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C*-ALGEBRAS WITH APPROXIMATELY INNER FLIP

EpwARD G. EFFROS AND JONATHAN ROSENBERG

A remarkable recent theorem of A. Connes shows that
if N is a II, factor on a separable Hilbert space, the “flip
automorphism” of N& N can be approximated pointwise by
inner automorphisms if and omnly if N is hyperfinite. We
have accordingly been led to consider the analegous question
of when, for a C*-algebra A, the “flip” on 4 &Q A (C*-rather
than W*-tensor product) is “approximately inner.” We find
that under certain additional hypotheses, A must be UHF
(if A has a unit) or matroid (if we allow nonunital algebras).

1. Introduction. Given C*-algebras A and B, we shall let
A ® B denote the “minimal” or “spatial” C*-algebraic tensor product.
The flip for 4 is the automorphism

GARQA—ARAaRb—bRa .

In this paper we begin by investigating those C*-algebras A for
which ¢ is approximately inner, i.e., a point-norm limit of inner
automorphisms. Our interest in these algebras was stimulated by
a profound result of Connes concerning II, factors on a separable
Hilbert space. He proved that for such an algebra N, the flip on
the von Neumann tensor product NX N is a point-(weak operator)
limit of inner automorphisms if and only if N is isomorphic to the
hyperfinite II, factor R. This provided a key step in his characteri-
zation of the injective factors [8, V].

One might expect from Connes’ result that very few C*-algebras
have an approximately inner flip (for the nonunital definition, see
§2). To the best of our knowledge, the only such C*-algebras (resp.,
unital C*-algebras) may be the matroid (resp., UHF) algebras. In
§ 2 we show that any C*-algebra with approximately inner flip must
be simple and nuclear. Then in §3, we use a form of algebraic
K-theory to show that such an AF algebra must be matroid.

In his proof, Connes made considerable use of “asymptotic” im-
beddings of II, factors into the hyperfinite factor R (see, e.g., [18]
for earlier results). This has led us to consider in §4 those unital
C*-algebras which have analogous C*-algebraic imbeddings into the
“universal” (2°.8°.5°. ...) UHF C*-algebra % (as defined in [14]).
We prove that they include the unital extensions of CCR algebras,
the approximately finite (AF') C*-algebras of Bratteli [3], and more
generally quasi-diagonal algebras (such as the simple C*-algebras of
Bunce and Deddens [5]). On the other hand, type I C*-algebras
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may be constructed without this property.

Following Connes’ approach, we conclude in § 5 by showing that
7 is the only unital separable C*-algebra A for which

(1) the flip is approximately inner,

(2) A has an asymptotic imbedding in ‘%,

(8) Az=ZAQR .

It follows that for any separable A (not necessarily unital) with an
approximate identity consisting of projections, with approximately
inner flip, and with an asymptotic imbedding in %/, that A ® % is
matroid. It is not clear to us, however, whether A itself must be
matroid.

Throughout this paper, all maps, such as automorphisms, repre-
sentations, etc., are assumed *-preserving. By “ideal” we shall
mean norm-closed two-sided ideal, except in 2.9 and 2.10 where
certain nonclosed ideals are needed. Given a complex Hilbert space
7, we shall let .<#(57) (resp., .27 (5#°)) denote the bounded (resp.,
compact) linear operators on oz7 If 57 is finite-dimensional, we
may identify .<Z(27°) = 27 (2#°) with the complex n X n matrices
M,. An approximate identity {e};,cr in a C*-algebra A is a net of
operators such that 0 < ¢, <1 and |le;a — a|| — 0 for all a c A.

We thank John Bunce, Vern Paulsen, and Norberto Salinas for
drawing our attention to an error in the original manuscript.

2. Approximately inner flips. Given a C*-algebra A, we let
A** and <#(A) denote the second dual von Neumann algebra and
the bounded linear operators on A, respectively. The multiplier
algebra (or “double centralizer” algebra) M(A) may be defined to be
the set of elements b€ A** such that bA + 4b < A (see [1]). The
two natural maps M(A) — <Z(A) defined by left and right multipli-
cation are isometric isomorphisms. We let A~ be the C*-subalgebra
of M(A) generated by A and 1. If A has an identity A~ = A—
otherwise A~ is the usual unital extension of A by C (denoted by
A’ in §3).

If A is an ideal in a C*-algebra B, we may identify A** with
B**e, where e is a unique central projection in B**. The map
b — be sends B into M(A) since if ac A,

(be)a = blea) = bac A,

and a similar calculation applies to b+ eb. In this sense, M(A) may
be regarded as the maximal “essential” unital extension of A4.

If 57~ is a Hilbert space and 57 Q 5% is the Hilbert space
tensor product, then the map w: 957 QR % — S R 5% determined
by x® y—y ® x is unitary. Given a C*-algebra 4 on 27, we may
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identify A ® A with the closure of the algebraic tensor product of
A with itself in .7 (7 Q #2°). Given a,be A, we have

wWa @ bu* =bvbRa,

hence the correspondence a ® b+ b ® a indeed extends to a *-auto-
morphism 0: AR A —> AR A that we called the flip in § 1.

If A is a C*-algebra, each unitary u e M(A) defines an automor-
phism Adu of A by

Ad u(a) = uaun* ,

and we say that an automorphism of this form is inner. More
generally, we say that an automorphism « of A is approximaiely
wmner if it is a point-norm limit of inner automorphisms. If A is
nonunital, we may also call a strongly approximately inner if «a is
point-norm limit of automorphisms of the form Adw, w unitary in
A~. Although generally A~ & M(A), often (and perhaps always)
these two definitions agree (see also Theorem 3.8 below):

PropPOSITION 2.1. If A is a C*-algebra, a s an automorphism
of A, and A has an approximate identity consisting of a-fixed
projections, then « is approximately inner if and only if it is
approximately inner in the stronger semnsc (approximable by Ad w’s
with we A™).

Proof. Suppose that « is approximately inner. Let a,a,, ---,
a,cA and let ¢ > 0. Using the hypothesis, choose an a-fixed pro-
jeetion ¢ such that [lea; — ;|| < e and |la;e — a;|| < e for all 7. Choose
w unitary in M(A) with [Jueu® —el] <e and with |jluau* — a(e;)]] <e
for =1, -.-,n, using the fact that « is approximately inner.
Then if v =1 —¢ + eu, ve A~ and

[lov* — 1] = [Jew(l — €) + (1 — e)u”e]|
< 2lleu — uell < 2,
Jv¥o — 1] = |Ju*eu — €] <e.

