < (e}) and (4;) =, (v;) for some
(v) < (fH)} is equal to the set € = {(u,)|(u;) < (EH)}.

BCEC If (w;) is in B then (u) < (ef) and (u,) =,(v;) for
(v) < (f¥). Then d((u,), (vi)) = e} ¥* go that w} = e;** where
w = max (u;, v;) for e =1, ---, k. Moreover, for =2, .-+, k, u} =

= f#* since if v} < f¥*, then 37w, = Sy tw, > St f¥ where
('vi) is the monotone representative of (v,) which contradicts (v,) <
(f¥). Therefore > 'u;, = e}* — u}f < ef* — f¥*. But

j—1 i1
2t = Z [max (e}*, fi*) — max (ef%, fiH)]
- max(e1 , f¥*) — max (e}*, f1*)

2 . 0 if e}*=f3*
= e, — .
T — et A frr > e

j—1
:{;er it ef = f}

@t — f1 i fP > et
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Hence S u, < 3 *t¥ and (u,) < (¢}), i.e., (u,) is in €.

€ & B. Let (u;) be a &-tuple majorized by (¢}). By symmetry,
we may assume that (u,) is monotone. Since, (t}) < (ef), we have
(;) < (e¥). For i=1,.+-, klet v, = min (u,;, fF¥+ -+ + f¥— ;)
setting v, = 0. We claim
&) v, = min, {37 f¥ + D%, 4;} where the minimum is taken for
p ranging from 0 to ¢ and f, = 0 = D7 u, whenever 7 < s.

(%) is clear if ¢ = 1. For ¢ > 1,

q—1

q —1
;vi:Zv¢+min<uq,f;“+ +f;‘—02vi>

1

g—1

= min <uq + 51“‘7}"’ ifi*)
f

= min (uq + min {i
0

Pp=0,0e0,4—1

= min {}:i]f;“ + Igu,}

p=0,-++,¢

where the third equality follows by induction. Therefore (%) holds.
Moreover, (v,) is monotone: If ¢ is any integer, 1 < qg <k — 1,
then
(1) 2033 w,) = 23307 ue) + ug + Ugn
(2) 2050fF + 28 u) Z 20300 FF + 20551 U0 + Uy + Ugp
(8) 2 fHz2fH +FF+ fin

since (u,) and (f}) are monotone. Hence each integer on the left of
the inequalities of (1), (2), or (3) is greater than or equal to

-1
min [2<q2 ui) + U, + WUg1 z(fl* + U+ e+ uq—x)
1
+uq + Wgr1y ***y z(fl* + e +f;(—1)
q
T FE e AP + F o+ Fra

q+1 g—1
El‘, v, + ; v, .

%

So from (%), 2 v, = 1/2[30" v, + 27 w,] and v, = Xiiv, — 3w, =
Sty — Siv, =v,,, for q=1,---, k — 1. Hence (v,) is monotone.

Finally, again from (%) v} = min;_, ..., {3 f} + u}} and since
wf =t = max (eft, [ = fi*forj=1, ---, k, we have f} + --- +
fr, 4+ uX = fr* for each j. Hence v¥ = f¥*. Therefore (v,) < (f¥)
since by definition of the w/’s, v, + «++ + v; £ f¥ + -+ + f¥ for
each j. Since (v,),= (u;) and (u,;) < {¢}), we have (u,) is in B.

It follows from the property in RL(A,) that multiplication in
P(a,) distributes over joins. Conseguently
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THEOREM 4.5. The set of all finite joins of products of the
elementary symmetric elements in A, «--, A, s a (distributive)
multiplicative sublattice of RL(A,) and ts the sublattice gemerated
by Ay * 00y Qe

In the next two sections we investigate the structure of the
lattice P(a;). In §5 we show that the factorization of products of
the a, is unique and in §6 we investigate the principal elements
and the residual division in P(a,).

