A VANISHING THEOREM FOR THE $\text{mod } p$ MASSEY-PETERSON SPECTRAL SEQUENCE

Masamitsu Mori
A VANISHING THEOREM FOR THE MOD p
MASSEY-PETERSON SPECTRAL
SEQUENCE

MASAMITSU MORI

A vanishing theorem and periodicity theorem for the classical mod 2 Adams spectral sequence were originally proved by Adams [1]. The results were extended to the unstable range by Bousfield [2]. The purpose of this paper is to show the analogue of Bousfield's work for the mod p unstable Adams spectral sequence of Massey-Peterson type (called the mod p Massey-Peterson spectral sequence), where p is an odd prime. The results generalized those obtained by Liulevicius [5], [6] to the unstable range. As an immediate topological application we have the estimation of the upper bounds of the orders of elements in the p-primary component of the homotopy groups of, for example, an odd dimensional sphere, Stiefel manifold, or H-space.

1. The vanishing theorem. Let A denote the mod p Steenrod algebra. Let A_un the category of unstable left A-modules and $\text{un}A$ the category of unstable right A-modules. We may define $\text{Ext}^s_{A_\text{un}}$, $s \geq 0$, as the sth right derived functor of Hom_{A_un}, and similarly define $\text{Ext}^s_{\text{un}A}$, since A_un and $\text{un}A$ are abelian categories with enough projectives. Note that, if $M \in A_\text{un}$ is of finite type, then

$$\text{Ext}^s_{A_\text{un}}(M, Z_p) = \text{Ext}^s_{\text{un}A}(Z_p, M^*) .$$

Recall the mod p Massey-Peterson spectral sequence (see, for example, [4]). Let X be a simply connected space with $\pi_*(X)$ of finite type. Suppose that $H^*(X; Z_p) \cong U(M)$, $M \in A_\text{un}$, where $U(M)$ is the free unstable A-algebra generated by M. Then there is a spectral sequence $\{E_r(X)\}$ with

$$d_r : E_r^{s,t}(X) \longrightarrow E_r^{s+r, t+r-1}(X) ,$$

such that

$$E_r^{s,t}(X) \cong \text{Ext}_r^{s,t}(M, Z_p) ,$$

and

$$E_\infty(X) \cong \text{Gr}_* \pi_*(X)/(\text{torsion prime to } p) .$$

Let A be the bigraded differential algebra over Z_p introduced by Bousfield et al [3], which has multiplicative generators λ_i of
bidegree \((1, 2i(p - 1) - 1)\) for \(i > 0\) and \(\mu_i\) of bidegree \((1, 2i(p - 1))\) for \(i \geq 0\).

For \(N \in \mathcal{M} A\), let \(V(N)^*\) be the subspace of \(N \otimes A^*\) generated by all \(x \otimes \nu_I\) with \(\nu_I = \nu_{i_1} \cdots \nu_{i_s}\) allowable and \(\deg x \geq 2i\) if \(\nu_{i_1} = \lambda_{i_1}\) and \(\deg x \geq 2i + 1\) if \(\nu_{i_1} = \mu_{i_1}\). Then \(V(N)\) is the cochain complex with

\[
\delta(x \otimes \nu_I) = (-1)^{\deg x} \sum_{i \geq 0} x \beta^i \otimes \lambda_{i} \nu_I
\]

\[
+ \sum_{i \geq 0} x \beta^i \otimes \mu_i \nu_I + (-1)^{\deg x} x \otimes \partial \nu_I.
\]

Here \(x \otimes \nu_I\) is of bidegree \((s, t)\) with \(t = s + \deg x + \deg \nu_I\). Recall that for \(N \in \mathcal{M} A\)

\[
\Ext^s_A(Z_p, N) = H^s(V(N))_{t-s}.
\]