Thus if ¢ is small enough, v*v is invertible and v»(v*v)™"* = we A~
is unitary and close to v in norm. Furthermore, for each j,

Hvav* — a(a)]] = (1 — e + eu)al — e + u*e) — alay)]]
=S A — e)a;(1 — e + u*e)l| + |lewa;(l — o)l + |le(uau*)e — ala;)|]
=11 — e+ u'elllla; — ea;l| + llewl|]la; — asel]
+ lleluau* — alaplel] + |lea(as)e — alay)|]
< 4e + {laleae — a;)|]
= de + lle(aze — ay)|| + flea; — a;lf < 6e .
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Thus ||wa;w* — ala;)|| will be small for ¢ small enough, and « is
approximately inner in the stronger sense.

COROLLARY 2.2. Suppose A is a C*-algebra with an approximate
identity comsisting of projections. Then the flip a for A is ap-
proximately inner if and only if it is so in the stronger sense.

Proof. If {e,} is an approximate identity for A consisting of
projections, then {¢; ® e,} is an approximate identity for A® A con-
sisting of o-fixed projections.

Keeping these results in mind, we shall work hereafter with
our original definition, since M(A) has better functorial properties
than A~. (For instance, the proof of the next lemma breaks down
if we use A~ in place of M(A).)

Any inner automorphism a must fix ideals, i.e., if J is an ideal
in A, then a(J)=J, since J will again be an ideal in M(A4). It
immediately follows that the same is true for approximately inner
automorphisms. Another simple observation that we will need is:

LeMMA 2.3. Given C*-algebras A and B with approximately
inner automorphisms o and B, respectively, the automorphism
aRB: AR B—> AR B determined by a @ bt ala)® B(b) is again
approximately inner.

Proof. We must show that given ¢, -+, ¢, € AX® B and ¢ > 0,
we may find a unitary we M(A ® B) with
(2.1) lae® Ble,) — wew*|| <e, k=1,---, 9.

Since @ ® B and Ad w are isometric and linear, it suffices to assume
that each ¢, has the form a, ® b, with ||a,|, ||b;]| < 1. By hypothesis
we may select unitaries w e M(A), v € M(B) with

[|aay) — wau*|] < e/2
HB(bk)—,vbkv*H <€/2 , for k= 1, e, 1

Regarding M(A)Q M(B) as a unital subalgebra of M(4AQ B) (see [1,
§3]), w = u®@v is a unitary in the latter algebra satisfying (2.1).

COROLLARY 2.4. If A and B have approximately inner flips,
then the same is true for A B.

Proof. Under the natural identification

(A®B)QARX®B=(ARQARBRB),
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0.5 corresponds to o, & o, hence we may apply Lemma 2.3.

Parallel to the “going-up Lemmas” 2.3 and 2.4 is the following
“going-down lemma’:

ProOPOSITON 2.5. Let A be a C*-algebra, let a be an approxi-
mately inner automorphism of A, and let p be an a-fixed projection
wm A. Then ai,,, is approximately inmer.

Proof. Let a, ---,a,cpAp and let ¢ > 0. For convenience, let
a, = p and choose 6 > 0 small compared to ¢ (“how small” can be
determined from Lemmas 1.8 and 1.10 of [14]). Since « is approxi-
mately inner, we may choose w unitary in M(A) with

Huau* — afa)|l <6 for ¢=0,---,n.

Since ¢ = upu* and p = a(a,) are projections in A close to each
other in norm, Lemma 1.8 of [14] shows that there exists » unitary
in A~ (and thus in M(A)) with vev* = p and ||v — 1|] < ¢/2. Then
vu commutes with p, hence w = vup is unitary in pAp. Also

lwa,w* — a(a) |l = ([vuau™v* — uaw* || + [Jluau™ — aa,)|l
<eélla,j|]+06 for +=1,---, 1,

which can be made arbitrarily small, so «|,,, is approximately inner.

COROLLARY 2.6. If A 1s a wunital C*-algebra, B is a finite-
dimensional C*-algebra (or more generally any C*-algebra with a
minimal projection, such as any % (7)), and AQ B has an ap-
proximately inner flip, then so does A.

Proof. If e¢ is a minimal projection in B, then p = (1R e) X
1®e)in (AR B) X (AR B) is fixed by the flip 0,55, and the pair
P((AR B)R (AR B)p, rest. of 0,g;) is naturally isomorphic to
(A® A, 0.

PROPOSITION 2.7. If a C*-algebra A has an approximately inner
fip, then A is simple.

Proof. Suppose that J # 0 is a proper ideal in 4. We may
regard J, = J X A and J,= A®J as ideals in 4® A4, and it is
evident that o(J,) = J,. Assuming that ¢ is approximately inner, it
follows that J, = .J,. But the latter is not the case. To see this,
select aeJ, beJand f, ge A* with f(a) # 0, g|;, = 0, g(b) = 0. Then
fRge(AR A)* (see [15, 5.1]) and f & g(J,) = {0}, whereas
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(f® g)a ®b) = f(a)g(d) # 0,
ie., a @beJ\J,.
A somewhat less obvious result is the following extension of
[11, Theorem 3.1] to the nonunital case. (Simon Wassermann hags

kindly shown us a rather different proof for the unital case which
might also generalize to this situation.)

ProprosiTION 2.8. If A has an approximately innmer flip, then
A is nuclear.

Proof. From [7, Theorem 3.1] it suffices to prove that given
a, --+,a,¢A and ¢ >0, we may find a finite rank completely posi-
tive map ¢: A — A such that

llglar) —arll <&, kE=1,.-- 7.

We may assume that o, =0 and ||a,]| < 1. We select a positive

linear functional » on A with ||p|| = 1 and an element b, A* with
p(b,) = 1 — (¢/2). By hypothesis there is a unitary v e M(A R A) with
(2.2) u(a, ® b)u* — b, Q@ a,ll <e2, k=1, -+, 7.
Letting {e¢;} be an approximate identity in A ® 4, we have

(ai* ® bi"*)er — ai* @ by
in norm, hence

ea, Q bye; — a;, X b,

in norm. Letting v = ue, € A Q A for some sufficiently large 7, we
have from (2.2) that

(2.3) Jv(ar @ bo)v™ — by @ arl] <e&/2, k=1,---, 7.

We may by continuity of the norm also assume that v = 3,¢;RX d;,
¢y d;ed, |lvil= 1L
The map

PpR®LAOA— A:ia QR b+— pla)d
(here (¢) denotes the algebraic tensor product)

extends to a contraction A® A — A (this is Tomiyama’s “slice
map’—see [22]), and from (2.3) we conclude that

I3 pleare)dbody — p(boall < €2 .

The map
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é: A — A:a—— 3 ple;ack)(dby?)(d;bi%)*

is completely positive (see the argument for [11, Theorem 3.1]), and
it is of finite rank. It is a contraction since

Hg(a)]| = [[(» ® L)(v(a ® b)v*)I| = lall .
Finally
Hg(ar) — ail] < llg(a) — pbail| + |1 — pb)| <e, k=1 ---,7,

and we are done.