5. Unique factorization of products of elementary symmetric
elements. If ey and IIa{: are products in P(a;,) and Hai < Haf,
then every element in the minimal base for IIa% must be less than
or equal to one of the elements in the minimal base for ITaf:. That
is, whenever (r,) < (¢}) then (r;) =,(s;) for some (s;) < (f¥). When
this occurs we say that (¢f) is dominated by (f¥) and write (ef)
dom (f}). Hence, Ha% < IHaf: if and only if (¢f) dom (f}). Hence,

LEMMA 5.1. Dom 1is a partial order on the set of monotone
k-tuples.

Lemma 5.1 and the definition of dom establish the next theorem.

THEOREM 5.2. The set of products of the a,’s is order isomor-
phic to the poset of monotone k-tuples ordered by dom via the map
oy — (ef). In particular, since this mapping is well defined, fac-
torization of a product of elementary symmetric elements is unique.

Using the order dom, we show that in P(a;) any product of the
elementary symmetric elements is join irreducible.

THEOREM 5.3. Products of the elementary symmetric elements
in Pa;) are joim irreducible.

Proof. Suppose that Ia?% = Ha% \/ --- \V Hafi*. Since minimal
bases in RL(A,) are unique, the element [7A%* which is in the mini-
mal base for ITa! must appear in the minimal base for one of the
products of the a,’s on the right, say ITa¥. Then (gf) < (¢}). But
since May < Ia¥, (ef) dom (gF). So (ef) =,(v;) where (v;) < (gf).
Therefore (ef) = (v,) and (e}) < (g9¥). Consequently (e}) = (¢¥); and
ITa% is join irreducible.

COROLLARY 5.4. FElements in P(a;) have unique minimal bases
as joins of products of the a;’s.
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Proof. [2, p. 183].

6. Residuation and join principal elements in P(a;). In
Lemma 4.1 we used the technique of subtracting one from a posi-
tion in a k-tuple and adding one further to the right in such a way
that monotonicity of the kA-tuple was maintained. We call this
process a momnotone (—1, 1)-change and remark that these changes
characterize majorization [cf. 4].

ProrosiTiON 6.1. Let (r;) and (s;) be manotone k-tuples such
that (r;) < (8;) and (F;) be obtained from (r,) by a monotone (—1, 1)-
change. Then (7,) < (s)).

PROPOSITION 6.2. Ewvery mototone k-tuple majorized by a mono-
tone k-tuple (s;) can be obtained from (s;) by a sequence of monotone
(—1, L>-changes.

Proof. Let (r;) be a monotone k-tuple such that () < (s,). We
show that () can be obtained by a sequence of (—1, 1)-changes by
induction on d((r,), (8,)) = ¥ |lr,— s =¢t. If t =0, (»;) =(s;). For
t>0,let®={e:5>r}. If Dis empty, then (s,),= () and (r;) =
(s;,) since r} = s¥. Hence ® is nonempty. Set 7, = maxD. More-
over, %, < k since 1, = k implies > i~ r, > ¥, contradicting (r;) <
(8;). Now let j, = max ((%,)) where F(3,) = {j:J > 4, and s; < rj}.
If %(i,) is empty and 4, =1, then j >1 implies s; = »; so that
s; =r; for 7> 1. But then s, = r, a contradiction. If $(3,) is
empty and ¢, > 1, then

o ip ig
28j+7";!:)+1g§71j+ i =8 glz‘,sj+ 7
1

and s*,, = r{,. But then s,=7, for % +1=qg =k Therefore
Sior; = 3ios; with s, > 7, . This implies 37" »; > 30 s;. Again
this is a contradiction. Hence $(%,) is nonempty.

