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A vanishing theorem and periodicity theorem for the
classical mod 2 Adams spectral sequence were originally
proved by Adams [1]. The results were extended to the
unstable range by Bousfield [2]. The purpose of this paper
is to show the analogue of Bousfield's work for the modp
unstable Adams spectral sequence of Massey-Peterson type
(called the modp Massey-Peterson spectral sequence), where
p is an odd prime. The results generalized those obtained
by Liulevicius [5], [6] to the unstable range. As an immediate
topological application we have the estimation of the upper
bounds of the orders of elements in the p-primary component
of the homotopy groups of, for example, an odd dimensional
sphere, Stiefel manifold, or iί-space.

1* The vanishing theorem* Let A denote the mod p Steenrod
algebra. Let A^/ί the category of unstable left A-modules and
thecategory of unstable right A-modules. We may define E x t ^ ,
as the sth right derived functor of Hom^, and similarly define
since A^£ and ^A are abelian categoriesw ith enough projectives.
Note that, if ikfeA^C is of finite type, then

ExW(M, Zp) = E x W Z , , M*) .

Recall the mod p Massey-Peterson spectral sequence (see, for
example, [4]). Let X be a simply connected space with π*(X) of
finite type. Suppose that H*(X; Zp) s U{M), MzA^e, where U(M) is
the free unstable A-algebra generated by M. Then there is a spectral
sequence {Er(X)} with

dr: E*AX) > Es

r

+r't+r

such that

E'ΛX) ~ Exti MAΓ, Z,) ,

and

Eoo(X) = Qrπ*(X) I (torsion prime to p) .

Let A be the bigraded differential algebra over Zφ introduced
by Bousfield et al [3], which has multiplicative generators Xt of
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bidegree (1, 2i(p — 1)-1) for i > 0 and μt of bidegree (1, 2ί(p - 1))
for i ^ 0.

For Ne^/fA, let V(N)' be the subspace of N(x)Λ8 generated by all
x (x) vΣ with vτ = vh vis allowable and deg x ^ 2i if v<χ = Xh and
deg a; Ξ> 2ix + 1 if i^ = μh. Then F(iV) is the cochain complex with

δ(x (g) vτ) = (- l)deg* Σ */0« ® λΛ

Here a? <g) Vj is of bidegree (s, ί) with t = s + deg as + deg vz. Recall
that for Ne^fA

Ext°JA(ZP, N) ~ mV(N))t-s .

Let O(N) be the subcomplex of V(N) generated by all x0vΣe
V(N)8 with vΣ = i^ vίg allowable and vΐs = λiβ. Let T(N) be the
quotient complex of V(N) such that

^ - 1 for

Then we have a long exact sequence

> Hs~l(T(N)) — HS(O(N)) —

which is induced from the natural isomorphism

where j:O(N)-+V(N) and q:V(N)-^T(N) are the natural maps.
Remark that H*(T(N)) consists of towers in the sense that

HS(T(N)) ~ HS+\T(N)) ,

for s ^ 2, and thus H*(T(N)) is easily determined.

DEFINITION. A function φn(k), n ^ 2, fc ̂ > 0, is defined as follows.

If n = 2, 3, 4,

„ ίK* + 2)/2(p - 1)] for Λ ̂  2(p - 1)-1

^ W " (0 for fc<2(p-l)-l

where [x] is the integer part of x, and if w^5,

φ(k) = 9>W(A?) = i ,
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where

2i(p - 1) ^ fc < 2(i + l)(p - 1)-1 if i & - 1 , 0 mod p ,

2ί(p - 1) ^ k < 2(i + l)(p - l ) - 2 if £ == - 1 mod p ,

2i(p - l ) - 2 ^ & < 2(£ + l)(p - 1)-1 if i = 0 mod p .

Now we state our main theorem.

THEOREM 1 {Vanishing). Let Ne^A with Nt = 0 /or £ < n9

where n >̂ 2.

is an isomorphism for s > φjjc).