Propositions 2.7 and 2.8 show that C*-algebras with approxi-
mately inner flip must be simple and nuclear, but in fact more is
true. For instance, such algebras can have at most one trace:

LemMA 2.9. Let A be a C*-algebra, let T be a semi-finite, lower
semi-continuous trace on A, and let m be the ideal of definition of
T (see [9, 6.1.2]). (We use the same symbol for the trace T and for
the corresponding linear functional om m. Note that contrary to
our usual comvention regarding the term “ideal,” m mneed not be
closed.) Then for any approximately inner automorphism o of A,
am)=m and Toa = 7 (on m).

Proof. Suppose (Adu,) is a net of inner automorphisms con-
verging to a@. Then for xem?’, a(x) = lim u,2u’ and so z(a(x)) =
lim sup 7(u, 2" %0 *u*) = lim sup 7(x"*uu,x"*) = t(x) < = by lower semi-
continuity of z. Thus a(z)em*. Furthermore, 7(z) = r(a ™ (a(x))) =
7(e(x)) by the same argument, so a(ut) = m and 7oa = 7 on m.

ProrosITION 2.10. A C*-algebra A with approximately inner
fip can admit at most ome (semi-finite, lower semi-continuous)
trace (up to scalar multiplies).

Proof. Let 7, and 7, be traces on 4, and suppose the flip o for
A is approximately inner. There is a well-defined “product trace”
T=17,Q7, on AR A, which can be constructed by letting =, and =,
be the traceable representations [9, 6.6] corresponding to =, and 7,
and then forming the tensor product representation 7 = 7, ® w, on
the tensor product Hilbert space. It is easy to see that 7 is tracea-
ble, and we can let ¢ be the corresponding trace. Note that since
A is simple, 7, and 7, are defined on the Pedersen ideal K of A [19,
Theorem 1.3] and clearly z(a ® b) = 7.(a)7,(b) for a, be K. By Lemma
2.9, 7 is o-invariant, and so 7, (a)t,(b) = 7,(b)z,(a) for all a,be K.
Taking a € K with 7,(a) # 0, we get 7, = (z,{a)/t,(a))r, on K, hence
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everywhere [19, Corollary 3.2].

3. Approximately finite C*-algebras and some algebraic K-
theory. We recall that a C*-algebra A is said to be approximately
JSinite or AF (respectively matroid) if there is a sequence of finite-
dimensional (resp., matrix) algebras 4, S 4, .-- with A = (U 4,)".
(We consider here only separable algebras, although much of the
discussion that follows is applicable to nonseparable AF' algebras as
well.) We call such a sequence (A,) an approximating system for
A. If A is unital, we say that (4,) is a unital approximating
system if, in addition, each A, contains the identity of A.

We define an equivalence between approximating systems (A4,),
(B,) to be a sequence of unitaries u, € A~ together with subsequences
(A,u), (Buw) such that for all %,

(1) Adwuy(4,m) S Bews

(2) Adwu,(A,.) 2 B, for large enough =,

(3) one has commutative diagrams

A — By

f C Adus f

A ——— B
p(k+1) q{k+1) °
Ad ugis

Extending results of Glimm [14, Theorem 1.12] and Dixmier [10],
Bratteli proved

THEOREM 3.1. Any two approximating systems for an AF alge-
bra are equivalent [3, Theorem 2.7}].

Glimm and Dixmier had shown that Theorem 3.1 leads to a
classification of the matroid algebras. Elliott has recently made the
important observation [13] that in a sense this is also true for
general AF algebras. More precisely, he showed that these algebras
are classified by their “dimension groups” together with the ranges
of their “dimension functions” (see Theorem 3.2 below). The “dimen-
sion group” is actually just the K, group of K-theory. Lacking a
complete reference for this theory in the form that we need (it is
well-known to the specialists), we have included a brief summary.

To begin with, we need a few algebraic notions. If S is an
abelian monoid, i.e., an abelian semigroup with identity 0, an
enveloping (or “Grothendieck”) group G for S consists of a group
G together with a (monoid) homomorphism 4: S — G with the following
properties:

(1) 6(S) generates G, and
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(2) any homomorphism S — H of S into a group H must have

a factorization S 9, G— H.
It easily follows that enveloping groups are essentially unique. An
enveloping group (G(S), /) may always be constructed by letting
G(S) be all equivalence classes [(s, t)] of pairs (s, t), s, t €S, under
the equivalence relation

(8, t) ~ (s, t) if s+t,+u=1%¢t+s +u for some uesS,

and by letting
- 0:S— G(8): s——|[(s, 0)}.

Given a monoid homomorphism ¢: S — T, we obtain from the com-
position S — T-— G(T) a group homomorphism G{(¢): G(S)— G(T),
and we may regard G as a functor. Given a direct product S, X S,
of abelian monoids with enveloping groups (G, 6,), (G, 6.), then
(G, X Gy 0, X 6,) is an enveloping group for S, X S,, or in other
words, one has a natural isomorphism

3.1 G(S, X 8) = G(S) % G(S,) .

By a direct system of abelian groups (G,) we shall mean a se-
quence of abelian groups G, together with homomorphisms ¢,,: G,— G,
p < ¢ such that ¢,,6,, = ¢,, for p <g<r. In particular, each abelian
group G determines the constant system (G,) where G, = G and
6., = d for all p and ¢q. A homomorphism 6 = (6,) of direct systems
(@,), (H,) is a sequence of homomorphisms #,: G, — H, for which the
diagrams

G, H,

L, |

G, H,

are commutative (we shall write 8:(G,) — (H,)). In particular, if
H is a group, by a homomorphism of (&,) into H, denoted (G,) — H,
we mean a homomorphism into the corresponding constant direct
system. A direct limit for (G,) is a pair (G, §), where G is an
abelian group and @ is a homomorphism of (G,) into G such that
any homomorphism A of (G,) into a group H has a unique factoriza-

tion (G,) LA G it H. Direct limits exist and are essentially unique. For

the construction of a particular direct limit, which we shall denote

by (lim G,, 4,..), see [12, Ch. VIII]. If 6:(G,)—(H,) is a homomor-
—-) .

phism, then. composition

(Gp) E— (Hp) ~— lim Hp
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determines a homomorphism

0.:lim G, — lim H, .