Let (5,) be obtained from (s,) by a monotone (—1, 1)-change at
the 4, J, places. Then (§,) is monotone and we claim that (r;) < (5,).
Since (r;) < (s;) and 5, = s, —1 = 7, the desired inequality holds
for 1<¢=4,. If i,<qg<j,and 07, > DS, then Sir, = >7s,.
There is some p > ¢ such that 327, < >2%s. Let p, be the least
such p. Then (74, <+, 75p-1) = (Sq4sy ***, 8p—) and 7, < s,. This
contradicts the choice of 4, if p,>¢+ 1. If p,=q+ 1, then
P < 8,41 again gives a contradiction to the choice of 4,. Hence
for 1 < ¢q < j,, the sum of the first ¢r,’s is less than or equal to
the sum of the first 5,s. The inequalities are clear if j,<q¢=<k so
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that (7,) < (8,). Since d((7), (5,) < d((»,), (s;)), the theorem follows
by induction.

Note that if (»;) can be obtained from (s;) by a sequence of
monotone (—1, 1)-changes, then we can obtain (s;) from () by a
sequence of (1, —1)-changes.

PROPOSITION 6.4. If (7,) 48 a monotone k-tuple, then each mono-
tone k-tuple which majorizes (r;) can be obtained from () by a
finite sequence of monotone (1, —1)-changes.

Our next objective is to show that P(a;) is closed under residua-
tion. Since P(a;) is distributive and a product of the a,’s is join
irreducible, the following lemma tells us that to check closure of
residuation in P(a;) we only need check the residuation of a product
of the a,’s by another such product.

LEMMA 6.5. If every element in a distributive multiplicative
lattice L s a join of joim irreducibles and join irreducibles are
closed under multiplication, then for Z join irreducible and X, Y
wn L,

(XVY:Z)=(X:Z)V(Y:Z).

Proof. If W is join irreducible such that WZ < X V Y, then
WZ=WZANX)V(WZANY) Hence WZ=<X or WZ<Y and
WZ(X:Z)V(Y: Z). Therefore ( XVY:Z)=(X:Z)Vv(Y:Z). Since
the opposite inequality holds, the lemma is proved.

COROLLARY 6.6. P(a,) s closed under residuation if and only
of (X:Y) is in Pla;) for any join irreducibles X, Y in P(a,).

Proof. If X, ---,X,, Y, -+, Y, are products of the a;,s in
P(a,), then

8

(X, Ve VLTV e VYD) = A (VX 1)

2

by Lemma 6.5.
Technical Lemmas 6.7 and 6.8 allow us to prove P(a;) is closed

under residuation.

LEMMA 6.7. If (q;) <(g:) and (g;) =,(b) for some (b,) < (ef),
then (q,) =, (a,) for some (a;) < (ef).

Proof. First we assume (qg,) is monotone and we may assume
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that (b,) is monotone. Let (7,) be obtained from (g,) by a monotone
(—1, 1)-change at the [, m places where [ <m. If (@) =,(d,), let
(a,) = (b). If not, then @, = b, for ¢ # I implies that g, < b,. Since
¢, =0b, we have ¢, = b, and b, <b,. If b, =05b, then b,=b,, =
@141 < @, = by, a contradiction.) Let &, =b, — 1 and b, = b, for 7+ [.
If b <bnijry and ¢u; > b,_; for some 0 < 5 <m — 1 + 1 then
(a;) defined by

_ b, for 1= m — 3

b, +1 for i4+m—j
satisﬁes the _conclgsion of the lemma. Otherwise b, , = b, so that
Qs = G > b, = b,_,. Then we can construct (a;) as desired unless
b,y = bn_; in Whlch case Qpy = Gy > bpy = b,_,. Again we can

construct the desired (@) unless b,_, = b,._,. Continuing, we conclude
all of the b;’s for ¢ from I to m are equal if (a,) cannot be con-
structed. But we know that b, <@, =¢,.+1=q, —q;—1=0b,—1=b;
that is, b, < b;, a contradiction. Hence (a;) exists such that (a,) <
(e}) and (q;) =,(a;). Since any monotone k-tuple majorized by (g,)
can be obtamed by a finite sequence of monotone (—1, 1)-changes,
the lemma is proved for (g;) monotone.