This will be proved in §4.
By virtue of our vanishing theorem the calculation of H*(V(N))

is reduced to that of H*(O(N)) in a large extent. Note that q* is epi-
morphic when U{M) is generated by a single element, where M—N.*

As an immediate topological corollary we have*

COROLLARY 2. Let X be a simply connected space with
of finite type. Suppose that H*(X; Zp) = Z7(Λf), where M is an
unstable A-module. If Mi = 0 for i < n, then the orders of elements
in the p-primary component of πk+n(X) are at most p^(k).

This may be applied, for example, when X is an odd dimensional
sphere, Stiefel manifold, or if-space.

REMARK. If Nt = 0, i > m, for some m, then H8(N)t is zero for
dimensional reason when t is large with respect to s. Hence in this
case Corollary 2 is slightly improved.

2* Periodicity theorems* For a module MeA^f we define the
/3-cohomology by Hβ(M) = Ker /9/Im β.

DEFINITION. A module MeA^ is called ^-trivial if

pi. M2i > H i M

is an isomorphism for all i and Hk

β(M) = 0 for k & 0 mod 2p.
Remark that MeA^f is /3-trivial if and only if N = M* e

is towerless, i.e., HS(T(N)) = 0 for s > 0.
Let 25* denote the category of graded Z^-modules. Let LSF

denote the sth left derived functor of a functor F: A^€ —> <&.
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THEOREM 3 (Periodicity). Let F: A^/f —> gf be a functor such
that F(M) = M/βM + pιM. If MzA^fέ is β-trivial, then there is a
natural map

P: L.F(M)* > L8+pF(M)t+2p{p-ί)+p ,

such that P is an isomorphism for s ^ 2 and a monomorphism for
8 = 1.

This will be proved in §3.
Additionally, we give here such a kind of periodicity theorems.

THEOREM 4. Let G&M) = MlριM for MeA^, where 0<i <p.
Then there is a natural map

Q: L.GIMY > L.MM)***'1'-" ,

such that Q is an isomorphism for s ^ 2 and a monomorphism for
8 = 1.

THEOREM 5. Let Gt(M) = M/βM+p*M for MeA^, where 0 <
i < p. If MBA^/€ is β-trivial, then there is a natural map

Q: LfilM)* > L.+XGIM)M«*-" ,

such that Q is an isomorphism for s ^ 2 and a monomorphism for

8 = 1.

THEOREM 6. Let G(M) = M/ρ1+βp1Mfor
is β-trivial, then there is a natural map

R: L.G(M)< > L8+2G(MY^-> ,

such that R is an isomorphism for s ^ 2 and a monomorphism for

8 = 1.

3. Proofs of periodicity theorems. Suppose given a circular
sequence of functors from A ^ to *& and natural transformations,

( # )

satisfying RiRi+1 = 0 for i = 0, •• 9k — l. Define functors Keriί*,
Im Riy Coker Rt, Hi = Ker RJIm Ri+1 in a usual way.

DEFINITION. A module M e A ^ is called trivial for the diagram
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LsAi(M) = LsHi(M) = 0 ,

for all s > 0 and i = 0, , k - 1.

LEMMA. If MeA^€ is trivial for the diagram (#), then there
is a natural map

P: Ls Coker R0(M)* > Ls+k Coker RQ(M)t+h ,

such that P is an isomorphism for s^2 and a monomorphism for
8 = 1. Here h = Σ?=o ^> ^

Proof. Let /z,(α) = Σf=ί ^t Since M is trivial for (#), we have
the following natural isomorphism

Ls+k Coker R0(M ) t + h = Ls+k^ Im R0(M)t+h

=* L8 Ker Rh^{M)t+h{k"1) = L8 Im P (^H^^)

On the other hand the natural map

L8 Coker R0(M)* > L8 Im.

is an isomorphism for s ^ 2 and a monomorphism for 8 = 1.