Thus we obtain a functor from direct systems to groups.
Returning to K-theory, we shall restrict our attention to self-
adjoint projections instead of to general idempotents, and to unitaries
rather than to general invertible elements (both approaches give the
same theory — see [17, pp. 24, 34-35]). Given a unital C*-algebra
A, we let &,(A) be the set of projections in M,(A), and let F(A) =
U.:: Z(A). Given projections eec Z#,(4A) and fe Z,(A), we have a
corresponding projection e P fe ., .. (4). We say that a projection
of the form ¢ = ¢ @0, is a trivial extension of e, and that projec-
tions ¢ and f in 2,(A) are unitarily equivalent if there is a unitary
ueM,(A) with Adu(e) = f. We define an equivalence relation =~ on
F(A) by e ~ f if there exist trivial extensions ¢/ and f’ of ¢ and
f, respectively, which are unitarily equivalent. If ¢, ~ ¢, and f, = f,,
then it is evident that ¢ P f, = ¢, @D f,. Thus we may define a
semigroup operation on the set of equivalence classes .7°(4)/= by

le] +[f]1=[e® f].

Since it is clear that e @ f ~ f P e, F(A)/=~ is abelian, and it has
identity [0]. We let K,(4) be the enveloping group G(F(4)/=), and
we define the dimension function dim: . F(A)— K,(A) by

dime = 6(le]) .

Given a unital homomorphism ¢: A — B, it induces homomor-
phisms ¢,: M, (A) — M,(B) by [a;;]+ [#(a;;)], which in turn restrict
to a map ¢: FP(4) — .F(B). Since ¢ preserves equivalence and direct
sums, it defines a monoid homomorphism [¢]: F(A)/= — F(B)/=,
and thus defines a group homomorphism ¢, = G([¢]): K(4) — K(B)
satisfying

oy (dim e) = dim g¢(e) .

In particular, K, may be regarded as a functor from unital C*-
algebras to abelian groups.

For any unital C*-algebra A and any integer m > 1, the natural
isomorphisms M, (M, (A))=M,,(A) restrict to an injection of (M, (A))
into A(A) that preserves equivalence. Since any projection in Z2(A4)
has a trivial extension in some .Z,,(4), it is easy to see that this
map induces a natural isomorphism of K,(M,(A)) onto K(A). Taking
A=C, we observe in particular that K(M,)=K(C). But projections
in Z2(C) are equivalent if and only if they have the same rank. It
follows that the map
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0: (C)|= — Z:[e]——rank e

is an identity-preserving homomorphism, which determines an isomor-
phism K,(C) = Z (and thus K(M,) = Z). Similarly,
KM, D---DM,)=2".

In order to study nonunital algebras, we must use reduced K-
theory. Given a C*-algebra A, consider the carresponding wnital

extenston
(3.2) 0 A A -tsc 0.

Algebraically, A" is defined to be the pairs (e, @), a € A, @ cC, with
the multiplication

(a, @)b, B) = (ab + Ba + ab, aB) ,

and A— A", A X C are defined by a+(a, 0), (o, @) —>a. If A does
not have an identity, then the map

A — A~ (0, @) —a + al
is an isomorphism. If A has an identity, then
(3.3) A— APC(a,a)—(a + al, a)

is an isomorphism. In either case, we see that A" may be regarded
as a C*-algebra. The map y in (3.2) determines a homomorphism
K(AY — K(C) = Z, and we let K(A) be the kernel of this map. It
should be noted that if ¢e.7°(4), then y(e) =0, y.(dime) = 0, and
thus (if we define .7 and dim as for unital algebras) dim .77(4) <
K(A). It is not clear, however, that dim.Z”(4) must generate
K(A). Each homomorphism ¢: A — B induces a unital homomorphism

¢t A — B:(a, @) — (¢(a), @) .
Since the diagram

A-*sc¢

cb*l lid

.
B —C
is commutative, one has a commutative diagram

K(A)— K|(C)

Ok l 1@'(1

K(B') — K\(C),
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hence ¢ restricts to a homomorphism ¢,: K(A4) — K(B), and we
obtain a functor K, for not necessarily unital algebras.

We have a natural homomorphism C-— A' defined by a— al,
and the composition C— A' — C is the identity (i.e., the unital ex-
tension is split). It follows that the corresponding composition

K(C)—> K(A") — K|(C)
is the identity map, hence we have an isomorphism
(3.4) K(A) = K(A)® K(C) .

Given a homomorphism ¢: A — B, this isomorphism carries ¢ into
the map (g, n)— ($.(g), n). If A is unital, we may use (3.3) to
identify A" and A@C. Then one easily verifies that K (A") =
K(A) P K(C) (naturally), so that K,(A) and K (A) are naturally
isomorphic. Given a (not necessarily unital) homomorphism of unital
algebras ¢: A — B, one finds that the corresponding homomorphism
& .. K(A) — K(B) is just that induced by the map [e] — [¢(e)].

Next we state Elliott’s classification theorem [13, 4.2]. Since
we shall not use it, we have not included the proof, which is based
on Theorem 3.1. For any C*-algebra A we let

AA) = {dime: e e F(A)} C K,(4) .

THEOREM 3.2. Suppose that A and B are AF algebras. A and
B are isomorphic if and only if there is an isomorphism of K,(A)
onto K(B) carrying 4(A) onto A(B).

Actually this may be regarded as a weakened form of Elliott’s
result, since in fact Elliott provided a faithful functor from the AF
algebras into purely algebraic objects that he has characterized.

What is of interest to us is that for AF algebras A4, K(A) is
easily computed. If A is an AF algebra with approximating system
(A,), the inclusions A, = A, p < q, determine a direct system of
groups and homomorphisms ¢,,.: K'O(A,,)HIZ'O(AL,), whereas the inclu-
sions A, <> A determine a homomorphism (\,): (K,(4,)) — K,(A). Thus
we have a unique homomorphism

Aot lim Ky(A,) — K (4)

through which (\,) factors. In order to prove this is an isomor-
phism we need some information about AF' algebras.

LemMMA 3.3. Suppose that A is a unital AF algebra with a
unital approximating system (A,). Then given a projection ec A,



C*-ALGEBRAS WITH APPROXIMATELY INNER FLIP 429

there is a unitary we A with Adu(e)e A, for some p. Given pro-
jections e, fe A, and a unitary we A with Ad u(e) = f, there exists
an integer ¢ = p and a unitary ve A, with Advie) = f.

Proof. The first assertion is proved in [3, Lemma 2.3] (and
elsewhere). Given ¢, f, and % as above, we may select an integer
¢=p and a unitary ve A, with |lu —»]| <1/2. It follows that
lAd v(e) — f]] <1, and since Adw(e) and f are both projections in
A, there is by [14, Lemma 1.8] a unitary we 4, with

Ad (wv)(e) = Ad w(Ad v(e)) = f.

COROLLARY 3.4. Suppose that A is a wunital AF algebra and
that e, f, and g are projections in A with el g, flg, and ¢+ g
unitarily equivalent to f+ g. Then e and f are unitarily equivalent.