Let \(O(N)\) be the subcomplex of \(V(N)\) generated by all \(x \otimes \nu_I \in V(N)^*\) with \(\nu_I = \nu_{i_1} \cdots \nu_{i_s}\) allowable and \(\nu_{i_s} = \lambda_{i_s}\). Let \(T(N)\) be the quotient complex of \(V(N)\) such that

\[
T(N)^s = \begin{cases}
N \otimes \mu_0^s & \text{for } s = 0, 1, \\
N \otimes \mu_0^s + \sum_{i \geq 1} N^i \otimes \lambda_i \mu_i^{t-1} & \text{for } s \geq 2.
\end{cases}
\]

Then we have a long exact sequence

\[
\cdots \longrightarrow H^{s-1}(T(N)) \overset{\delta}{\longrightarrow} H^s(O(N)) \overset{j^*}{\longrightarrow} H^s(V(N)) \overset{q^*}{\longrightarrow} H^s(T(N)) \longrightarrow \cdots,
\]

which is induced from the natural isomorphism

\[
H^*(O(N)) \cong H^*(\Ker q),
\]

where \(j: O(N) \rightarrow V(N)\) and \(q: V(N) \rightarrow T(N)\) are the natural maps. Remark that \(H^*(T(N))\) consists of towers in the sense that

\[
H^s(T(N)) \cong H^{s+1}(T(N)) ,
\]

for \(s \geq 2\), and thus \(H^*(T(N))\) is easily determined.

Definition. A function \(\varphi_n(k), n \geq 2, k \geq 0\), is defined as follows. If \(n = 2, 3, 4\),

\[
\varphi_n(k) = \begin{cases}
\lceil (k + 2)/2(p - 1) \rceil & \text{for } k \geq 2(p - 1) - 1 \\
0 & \text{for } k < 2(p - 1) - 1
\end{cases}
\]

where \([x]\) is the integer part of \(x\), and if \(n \geq 5\),

\[
\varphi(k) = \varphi_n(k) = i,
\]
where

\[2i(p - 1) \leq k < 2(i + 1)(p - 1) - 1 \quad \text{if} \quad i \not\equiv -1, 0 \mod p , \]
\[2i(p - 1) \leq k < 2(i + 1)(p - 1) - 2 \quad \text{if} \quad i \equiv -1 \mod p , \]
\[2i(p - 1) - 2 \leq k < 2(i + 1)(p - 1) - 1 \quad \text{if} \quad i \equiv 0 \mod p . \]

Now we state our main theorem.

Theorem 1 (Vanishing). Let \(N \in \mathcal{A} \) with \(N_i = 0 \) for \(i < n \), where \(n \geq 2 \). Then

\[
\text{Ext}_{A}^{s+s+k+n}(Z_p, N) \cong H^*(V(N))_{k+n} \xrightarrow{q^*} H^*(T(N)) ,
\]

is an isomorphism for \(s > \phi_s(k) \).

This will be proved in §4.

By virtue of our vanishing theorem the calculation of \(H^*(V(N)) \) is reduced to that of \(H^*(O(N)) \) in a large extent. Note that \(q^* \) is epimorphic when \(U(M) \) is generated by a single element, where \(M = N \).

As an immediate topological corollary we have:

Corollary 2. Let \(X \) be a simply connected space with \(\pi_*(X) \) of finite type. Suppose that \(H^*(X; Z_p) \cong U(M) \), where \(M \) is an unstable \(A \)-module. If \(M^i = 0 \) for \(i < n \), then the orders of elements in the \(p \)-primary component of \(\pi_{k+n}(X) \) are at most \(p^{\phi_s(k)} \).

This may be applied, for example, when \(X \) is an odd dimensional sphere, Stiefel manifold, or \(H \)-space.

Remark. If \(N_i = 0, i > m \), for some \(m \), then \(H^*(N)_t \) is zero for dimensional reason when \(t \) is large with respect to \(s \). Hence in this case Corollary 2 is slightly improved.