If (q,) is not monotone, let (¢;) be its monotone representative.
Then for some (a:)<(e}), (¢;)=,(a;). But then (g,)=,(a,) and (a;)<(ef).

LEMMA 6.8. Let (w,), (f}), (b)), and (ef) be monotone k-tuples
with () + (f¥) =, (b)) for some (b)) < (ef) and suppose (q,) < (f}),
then (u;) + () =, (¢;) for some (¢;) < (ef).

Proof. Sinee (¢.) < (f}), (u; + ¢q;) < {(u, + f¥). Moreover, since
(w) + (fF) = (uy, + f¥)=,(,) for some (b)< (e}), by Lemma 6.7
(u; + ¢;) = () + (¢;) =, (c;) for some (¢;) < (ef).

COROLLARY 6.9. If (u,) 1s a monotone k-tuple then ITA% <
Hag: Halt of and only if (u, + f¥) =, (b,) for some (b,) < (ef).

Proof. If (3,) is the monotone representative for (g, and
(u;+q;) is the monotone representative for (u,+¢,) for some (q,) <(f¥),
then

DU+ @GS+ TGS D u + D =3 (u + )

where the indices run from 1 to j for 1=j7<k—1 and (u, + ¢)* =
uf + qF = uf + f¥* = (u, + f#)*. Hence the condition is sufficient.
Necessity is clear.
Note that a symmetric element E in RL(A4,) is the join of pro-
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ducts of the a,’s if and only if whenever ITA4;: < E with (,) mono-
tone and (s;) is obtained from (;) by a sequence monotone (—1, 1)-
changes, then ITAy < E; for then E = VY {Ilal '+ (f,) is monotome
and /7TA% is in the minimal base for E}. As before we set ¢,,, = 0.

THEOREM 6.10. P(a;) s closed under residuation.

Proof. Suppose that (u,) is monotone and that 7 A%< ([Ta: [Tal?).
Let (v;) be obtained from (u;) by a monotone (—1, 1)-change. Then
Hayi- TAf: < Mo so that (u,) + (fF) =, (b,) for some (b,) < (ef). So
by Lemma 6.8 (v,) + (f¥) =, (c;) for some (c,) < (e}) since (v;) + (f¥)
is obtained from (w,) + (f¥) by a monotone (—1, 1)-change. Hence
ITAY <(ITati: Hali) by Corollary 6.9. Therefore Hati"i+1<(Ilag: [Talt)
so the residual is the join of all such products I7Ta}i*+ where (u;)
is monotone and ITAY - lIaf: < a¥. (We set u,,, = 0.) Since this is
an element in P(a,) our proof is complete.

PROPOSITION 6.11. FEach product of the elementary symmetric
clements is a weak join principal element in P(a;).

Proof. Let k>1. It suffices to show that (I7ai: a,)=11;..a% -ait ™"
whenever ¢, = 1. And since the product on the right is clearly less
than or equal to the residual, we only need demonstrate the opposite
inequality. So suppose that ITA% < (a¥: a,) where ¢, =1. By sym-
metry we assume (¢;) is monotone. Let (f})=(,1,.--,1,0,-.-,0)

with 1’s in the first ¢ positions. Then
) (t;) + (f¥) =, (b;) for some (b,) < (e}) .

Let (u,) be the lexicographic maximum of the p-minimal k-tuples
which are ,< (¢,) and satisfy (/) with (u,;) in place of (f,). Note
that (u,) is monotone since if (#;) is the monotone representative
of (w;) then (i;),= (t) and by symmetry ITA¥ < (ITa%:a,). But
(#;) =, (u;) and since (#&;) is p-minimal (u,) = (&;,). Moreover, (u;) +
fH) = (w; + f¥) is monotone so we can choose (b;,) monotone and
I-maximum satisfying (¥) with (¢,) replaced by (u,).

Clatm. (u;) < ((e;, — f)*). For then ITAY < ITAY < II,..a%-a¢tt.