Proof. By Lemma 3.3, we may choose an integer p and unitaries
u, v€ A for which

Adu(e + g)e A, and Ado(f+ g)eAd,.

We let ¢, = ueu®, g, = ugu*, f, = vfv*, g, = vgv*. Since ¢, + g, and
fi + g, are (unitarily) equivalent in A, Lemma 3.3 implies that
(increasing p if necessary) we may assume that they are equivalent
in A,. Since equivalence is determined by rank in a matrix alge-
bra, it is clear that e, and f, are equivalent in 4,, and thus e and
f are equivalent in A.

LeEMMA 8.5. Given an AF algebra with approximating system
(4,), the map

Nt lim K(A,) — K (A)
18 an 1somorphism.
Proof. Let us first assume that A is unital, as are the maps
A, = A. Then it suffices to prove that the map
Noot lix;n K(A,) — K(4)

is an isomorphism. Suppose that ¢ is a projection in 7, (4). Since
M,(A) has the approximating system (M,(4,)), we have from Lemma
3.3 that Ad u(e) e M,(A,) for some unitary v € A and integer p. We
have

dim, e = \(dim,, e) ,

hence A, is a surjection. Given an element ¢gelim K, (4,) with
—>
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Ao(g) = 0, let us suppose that ¢ = ¢,.(¢,), where g,e K(4,). Then
Mroo(gn) = Mo(g) = 0. If we let g, be the equivalence class of ([e], [f])
K(A,), it follows that ([e], [f]) is equivalent to ([0], [0]) in K (4),
i.e., for suitable I and m and he F?(A4), ¢ 0, D h is unitarily
equivalent to f 0, B h. Since M,(A) is an AF algebra for each
n, we conclude from Lemma 3.3 and Corollary 3.4 that e 0, and
SO0, are unitarily equivalent via some unitary matrix over 4, ¢=p.
But this implies that ([e], [f]) is equivalent to ([0], [0]) in K, (4,),
i.e., ¢,{9,) =0 and g = 0.

In general, (4,) is an approximating system for A'. We have
exact sequences

0— Ky(4,) — K(4,) — K, (C)—0
and
0 —K(A) — K(A)— K(C)— 0,
and it is readily verified that the diagram
00— lgn K(A,) — lgn K, (A,)— K(C)—>0

Zwl lid

0 K(4) — K(A) — K(C)—> 0

has exact rows and commutes. Hence ). restricts to an isomorphism
o Of lim K,(A,) onto K (A).
—

Let us now suppose that F is a finite-dimensional C*-algebra.
Then letting & (F') be the set of minimal central projections ce F,
we have from our preliminary discussion an isomorphism

R(F) = K(F) = Z&(F) ,

where the latter expression is the free abelian group on Z(F).
Given an element e¢c.Z”(F'), this isomorphism carries dime into
Secwim M€, Where n, is the rank of ec in the matrix algebra Fe.
Given a homomorphism ¢: F'— G, the corresponding homomorphism
¢ .. K(F)— K(G) is induced by

c—— > Nl ,
d
where n,; is obtained by letting ¢ be a minimal projection in Fe,
and letting 7., be the rank of #(e)d in Gd.

Thus by Lemma 3.5 we conclude that if A is an AF algebra
with approximating system (4,), then

K(A) = lim K(A,) = lim Z&(4,) ,
— —>
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where the homomorphisms Zz"(4,,) — Z& (A,) are determined by the
inclusions A4, = A, as above.

For unital AF algebras, the significance of the dimension func-
tion is particularly simple:

LEMMA 3.6. Suppose that A is a unital AF algebra, and that
e and f are projections in A. Then the following are equivalent:

(1) dime = dim f,

(2) there exists a unitary uc A with Ad u(e) = f,

(3) there is an element ve A with v*v = e, vv* = f.

Proof. (1)=(3). Suppose that dime = dim f. Then there exist
integers k and ! and ge &% (A) such that e g@PO0, and FPgPO,
are unitarily equivalent in M,(4), n =1+ %k + 1. But M, (A) is
again a unital AF algebra and

eDgD0=(D0.)+0DgD0),
and similarly for f, hence from Corollary 3.4,
Ad u(e @ 041) = f D Ori
for some unitary u. Letting v = (f 0,.)u(e P 0,.,),

v*v = e 0y,
w* =P Oz -
But
ve (1D 0 )M, (AL D O0,,) ,

and using the map a @ 0,,,+— a to identify the latter algebra with
A, we have (3).

(8) == (2). Let (A,) be a unital approximating system for 4. By
Lemma 3.3, we may replace ¢ and f by unitarily equivalent projee-
tions and assume that ¢, fe A, for some p. Then by [14, Lemma
1.9]1, we can choose the v in some A4, ¢ = p. Since (3)=(2) for
the finite-dimensional algebra A4,, ¢ and f are unitarily equivalent.

(2) = (1) is trivial.

REMARK. As is well-known, if A4 is an arbitrary unital C*-
algebra, then conditions (2) and (8) of Lemma 8.6 are in general not
equivalent. However, Larry Brown has pointed out to us that if
(3) holds for projections e and f in A, then (2) holds for ¢e@ 0 and
fe0 in M,(A). Thus von Neumann-Murray equivalence can be used
in place of unitary equivalence in the definition of K.

The following proposition shows that K, provides a simple neces-
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sary condition for an automorphism of a C*-algebra to be approxi-
mately inner. What is more remarkable is that for AF algebras,
this condition is also sufficient (Theorem 3.8 below). This latter
fact was implicitly proved by Elliott in [13, Lemma 4.1].

PROPOSITION 3.7. Let A be a C*-algebra and let o be an ap-
proxvimately inner automorphism of A. Assume further that either
A is AF or that o is strongly approximately innmner. Then the
automorphism &, of K(A) induced by o is just the identity.

Proof. If o is strongly approximately inner, then obviously so
is the induced automorphism ¢' of A'. Since &, is a restriction of
the automorphism ol of K,(A"), it is enough to show that o', = id.
Thus, in this case, we may replace A by A' and assume A is unital.
Having done this, let ¢ be a projection in B = M,(4) = AR M, for
some n. It is enough to show that ¢ and (¢ ® 1)(¢) are unitarily
equivalent in B. Since o is approximately inner, so is 0 ® 1 by
Lemma 2.8. Thus we may choose unitaries «, in B with w.euf —
(6 ® 1)(¢). For sufficiently large k, u,eui and (0 @ 1)(e) are unitarily
equivalent in B by [14, Lemma 1.8]. But ¢ and u.eu} are also
unitarily equivalent, so we are done.