2. **Periodicity theorems.** For a module \(M \in A_{\mathcal{A}} \) we define the \(\beta \)-cohomology by \(H_{\beta}(M) = \ker \beta / \text{Im} \beta \).

Definition. A module \(M \in A_{\mathcal{A}} \) is called \(\beta \)-trivial if

\[
\rho^i: M^{2i} \longrightarrow H^{2i+p}_{\beta}(M) ,
\]

is an isomorphism for all \(i \) and \(H^{k}_{\beta}(M) = 0 \) for \(k \not\equiv 0 \mod 2p \).

Remark that \(M \in A_{\mathcal{A}} \) is \(\beta \)-trivial if and only if \(N = M^* \in \mathcal{A} A \) is towerless, i.e., \(H^s(T(N)) = 0 \) for \(s > 0 \).

Let \(\mathcal{C} \) denote the category of graded \(Z_p \)-modules. Let \(LsF \) denote the \(s \)th left derived functor of a functor \(F: A_{\mathcal{A}} \rightarrow \mathcal{C} \).
THEOREM 3 (Periodicity). Let $F: \mathcal{A} \to \mathcal{G}$ be a functor such that $F(M) = M/\beta M + \rho^i M$. If $M \in \mathcal{A}$ is β-trivial, then there is a natural map

$$P: L_* F(M)^t \to L_{*+2} F(M)^{t+2p(p-1)+p},$$

such that P is an isomorphism for $s \geq 2$ and a monomorphism for $s = 1$.

This will be proved in §3.

Additionally, we give here such a kind of periodicity theorems.

THEOREM 4. Let $G_{i}(M) = M/\rho^i M$ for $M \in \mathcal{A}$, where $0 < i < p$. Then there is a natural map

$$Q: L_* G_{i}(M)^t \to L_{*+2} G_{i}(M)^{t+2p(p-1)},$$

such that Q is an isomorphism for $s \geq 2$ and a monomorphism for $s = 1$.

THEOREM 5. Let $G_{i}(M) = M/\beta M + \rho^i M$ for $M \in \mathcal{A}$, where $0 < i < p$. If $M \in \mathcal{A}$ is β-trivial, then there is a natural map

$$Q: L_* G_{i}(M)^t \to L_{*+2} G_{i}(M)^{t+2p(p-1)},$$

such that Q is an isomorphism for $s \geq 2$ and a monomorphism for $s = 1$.

THEOREM 6. Let $G(M) = M/\rho^i + \beta^i M$ for $M \in \mathcal{A}$. If $M \in \mathcal{A}$ is β-trivial, then there is a natural map

$$R: L_* G(M)^t \to L_{*+2} G(M)^{t+4p},$$

such that R is an isomorphism for $s \geq 2$ and a monomorphism for $s = 1$.

3. Proofs of periodicity theorems. Suppose given a circular sequence of functors from \mathcal{A} to \mathcal{G} and natural transformations,

(§)

$$\begin{array}{c}
A_{k-2} \\ R_{k-2} \\
A_{k-3} \\
R_{k-1} \\
A_{k-1} \\
\cdots \\
A_1 \\
R_1 \\
A_0 = A_k \\
R_0 = R_k \\
A_{k-1}
\end{array}$$

satisfying $R_i R_{i+1} = 0$ for $i = 0, \cdots, k - 1$. Define functors Ker R_i, Im R_i, Coker R_i, $H_i = \text{Ker } R_i/\text{Im } R_{i+1}$ in a usual way.

DEFINITION. A module $M \in \mathcal{A}$ is called trivial for the diagram (§) if
\[L_sA_i(M) = L_sH_i(M) = 0, \]
for all \(s > 0 \) and \(i = 0, \ldots, k - 1 \).