We shall use the following circular sequence due to Toda [9]
(see, also, Oka [8]) to prove the periodicity theorems.

(3.1) " Rp~2 " " Rl "

R' ^

^ M/βM+M/βM

where 22, = (i + l ) ^ 1 - iριβ, R = (^β, î 1) and i?' = p'β - ^'/S.

(3.2) M ^ Z ί M for 0 < i < p ,

(3.3) MjRMT^-MjβM for 0 < i < p ,

(3.4) Af/̂ Af ϊ = ί ΛΓ/̂ Λf .

Here i l feA^^ and the maps are induced from the left actions.

Proof of Theorem 3. We shall use the diagram (3.1). For con-
venience, we put RQz= Rp = Rf Rp_1 = R'm Let Ht(M) denote the
cohomology Ker RJlm R w If M is a free unstable A-module, then:

( i ) p8: (M/βM)28 s H18P(M) if s = - 1 mod p ,

/α : Λf = H0

2βί>(ilί) if β ΐ - 1 mod p ,

p : (βM)28+1 ~ Hfp+1(M) if s ^ - 1 mod p ,
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( i i ) f o r i = 1, •••, p - 2,

p8: (M/βM)2s = Hfp(M) ,

ρs + βp8: (βM)28+2 + (M/βM)2s+1 = H\sp+\M),

ps: (M/βM)28+2 = Hfp+\M)

(iii) p* + 0: (M/βM)28 + 0 ~ H2

0 + ρ8: 0 + (M/βM)2s+j =

for j = 0, 1 if 8 Ξ 0 mod

p8 + p8: (/SM)2s+i+1 + (M/βM)2s+t = H»ϊt'+\M)

for i = 0, 1 if s =£ 0 mod

0 + ρs: 0 + (M/βM)2s+2 =

(iv) otherwise Jϊf(Λf) = 0.
This unstable version of Toda's exactness theorem is shown by long
but straightforward computations. Now Theorem 3 is proved by-
applying lemma.

By using the diagrams (3.2), (3.3) and (3.4), Theorems 4, 5 and
6 follow in a similar way, and thus we only state the following
facts.

Let MeA^f be a free unstable module. Fix i such that
0 < i < p.

If H{M) = Ker (p*: M->M)/Im (p9"*: M-^ M)f then:

( i ) ^ s : M28+j s H2sp+j(M) for j - 0, 1 ,

βp8 + ρs: M28^'-1 + M28+j = H2sp+j(M) for j = 2, . . , 2i - 1 ,

βps: M28^'-1- H28P+3\M) for j = 2ΐ, 2i + 1 .

(ii) otherwise iίfc(Λί) = 0.
If fΓ(AΓ) = Ker {pp~ι: M/βM"-> M/R.M) /lm(p*: M/R.M-+ M/βM),

then:
( i ) /o : (M/βM)28+j = H23p+j(M)

for i = 0, 1, , i — 1 and s = 0, 1, , i — 1 mod p,
(ii) otherwise £rfc(M) - 0.
Next put H(M) = Keτ{pi:MIRiM^M/βM)βm(p9'*:MlβM'^

M/RtM), then:
( i ) if s ΞΞ 0 mod p,

p8: (M/βMY8+j = H2sp+j(M) for i = 0, 1 ,

βp8 + ρ8: (M/βM)28**'-1 + (M/βM)28+j s H2sp+ύ{M)

for i = 2, . . . , 2 i - l ,

)8|θ : (MlβMT+t-1 ~ H28P+j(M) for j = 2i, 2i + 1 ,

(ii) if s == 1, , p — i — 1 modp,
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p8: (M/βM)u+i = H2SP+*(M) for j - 0, 1 ,

βp8 + ps: M28+i~' + (M/βM)28+J ~ H2p+i(M) for j = 2, . , 2% - 1 ,

for i = 2i, 2i + 1 ,

(iii) if s = p — ί mod p,

/S^8: M 2 ^ ^ 1 = H2sp+j(M) for i = 2, •, 2ί - 1 ,

(iv) otherwise ίί*(Λf) = 0.
Finally, if JΪ(Jlf) = Ker (flo1: Mjp'M-^ M/p1M)/ϊm (βp1: MlριM

MlρxM), then:

( i ) ρps: M28+j ς* H2sp2+j(M) for i = 0, 1,

βpps + p> : (M/βM)28+1 + M 2 s + 2 ^ H28p2+2(M) ,

(ii) otherwise ΰΓfc(ikί) = 0.