If A is AF, then by Lemma 3.5, every class in K,(A) is the
image of a class in K,(4,) = K,(A,) for some finite-dimensional sub-
algebra A, of A. In particular, K,A) is generated by the classes
of elements e¢c.Z’(A). For such an ¢, say in B = M,(4), we may
argue exactly as before, except that now our u,’s lie in M(B) rather
than in B. It is still true that w,eu} and (0 ® 1)(¢) are close in
norm, hence unitarily equivalent in B~, for large k&, and ¢ and w,euf
are unitarily equivalent in B~ by Lemma 3.6 (let v = wu,e).

THEOREM 3.8. Let A be an AF algebra and let o be an auto-
morphism of A. The following are equivalent:

(1) o is approximately immer,

(2) o 1is strongly approximately inner,
and (3) the automorphism &, of K,(A) is the identity.

Proof. (2)=(1) is trivial, and (1) = (3) is given by Proposition
3.7. For the proof of (3)=(2), assume first that 4 is unital and
that o, is the identity automorphism of K (A). It suffices to show
that if F is a finite-dimensional subalgebra of A with the same
unit as A4, then there exists a unitary w e A such that

We let ef; be the matrix units for F. Since
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dim ef, = dim o(el) ,
Lemma 3.6 implies that we may find partial isometries », with
viv, = eb , vwf = alel) .
We define (following Elliott)
U = % olet)v,ek .
Then for any indices p, ¢, and 7,

uesu* = o(en)v,eru*
= g(e;)v,envio(er,)
= G(G;q) .

Hence for any element ac F,
ola) = uau™ .

In particular, 1= 0¢(1) = wuu*. A similar calculation shows that
w*u = 1, so 4 is unitary and we have the desired result.

Now we consider the general (nonunital) case. Given an auto-
morphism ¢ of a C*-algebra A,

o A'— A" (a, @) — (0(a), @)

is again an automorphism. By (8.4), ok: K, (4A") — K,(A") corresponds
to the map

B(A) ® K(C) — K(A) ® K(C): (g, n)— (G (), m) .

Thus if A is AF and &, = i¢d, ok also leaves elements fixed. It
follows that o' and thus ¢ are strongly approximately inner.

THEOREM 3.9. If A 1s an AF algebra, then the flip for A is
approximately inner if and only +f A is matroid.

Proof. Let (A,) be an approximating system for A, so that
(4, R A,) is the same for A ® A. It is evident that

K(4,® 4,) = K(4,) ® K(4,) ,
and that the corresponding homomorphism
K(4,) ® K(4,) — K4, ® K(4,)

is just ¢,, X ¢,,» It readily follows that
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R(A® 4) = lim K(4,® 4,)
= lim K(4,) ® Ki(4,)
= lim K(4,) ® lim K,(4,)
= K(A) ® K(4),

and that under this isomorphism, &, is transformed into the “algebraic
ﬂip”
ScAut (K(A)RKA): g Qh—h Ry .

By Theorem 3.8, ¢ is approximately inner if and only if S leaves
points fixed. By the next lemma, this happens if and only if K,(A4)
is of rank 1, hence, by [13, 6.1], if and only if A is matroid.

LEMMA 3.10. If G is an abelian torsion-free group, then the
Sip automorphism S of G & G coincides with the identity map +f
and only if G s of rank 1 (i.e., any two elements are dependent
over Z4).

Proof. If G is of rank 1, then given nonzero ¢, h ¢ G, there
exist nonzero integers m and n with mg = nh. Then

mgRh)=mgR@h =nhQQh=hQQmg=mh&yg) .

Since G ® G is torsion free, g X h = h ® g, hence S leaves all ele-
ments fixed.

Conversely suppose that S:GR G — G &R G is trivial. If H isa
finitely generated subgroup of G, H = Z" for some », and the map
H® H— G QG is one-to-one since G is torsion-free. It follows that
S: HRY H— HX H leaves elements fixed, and this implies that # = 1.
Since H was arbitrary, we conclude that any two elements of G
are dependent, i.e., G is of rank 1.

4. Asymptotic imbeddings. The notion of an asymptotic im-
bedding of C*-algebras is the C*-algebraic analogue of a technique
used by Connes in [8]. Since the main results of §5 can be reduced
immediately to the case of unital C*-algebras, we shall only con-
sider unital imbeddings.

Given a C*-algebra B, we define the asymptotic model for B to
be the C*-algebraic quotient

B~ = BY/J,

where
BY=B®BLH -
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is the full C*-algebraic () direct sum, and J is the ideal
J={b = (b,): lim ||b,]| = 0} .

We note that we are using the usual limit-—we have not found a
compelling reason to use the limit defined by a free ultrafilter on XN.

Given unital C*-algebras A and B, an asymptotic imbedding of
A into B is a unital *-isomorphism A — B®. Throughout this section
we shall assume that B is the wniversal UHF C*-algebra %, i.e.,
the UHF algebra with “generalized integer” 2°3<5%... [14, Defini-
tions 1.1 and 1.3]. % may be simply described as the inductive
limit of the finite-dimensional algebras

(4.1) U =M, RQMK - QM,
where the injection %/, — %/,,, is just the diagonal map
a 0
ar——| -
0 a

It is apparent that a unital C*-algebra has an asymptotic imbedding
in some UHF algebra if and only if it has such an imbedding in %.
We recall that a collection of operators . on a separable Hilbert
space 5% is quasi-diagonal if there is an inecreasing sequence of
finite-dimensional projections ¢, converging strongly to 1 such that

l|lae, — ea]|—0

for all ¢ e.%2 Given a sequence of orthogonal finite-dimensional
projections f, with > f, = 1, the corresponding block diagonal alge-
bra <7 consists of the operators b e <% (2#) commuting with the f,.
If .&¥ generates a separable C*-algebra, it is quasi-diagonal if and
only if .&¥ € & + .2¥°(2#”) for some block diagonal algebra <= [21,
Lemma 1], [16]. We will say that a representation = of a C*-algebra
A is quasi-diagonal if w(A4) has that property, and that A is quasi-
diagonal if it has a faithful quasi-diagonal representation.

LEMMA 4.1. Suppose that A is a quasi-diagonal wunital C*-
algebra. Then A has an asymptotic imbedding in Z.

Proof. Let e, be a sequence of projections as above for .&¥ =
n(A), = a faithful quasi-diagonal representation of A, and let

dk = dim ek(y/ .

For each n we may fix an isomorphism
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B (27 )e, = M,, .
For each n we have an injection
0, M,— %, =~ %
determined by
a— 1K - XR1R«a.

We define a linear *-preserving contraction ¢: A — %" by
#(a) = (0y(em(a)e,), Oa(em(a)es), «-+) .

Letting ¢: A — Z > be the corresponding composition with the quotient
map, ¢ is a homomorphism because given a, be A4,

[l (ab) — d(a)(d) || = lim || e,m(ab)e, — e,a(a)e,m(b)e, ||
< lim [{e,m(a) — m(a)e, |N|DI]
=0.