Lemma. If \(M \in \mathcal{A} / \mathcal{M} \) is trivial for the diagram (\#), then there is a natural map

\[P : L_s \text{Coker } R_0(M)^t \longrightarrow L_{s+k} \text{Coker } R_0(M)^{t+k}, \]
such that \(P \) is an isomorphism for \(s \geq 2 \) and a monomorphism for \(s = 1 \). Here \(h = \sum_{i=0}^{k-1} h_i, h_i = \deg R_i \).

Proof. Let \(h(a) = \sum_{i=0}^{k-1} h_i. \) Since \(M \) is trivial for (\#), we have the following natural isomorphism

\[L_{s+k} \text{Coker } R_0(M)^{t+k} \cong L_{s+k-1} \text{Im } R_0(M)^{t+k} \]
\[\cong L_{s+k-2} \text{Ker } R_0(M)^{t+k(1)} \cong \cdots \]
\[\cong L_s \text{Ker } R_k(M)^{t+k(k-1)} \cong L_s \text{Im } R_{k-1}(M)^{t+k(k-1)}. \]

On the other hand the natural map

\[L_s \text{Coker } R_0(M)^t \longrightarrow L_s \text{Im } R_{k-1}(M)^{t+k(k-1)}, \]
is an isomorphism for \(s \geq 2 \) and a monomorphism for \(s = 1 \).

We shall use the following circular sequence due to Toda [9] (see, also, Oka [8]) to prove the periodicity theorems.

\[(3.1) \quad R \leftarrow M \rightarrow R' \leftarrow \cdots \rightarrow M \rightarrow R \]
\[\text{M/βM + M/βM} \]
where \(R_i = (i + 1)β^i - iβ^iβ, R = (β^iβ, \rho^i) \) and \(R' = ρ^iβ - β^iβ \).

\[(3.2) \quad M \xrightarrow{\rho^i} M \quad \text{for } 0 < i < p, \]
\[(3.3) \quad M/\rho_i M \xrightarrow{\rho^i} M/βM \quad \text{for } 0 < i < p, \]
\[(3.4) \quad M/\rho_i M \xrightarrow{\rho^i} M/\rho^i M. \]

Here \(M \in \mathcal{A} / \mathcal{M} \) and the maps are induced from the left actions.

Proof of Theorem 3. We shall use the diagram (3.1). For convenience, we put \(R_0 = R_p = R, R_{p-1} = R' \). Let \(H_i(M) \) denote the cohomology \(\text{Ker } R_i/\text{Im } R_{i+1} \). If \(M \) is a free unstable \(A \)-module, then:

\[(i) \quad \rho^* : (M/βM)^{2s} \cong H_0^{2s}(M) \quad \text{if } s \equiv -1 \mod p, \]
\[\rho^* : M \cong H_0^{2s+1}(M) \quad \text{if } s \not\equiv -1 \mod p, \]
\[\rho^* : (βM)^{2s+1} \cong H_0^{p+1}(M) \quad \text{if } s \not\equiv -1 \mod p, \]
(ii) for $i = 1, \cdots, p - 2$,
\[\rho^*: (M/\beta M)^{2s} \cong H_i^{2sp}(M), \]
\[\rho^* + \beta \rho^*: (\beta M)^{2s+2} + (M/\beta M)^{2s+1} \cong H_i^{2sp+2}(M), \]
\[\rho^*: (M/\beta M)^{2s+2} \cong H_i^{2sp+3}(M) \]

(iii) $\rho^* + 0: (M/\beta M)^{2s} + 0 \cong H_{p-1}^{2sp}(M),$
\[0 + \rho^*: 0 + (M/\beta M)^{2s+j} \cong H_{p-1}^{2sp+j+1}(M) \]
for $j = 0, 1$ if $s \equiv 0 \mod p$,
\[\rho^* + \rho^*: (\beta M)^{2s+1+j} + (M/\beta M)^{2s+j} \cong H_{p-1}^{2sp+j+1}(M) \]
for $j = 0, 1$ if $s \not\equiv 0 \mod p$,
\[0 + \rho^*: 0 + (M/\beta M)^{2s+2} \cong H_{p-1}^{2sp+3}(M). \]

(iv) otherwise $H_i^k(M) = 0$.