First suppose that >.7b, = >}7 ¢} for some »<k. Set (g, +--, g,) =
(fu Tty f—u f;k) and (hu ) hr) = (eu *tt €y e:)' Then (h‘b) g,, (gt)'
Also g¥=f¥ and h} =ef fori=1, .-+, r. So (u,+9g¥ *+-, u,+9}) =,
(byy ++-, b,) with (b, --+, b,) < (h¥). By induction on k (uy, +++, u,) =,
(e, +--,c,) for some (¢, +--¢,) < (hf¥ — g¥F, - — g¥). Also by in-
duction on k, since (%, *--, ui) + (Fly -+ -, f k) =, (byyy 7, b) for
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(bypry ** 2, by) < (€}, + -+, €f) there is a k — r-tuple (¢,4y, *--, ¢;,) Such
that (CH—U ] ck) < ((er-H - fr+1)*’ R (elc - fk)*) and (ur+u ) uk) gp
(Cri1y ***, €). But then (u;) =, (¢;) with (¢,) < ((e; — f1)*). Hence we
may assume that >7b, < D\7ef for any r < k.

If (b) = (u, + f§), then (w,)= (b, — f¥) and (w;) < ((e; — ).
So suppose there exists some ¢ such that b, < u, + f¥. Let 4, be
the first such 4. Then for any j, 1 <5 <4,—1, b; =u; + f¥ and
by the l-maximality of (b,), either b,_, = b, %, = 1, or if b,_, > b,
then for all ¢ > 4, b, = 0 since otherwise we could perform a moto-
tone (1, —1)-change on (b;). Moreover, by the p-minimality of (u,), u;,
cannot be reduced in any coordinate so that u, + f¥ > b, implies
that u,, = 0. Since f7 is either 0 or 1 for each ¢, we conclude that
1=/f,>b,=0. Hence % #1 (for if %, =1 then (b)) = (0, ---, 0))
and b; # b, (for if b, =b,, then b, ., =0 <1+ u;_, = ff_1 + U,
contradicting the choice of 4,). So b,_, > b,, and ¢q > 4, implies that
b, = 0. Since ef > f¥, e} > 0. Therefore ¢f + -+- + ¢f_, < ¢f* =
b¥ =b, 4 +++ + by Sef + -+ + 6, a contradiction. Therefore
the 7, does not exist and the theorem is proved.

COROLLARY 6.12. FEach product of the elementary symmetric
elements is join principal in P(a;).

Proof. If A, B, and C are in P(a,) with A a product of the
a;’s, then (ABV C: A) = (AB: A) VvV (C: A) = BV (C: A) since B and
C are joins of join irreducibles in P(a,).

REMARK. In general if A and B are join irreducible in P(a,),
A: B is not join irreducible; for example, al: a, = aiV a, in P(a,, a,, a,).
Of course the residual A: B is join irreducible if A = CB for some
C in P(a,).

7. Principal elements in P(q;). In general a product of ele-
mentary symmetric elements in P(a,) is not a principal element in
P(a,). In particular a, is not weak meet principal if £ > 1 since
from §2 (a,:a) =a, so (a, a)e, = a,a, while a, A a, = a;, # a,a,.
However, there is a nontrivial principal element, a,, in P(a,) since
a; is a principal element in RL(A,). We show that a, and its powers
are the only nontrivial principal elements in P(a,).

A Il-domain is a multiplicative lattice, L’, which contains a
subset, S, of elements of I’ which generates L’ under joins such
that every element of S is a product of prime elements and in which
0 is a prime element [1, §4].

THEOREM 7.1. P(a,;) is a II-domain in which the only principal
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elements are 0, a} for t =21, and I.

Proof. 0 is a prime element in P(a,) since 0 is a prime element
in RL(A,). Moreover, P(a;) is a multiplicative lattice which is gen-
erated under joins by products of the elementary symmetric elements.