¢ is an isomorphism since if ¢(a) = 0, then lim ||e,7(a)e,|] = 0, or
since the e, are increasing and converge to 1 strongly, 7(a) = 0 and
thus a = 0.

The separable C*-algebras A such that 7n(4) & (7)) + C1 for
each irreducible representation z, have only quasi-diagonal represen-
tations [21, Prop. 5]. This is also the case for Bratteli’s AF alge-
bras [20].

It should be noted that for simple separable C*-algebras, one
need only check one representation (this was pointed out to us by
Larry Brown). In fact given a representation m: A — & (57), let
A — (F) = F (7). 97 (5#) be the corresponding homomor-
phism. We have

LEMMA 4.2. Suppose that A is a separable unital C*-algebra
and that w, and 7, are representations with kerw, = kerw, =
ker #, = ker #,. Then w, 1is quasi-diagonal if and only if w, 1s
quasi-diagonal.

Proof. Let H, ©=1,2, be the underlying Hilbert spaces for
7;. From the Voiculescu theorem [23] (see also [2, Th. 5]), there
exists a unitary operator V: 57 — 57 such that for all ac A

m(a) — Vir(a)Ve % (57) .

If 7, is quasi-diagonal, the same is also true for V*x, V. But then
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T(A) S V*r(A)V + 7 (97) € Z + 9% (9%3)

for some block diagonal algebra <z, i.e., 7, is quasi-diagonal.

It is useful to observe that if = is a representation of A4 with
infinite multiplicity, then ker # = ker . On the other hand, it is
easy to check that any (countable) multiple of a quasi-diagonal
representation is quasi-diagonal. Therefore we immediately deduce
from 4.2 the following

COROLLARY 4.3. Suppose that A is a separable unital C*-algebra.
Then the following are equivalent:

(1) A is quasi-diagonal,

(2) some faithful representation of A of infinite multiplicity
18 quasi-diagonal,

(3) every faithful representation of A of infinite multiplicity
18 quasi-diagonal.

One can also generalize this result to nonunital C*-algebras.
Still another convenient fact is that the class of quasi-diagonal alge-
bras is closed under inductive limits. This was pointed out to us by
Man-Duen Choi; perhaps it is known to others.

LEMMA 4.4. Suppose that A is a separable C*-algebra and that
(A4,) is an ascending sequence of unital C*-algebras with A = U A4,.
If each A, is quasi-diagonal, so ts A.

Proof. We represent A on a separable Hilbert space 52 via a
faithful representation with infinite multiplicity. Then by 4.3, the
representations A4, < <% (57°) are quasi-diagonal. Choose elements
a, <€ A, with the sequence (a,) dense in the unit ball of A. We in-
ductively choose finite-dimensional projections e, converging strongly
to 1 such that

e% 2. en—l 2 H[en7 aﬂ]” < 1/,n for 1 é j é n.

Then clearly [e,, a] — 0 in norm for each a € A, which will prove the
result. To construct the e¢,, we first choose sequences (fi™) of finite-
dimensional projections increasing to 1 such that [f{™, a] -0 as
n— oo for ac A,. (Such sequences exist by quasi-diagonality of the
A,’s.) Assume e,_, is constructed. We can choose k large enough
so that

WA, ai]ll <1/@2n) for 1=<j=mn,

and
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*) 1FiMs — £l < 11€1l/(B0n) for &e(e,.V fi)F .

It is now sufficient to find e, of finite rank with ||e, — f{" || < 1/(4n)
and with ¢, = e =e¢,_, V f{®. (Then since ¢, = f& for all n,e, > 1
strongly; and

Hea, aslll <IILFE, aslll + 2lle. — FP |1 lla;]l < 1/n

for 1< 7 n.)

For this one can either adapt the argument in the proof of
Theorem 2 of P. R. Halmos, “Quasitriangular operators,” Acta Sci.
Math., 29 (1968), 283-293, or else use the following simplification
suggested by M.-D. Choi: We may assume ¢ has a block matrix of

the form
fl O}
10 0

and that f{® has block matrix

o)

¢* b’

By (*), |la — 1]) < 1/(80n), and since f{ is idempotent, a* + cc* = a,
cc* =a —a?, and |lc|? < 1/B0n)(1 + 1/(80n)) < 1/(24n). Since also
c*¢ + b = b, ||b® — b|| < 1/(24n) and there exists a projection ¢ (ob-
tained by functional calculus from b, hence of finite rank) with
llg — b]| < 1/(12n). Now take

e
e, = = e
0 ¢

and observe that |le, — f™ | < 2V 2/(12n) < 1/(4n).

Note that the above proof shows incidentally that the projec-
tions e, in the definition of quasi-diagonality can be chosen to ma-
jorize any fixed finite-dimensional projection.

A consequence of 4.4 is that the simple C*-algebras of Bunce
and Deddens [5] are quasi-diagonal and so have asymptotic imbeddings
in %Z. We also have a result concerning inductive limits of (not
necessarily quasi-diagonal) algebras with asymptotic imbeddings:

LEMMA 4.5. Suppose that A is a separable unital C*-algebra
and that (A,) is an ascending sequence of unital C*-algebras with
A=UA4d,. If

(1) each A, s nuclear and asymptotically imbeddable in Z,
then A is asymptotically imbeddable in 7.
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Proof. Assuming (f), we have that for each n there is an iso-
morphism ¢,: 4, — Z'~. Since each A, is nuclear, from the lifting
theorem for completely positive maps [6, Th. 3.10] we may find for
each n a completely positive unital map +,: A, — Z" with ¢, = ..
Letting 4. (@) = (¥,1(@))r=1,5..., We have

rae(ad) — Yra(@)yns(®)]] —> 0 as k——> co and
llqﬁ\nk(a)]}ﬂé]]¢n(a)ll as k—

(3.1)

for each a,bec A,. Let (a,) be a dense sequence in the unit ball of
U A4,. Deleting some of the 4, we may assume that a,€ A4,. From
(3.1) we may choose a k& for each n such that if 4, = .,

[10.(a:0;) — 0,(a:)0.(a;)]] < 1/n
and
H0u(a) || — lIga(all] < L/m

for 4, j < m. On the other band, % = U %/, and for each p we
have a conditional expectation @, of % onto 7/, since the latter is
injective. It follows that if we let 6, = @,00, for a sufficiently
large p, then we may assume that

10.(a:a;) — 0,(a))0,(a)]| < 1/n and
18.(a)ll — llgaladll] < 1/n

for ¢, j £ n. The reason that we have replaced 4, by 6, is that
since the latter has range in a matrix algebra, we may use injec-
tivity to extend it to all of A—we will also write 6, for the extended
map. From (38.2) it is evident that if we let

(3.2)

6=00,)A—Z"

and let 6: A — % be the corresponding quotient map, the latter is
an isomorphism.