This unstable version of Toda's exactness theorem is shown by long but straightforward computations. Now Theorem 3 is proved by applying lemma.

By using the diagrams (3.2), (3.3) and (3.4), Theorems 4, 5 and 6 follow in a similar way, and thus we only state the following facts.

Let $M \in \mathcal{A}$ be a free unstable module. Fix i such that $0 < i < p$.
If $H(M) = \text{Ker} (\rho^i: M \to M)/\text{Im} (\rho^{p-i}: M \to M)$, then:

(i) $\rho^*: M^{2s+j} \cong H_i^{2sp+j}(M)$ for $j = 0, 1$,
\[\beta \rho^* + \rho^*: M^{2s+j-1} + M^{2s+j} \cong H_i^{2sp+j}(M) \]
for $j = 2, \cdots, 2i - 1$,
\[\beta \rho^*: M^{2s+j-1} \cong H_i^{2sp+j}(M) \]
for $j = 2i, 2i + 1$.

(ii) otherwise $H_i^k(M) = 0$.

If $H(M) = \text{Ker} (\rho^{p-i}: M/\beta M \to M/R_i M)/\text{Im} (\rho^i: M/R_i M \to M/\beta M)$, then:

(i) $\rho^*: (M/\beta M)^{2s+j} \cong H_i^{2sp+j}(M)$ for $j = 0, 1$,
\[\beta \rho^* + \rho^*: (M/\beta M)^{2s+j-1} + (M/\beta M)^{2s+j} \cong H_i^{2sp+j}(M) \]
for $j = 2, \cdots, 2i - 1$,
\[\beta \rho^*: (M/\beta M)^{2s+j-1} \cong H_i^{2sp+j}(M) \]
for $j = 2i, 2i + 1$.

(ii) if $s \equiv 0 \mod p$,
\[\rho^*: (M/\beta M)^{2s+j} \cong H_i^{2sp+j}(M) \]
for $j = 0, 1$,
\[\beta \rho^* + \rho^*: (M/\beta M)^{2s+j-1} + (M/\beta M)^{2s+j} \cong H_i^{2sp+j}(M) \]
for $j = 2, \cdots, 2i - 1$,
\[\beta \rho^*: (M/\beta M)^{2s+j-1} \cong H_i^{2sp+j}(M) \]
for $j = 2i, 2i + 1$.
\[\rho^*: (M/\beta M)^{2s+j} \cong H^{2sp+j}(M) \quad \text{for } j = 0, 1,\]
\[\beta \rho^* + \rho^*: M^{2s+j-1} + (M/\beta M)^{2s+j} \cong H^{2sp+j}(M) \quad \text{for } j = 2, \cdots, 2i - 1,\]
\[\beta \rho^*: M^{2s+j-1} \cong H^{2sp+j}(M) \quad \text{for } j = 2i, 2i + 1.\]

(iii) if \(s \equiv p - i \mod p, \)
\[\beta \rho^*: M^{2s+j-1} \cong H^{2sp+j}(M) \quad \text{for } j = 2, \cdots, 2i - 1,\]

(iv) otherwise \(H^i(M) = 0. \)

Finally, if \(H(M) = \text{Ker}(\beta \rho^*: M/\rho^i M \to M/\rho^i M)/\text{Im}(\beta \rho^*: M/\rho^i M \to M/\rho^i M), \) then:

(i) \[\rho^{ps}: M^{2s+j} \cong H^{2sp^2+j}(M) \quad \text{for } j = 0, 1,\]
\[\beta \rho^{ps} + \rho^{ps}: (M/\beta M)^{2s+1} + M^{2s+2} \cong H^{2sp^2+j}(M),\]

(ii) otherwise \(H^i(M) = 0. \)