If A and B are joins of products of the a;,’s such that A £ a;
and BZ a; for a fixed j,1 < j <k, then there are products ITa¥
and [Taf: in the minimal bases in P(a;) respectively such that
Ha# £ a; and ITaft £ a;. Then there exist () < (¢f) and (s,) < (f¥)
such that both (#;) and (s;) have fewer than j nonzero integers.
By symmetry (r;) and (s;), the monotone representatives of () and
(s;) are in the minimal bases for ITa: and Ilaf¢ respectively and
(r})+(si) has fewer than j nonzero entries. Therefore ITA}i-ITAYZLa;
and hence AB £ a;. Hence a; is a prime element in P(a,).

0 and I are principal elements in P(a,). The fact that any
weak meet principal element in P(a,) is join irreducible follows from
[1, Theorem 1.2]. So in P(a;) the only nontrivial candidates for
principal elements are products of the a,/’s. Moreover, since AB
principal implies that A is prinecipal and a,---, a,_, are not principal
elements in P(q;), the only principal elements in P(a;) are powers
of a,, 0, and I.

8. Remarks (multiplicative lattices). Elements in RL(A4,) and
P(a;) are joins of unique products of their generators. Moreover,
both of these multiplicative lattices have a partial order which
naturally induces an order on k-tuples associated with their exponent
k-tuples. If we define ¢: RL(A,) — P(a,) by sending A, to a, for
each ¢ and extending ¢ via products and joins, we see that ¢ is a
join-morphism which preserves products, primes, and join princi-
palness. However RL(A,) is the lattice of ideals of a semigroup
while P(a;) is not [1]. The problem in P(a;) is the absence of weak
meet principal generators.

In P(a,) (k> 1) every prime contains the only principal prime
element, a,.

9. Remarks (partitions of integers). Brylawski [4] has studied
certain sublattices of P(a,). He defined L, to be the lattice of
monotone partitions of % of length k. Extending Brylawski’s nota-
tion, we write L% for the lattice of monotone partitions of n with
the understanding that the last n — k entries are zero if » =k and
the last &k — » entries are zero if n < k.

For B, € < P(a,), we write B-€ for {AB|AcB and BecC}.

ProposITION 9.1. P(a,) is the disjoint wunion of isomorphic
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images of LE, Unisoorn-w ¥(LE) where we set Lf = {0, -+-, 0)} and
Lk = {(OO; cee, )} with "ﬁ'(su ooy 8) = Ilay*i+1 and Sy = 0. More-
over Y(Ly) - y(Lk,) = y(Lz 10y) ©f 1y 1 = K.

Proof. That Lt and +(L%) are isomorphic as lattices follows
from Theorem 5.2 and the fact that dom restricted to L! is simply
majorization. Clearly ¥(L;)N+y(Ls,) = ¢ for n, # n, and U, v(Lf) =
P(a,) if we agree (L¢) = I and (Lk) = 0. That (L5)-y(Ls,) =
Y(Ly 1n,) if ny, my, = k follows from the addition of exponents of the

a;’s in P(a,) under multiplication.

10. Remarks (symmetric elements). We asked whether the
multiplicative sublattice of symmetric elements, % (§1) can be
generated naturally by a proper subset of generators. We note here
that a large subset of N does not generate N under products and
joins.

If (s,) is a Ek-tuple of nonzero integers then in RL(4,), A,
A2 ... A is a prime sequence [6]. So P(af?, «--,af®) is a II-
domain isomorphic with P(a,) where a{? is the ith elementary sym-
metric element in A, ---, A*. Moreover, in terms of the A,’s,
It (af?) = {ITA%|t, = s;r; for some (r;) < (ef)}. Elements in P(a{)
are all symmetric. However, U, P(a?) generates a proper subset
of N. For example, if C = AJAJA, in RL(A, A,, A,), then VY, 5 C°
is a symmetric element which is not the join of products of any of
the a{’s.
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