4* Proof of the vanishing theorem. Let F(n) denote a free
unstable A-module on one generator en. We define an unstable A-
module N(n) to be the quotient of F(n) by the relation βcn — 0. Next
define M(n) to be the subcomplex of N(n) by ommitting the cn from
N(n) if n odd and ommitting the cn9 (cn)

p, •••, (Opt, ••• from N(n) if
7t even. Note that M(n) is /3-trivial.

First we suppose that n is odd. Then by the long exact sequence
induced from a short exact sequence

0 • > M{n) > N(n) > Zp > 0 ,

we have an isomorphism

T(ZP, ZP) S Ext*A-y+n(M(n), Zp) ,

for t Φ s. Let C(n) be a minimal resolution of M(ri). By virtue of
Theorem 3 we can prove the vanishing theorem for Zp by analysing
C(n). Namely, Ext^iί+*(ikf(?ι), Zp){t Φ s) vanishes for * > <pΛ(t - s).
Furthermore we can observe the periodicity phenomenon in a range
near the vanishing line. In fact, by Theorems 3, 4 and 5 we have
two periodicity operators P and Q of bidegree (p, 2p(p — 1) + p)
and (2, 2p(p — 1)), respectively.

For lower dimensional sphere we shall give periodic families.
Let 1 < m ^ p + 1. In #••*+*—^S**-1) there appear nontrivial elements
when (s, t — s) is as follows:

( i ) ( l , ϊ - l )

(1, pq — 1) for m = p + 1 ,

( i i) (8, stf - 1), (s, (m + 8 - 2)q - 2)

for 8 = 2, •••, p — m + 1 and m ^ p, p + 1 ,
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(s, sq - 1), (s, pq - 2), (s, p g - 1)

for s = p — m + 2 and m ^ p + 1 ,

(β, eg - 1), (8, pq - 2), (s, pg - 1), (s, (m + 8 - 2)g - 2)

for s = p — w + 3, , p — 1 and p Ψ 3 ,

(p, M ~ 2), (p, pq - 1), (p, (p + m - 2)g - 2) ,

(p + 1, (p + l)g - 1), (p + 1, (p + m - l)g - 2) ,

where q = 2(p — 1). Applying the periodicity operators P and Q repea-
tedly, we can determine the behavior of all JE^S2*"1) near the vanishing
line. (Possibly other elements appear in a range apart from the
vanishing line when we apply the iteration of the operator Q.)

We next suppose that n is even. Let L(n; ί)(0 < t <£• oo) be an
unstable A-module with elements σn, (σn)

p, •••, (σn)
pt where deg σn =

^. By the long exact sequence induced from short exact sequences

0 > M(n) + L(pt+ί; oo) > N(n) > L(n; t) > 0 ,

0 > M(pt+1n) > N(pt+1n) > L(pt+ίn; oo) > 0 ,

we have an isomorphism

Ext°/Jn(L(n; t), Zp)

= Exts

A-J,>t+»(M(n), Z9) + Έxts

Λ-Jr>t+n(M(pt+ίn), ZJ ,

for t Φ s, s + (pt+1 — l)n — 1. Thus in a similar way we have the
required results for L(n; t).

Now we have shown that

</*: ΐP( V(N))k+n > H\T(N)k+n ,

is an isomorphism for s > φn(k), when JV* = H*(Sn; Zp) — Zp(n odd)
and N* = L(n\ t)(n even). The general case follows inductively using
the five lemma.
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