4. Proof of the vanishing theorem. Let \(F(n) \) denote a free unstable \(A \)-module on one generator \(\iota_n \). We define an unstable \(A \)-module \(N(n) \) to be the quotient of \(F(n) \) by the relation \(\beta \iota_n = 0 \). Next define \(M(n) \) to be the subcomplex of \(N(n) \) by omitting the \(\iota_n \) from \(N(n) \) if \(n \) odd and omitting the \(\iota_n, (\iota_n)^{p}, \cdots, (\iota_n)^{p^t}, \cdots \) from \(N(n) \) if \(n \) even. Note that \(M(n) \) is \(\beta \)-trivial.

First we suppose that \(n \) is odd. Then by the long exact sequence induced from a short exact sequence

\[0 \to M(n) \to N(n) \to \mathbb{Z}_p \to 0,\]

we have an isomorphism

\[E^{t,s}_{t,s+n}(S^n) = \text{Ext}^{t,s+n}_{A}(\mathbb{Z}_p, \mathbb{Z}_p) \cong \text{Ext}^{t-1,s+n}_{A}(M(n), \mathbb{Z}_p),\]

for \(t \neq s \). Let \(C(n) \) be a minimal resolution of \(M(n) \). By virtue of Theorem 3 we can prove the vanishing theorem for \(Z_p \) by analysing \(C(n) \). Namely, \(\text{Ext}_{A}^{t-1,s+n}(M(n), \mathbb{Z}_p)(t \neq s) \) vanishes for \(s > \varphi_n(t - s) \).

Furthermore we can observe the periodicity phenomenon in a range near the vanishing line. In fact, by Theorems 3, 4 and 5 we have two periodicity operators \(P \) and \(Q \) of bidegree \((p, 2p(p - 1) + p)\) and \((2, 2p(p - 1))\), respectively.

For lower dimensional sphere we shall give periodic families. Let \(1 < m \leq p + 1 \). In \(E^{t,s}_{2,s+m-1}(S^{2m-1}) \) there appear nontrivial elements when \((s, t - s)\) is as follows:

(i) \((1, q - 1)\)

\((1, pq - 1)\) for \(m = p + 1,\)

(ii) \((s, sq - 1), (s, (m + s - 2)q - 2)\)

for \(s = 2, \cdots, p - m + 1 \) and \(m \neq p, p + 1,\)
(s, sq - 1), (s, pq - 2), (s, pq - 1)
for s = p - m + 2 and m \neq p + 1,
(s, sq - 1), (s, pq - 2), (s, pq - 1), (s, (m + s - 2)q - 2)
for s = p - m + 3, \ldots, p - 1 and p \neq 3,
(p, pq - 2), (p, pq - 1), (p, (p + m - 2)q - 2),
(p + 1, (p + 1)q - 1), (p + 1, (p + m - 1)q - 2),
where q = 2(p - 1). Applying the periodicity operators \(P \) and \(Q \) repeatedly, we can determine the behavior of all \(E_2(S^{2m-1}) \) near the vanishing line. (Possibly other elements appear in a range apart from the vanishing line when we apply the iteration of the operator \(Q \).)

We next suppose that \(n \) is even. Let \(L(n; t)(0 < t \leq \infty) \) be an unstable \(A \)-module with elements \(\sigma^*_n, (\sigma^*_n)^p, \ldots, (\sigma^*_n)^{pt} \) where \(\deg \sigma^*_n = n \). By the long exact sequence induced from short exact sequences

\[
0 \rightarrow M(n) + L(p^{t+1}; \infty) \rightarrow N(n) \rightarrow L(n; t) \rightarrow 0,
0 \rightarrow M(p^{t+1}n) \rightarrow N(p^{t+1}n) \rightarrow L(p^{t+1}n; \infty) \rightarrow 0,
\]
we have an isomorphism

\[
\Ext^{s,t+n}_{s,t+n}(L(n; t), Z_p) \\
\cong \Ext^{s-1,t+n}_{s-1,t+n}(M(n), Z_p) + \Ext^{s-2,t+n}_{s-2,t+n}(M(p^{t+1}n), Z_p),
\]
for \(t \neq s, s + (p^{t+1} - 1)n - 1 \). Thus in a similar way we have the required results for \(L(n; t) \).