We conclude this section with the observation that the algebraic
significance of quasi-diagonality is only poorly understood. Choi has
shown that for the free group on two generators, the full group
C*-algebra is quasi-diagonal, whereas its quotient, the regular group
C*-algebra, is not. On the other hand, the unital C*-algebra gen-
erated by S SP S*, where S is the unilateral shift, has both
nonquasi-diagonal and quasi-diagonal faithful representations.

5. The main results.

THEOREM 5.1. Suppose that A is a separable unital C*-algebra.
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Then A s isomorphic to the universal UHF algebra Z if and

only +f
(1) the flivn for A is approximately inner,
(2) A has an asymptotic imbedding in %/, and
(3) A is 1somorphic to AR Z.

Proof. The necessity of these conditions is evident (see [11] for
(1)). Suppose that we have (1)-(3). By Propositions 2.7 and 2.8, 4
is a simple nuclear C*-algebra. We let 7: A — Z* be a unital iso-
morphism, and we define isomorphisms

T A— (AR Z): a+—— [(a @ 1),]
T A— (AR Z): a—[(1&®d,)],

where given ac A, (d,) € " is any representing sequence for 7(a) €
>, m, is well-defined because if a = 0, then 7(a) = 0 implies

0 =lim ||d,|| = im |1 @ d.|| ,

and it follows that x, is an isomorphism. =, and =, are commuting
isomorphisms. Since A is nuclear, they define a *-isomorphism

0=, RT,: ARQA— (AR %) a0 QR b— T,(a)Tyd) .

Given a, --+,a,€¢ A we may by (1) choose a unitary operator
uec AR A for which

le; L — w1l @a)ull <e, 1=7

A

r.
Applying 6, we have
[16(a; ®1) — 0(w)* 0L Q a;)bu)l] <e.

Let (d;,) e Z"™ be a representing sequence for zn(a;), 1 =77, so
that (1 ® d;,) is a representing sequence for (1 ® a;) = m(a;). We
also choose a representing sequence (u,) in (4 Q %) for 6(u)—since
f(w) is unitary, the argument in the proof of [14, Lemma 3.1] shows
that we may require each u, to be unitary as well. Then we have
lim|la; 1 — uf(l Q@ din)thnllin, =€ -

From hypothesis (3), we know that A= A4, X %, where 4, = A.
Letting A,, n = 1 be the C*-algebra generated by 4, and 1R %,
we have that A =|J A,. We also have isomorphisms

A, =AQw, = A

and for the relative commutant in A4,
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ANA=1QF . NZH)=% .

The inverse isomorphisms a: A— 4, and B8: % — A; N A commute,
and extend to an isomorphism

ARUW — AA, = A a R d— a(a)B(d) .

Thus the calculation above may be applied to any of the decomposi-
tions 4 = A,A:.

Given a,, -+-,a,€ 4 and ¢ > 0, we may choose an n and elements
Qi+, 0 €A, with |la, — az]| < ¢/38. From the above we may select
a unitary € A and elements d, € A%, = % with

lar — w*du|] < ef3.

But we may find a (unital) matrix algebra N & A; and elements
e, N with ||d, — e,]| < ¢/3. We conclude that

o, — u*eull < e,

where the elements wu*e,u belong to the finite-dimensional algebra
u*Nu. From [14, Th., 1.13], it follows that A is a UHF algebra.
But from (8) it is apparent that the corresponding “generalized
integer” is 2°3°5* ..., hence A = %.

COROLLARY 5.2. Suppose that A is a separable unital C*-algebra
which has an approximately inner flip, and may be asymptotically
imbedded im Z/. Then AQRQ % = Z.

Proof. By Corollary 2.4, AX % has an approximately inner
flip. On the other hand the asymptotic imbedding A — % and the
natural isomorphism % — %~ extend to an isomorphism

AR — (Z Q%) =%~
(see the argument for z, and =, above). Since
ARX)VQ% = AR %
we may apply Theorem 5.1 to A X Z.

Given a possibly infinite family of distinct primes p,, p,, - -+, let
Z (s, Psy +++) be the UHF algebra with number ppy---. Precisely
the same argument shows that Theorem 5.1 is also valid for this
algebra rather than 7. In particular, it follows that Z/(p, ». ---)
can be asymptotically imbedded in Z(q,, @5, ---) if and only if the
latter prime list is larger. Actually this can be proved more easily
by a direct argument.
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If enough projections are available, we can extend Corollary 5.2
to the nonunital case.

COROLLARY 5.3. Suppose that A is a separable C*-algebra. Then
AR 7z is matroid of A satisfies the following three conditions:

(1) A has an approximate identity consisting of projections,

(2) the flip for A is approximately inner,

(8) pAp has an approximate imbedding in Z for each projec-
tion p in A.

Proof. Because of (1) and because the property of being matroid
is “local” [10, 1.1], it is enough to show that pAp ® % is UHF for
each projection pe A. By 2.5 (and the fact that » ® » is fixed by
the flip), pAp satisfies the hypotheses of 5.2. So this is an immediate
consequence of 5.2.

Our results suggest a number of interesting questions which we
have been unable to resolve. One of these is whether the restric-
tions on B in Corollary 2.6 are necessary, or in other words, whether
A has an approximately inner flip if A Q@ B does, for arbitrary B.
More important is the question of whether A must itself be UHF
under the hypotheses of Corollary 5.2 (or matroid under those of
Corollary 5.3). To phrase the question somewhat differently, if A
is a C*-algebra and AQ Z is AF, must A be AF? Ones first
inclination would be to say “yes” (for lack of an obvious counter-
example), but it seems to us that this problem must be difficult.
There are two lines of evidence for this. One is that the correspond-
ing problem for II, factors (does N® R = R, R hyperfinite, imply
N = R?) is quite hard even when one knows the von Neumann alge-
bra analogue of 5.1 (see [8, Theorems 5.1 and 7.7]). On the other
hand, if A is unital, A= AX 1 is just the relative commutant in
ARz of 1R 7Z. However, the relative commutant of an AF
subalgebra of an AF algebra need not be AF, and in fact the center
of an AF algebra need not be AF [4].

Finally, even if A must be matroid under the hypotheses of 5.3,
we do not know if condition (3) (existence of asymptotic imbeddings)
was actually needed. At the moment we know of no nonmatroid
algebras with approximately inner flips, even among algebras not
satisfying the conditions of Lemma 4.3. One can formulate addi-
tional necessary conditions for automorphisms to be approximately
inner by using other C*-algebraic invariants, such as K, and Ext.
It is conceivable that for suitable classes of C*-algebras, these con-
ditions might also be sufficient.
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