Now we have shown that

\[
q^*: H^*(V(N))_{k+n} \rightarrow H^*(T(N)_{k+n},
\]
is an isomorphism for \(s > \varphi_n(k) \), when \(N^* = H^*(S^*; Z_p) = Z_p(n \text{ odd}) \) and \(N^* = L(n; t)(n \text{ even}) \). The general case follows inductively using the five lemma.

References

Received January 30, 1977.

University of the Ryukyus
Naha, Okinawa, Japan
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

CHARLES W. CURTIS
University of Oregon
Eugene, OR 97403

R. FINN and J. MILGRAM
Stanford University
Stanford, CA 94305

C. C. MOORE
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1978 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graham Donald Allen, Duals of Lorentz spaces</td>
<td>287</td>
</tr>
<tr>
<td>Gert Einar Torsten Almkvist, The number of nonfree components in the</td>
<td>293</td>
</tr>
<tr>
<td>decomposition of symmetric powers in characteristic* p</td>
<td></td>
</tr>
<tr>
<td>John J. Buoni and Bhushan L. Wadhwa, On joint numerical ranges</td>
<td>303</td>
</tr>
<tr>
<td>Joseph Eugene Collison, Central moments for arithmetic functions</td>
<td>307</td>
</tr>
<tr>
<td>Michael Walter Davis, Smooth G-manifolds as collections of fiber</td>
<td>315</td>
</tr>
<tr>
<td>bundles</td>
<td></td>
</tr>
<tr>
<td>Michael E. Detlefsen, Symmetric sublattices of a Noether lattice</td>
<td>365</td>
</tr>
<tr>
<td>David Downing, Surjectivity results for φ-accretive set-valued</td>
<td>381</td>
</tr>
<tr>
<td>mappings</td>
<td></td>
</tr>
<tr>
<td>David Allyn Drake and Dieter Jungnickel, Klingenberg structures and</td>
<td>389</td>
</tr>
<tr>
<td>partial designs. II. Regularity and uniformity</td>
<td></td>
</tr>
<tr>
<td>Edward George Effros and Jonathan Rosenberg, C-algebras with</td>
<td>417</td>
</tr>
<tr>
<td>approximately inner flip</td>
<td></td>
</tr>
<tr>
<td>Burton I. Fein, Minimal splitting fields for group representations. II</td>
<td>445</td>
</tr>
<tr>
<td>Benjamin Rigler Halpern, A general coincidence theory</td>
<td>451</td>
</tr>
<tr>
<td>Masamitsu Mori, A vanishing theorem for the mod p* Massey-Peterson*</td>
<td>473</td>
</tr>
<tr>
<td>spectral sequence</td>
<td></td>
</tr>
<tr>
<td>John C. Oxtoby and Vidhu S. Prasad, Homeomorphic measures in the</td>
<td>483</td>
</tr>
<tr>
<td>Hilbert cube</td>
<td></td>
</tr>
<tr>
<td>Michael Anthony Penna, On the geometry of combinatorial manifolds</td>
<td>499</td>
</tr>
<tr>
<td>Robert Ralph Phelps, Gaussian null sets and differentiability of</td>
<td>523</td>
</tr>
<tr>
<td>Lipschitz map on Banach spaces</td>
<td></td>
</tr>
<tr>
<td>Herbert Silverman, Evelyn Marie Silvia and D. N. Telage, Locally</td>
<td>533</td>
</tr>
<tr>
<td>univalent functions and coefficient distortions</td>
<td></td>
</tr>
<tr>
<td>Donald Curtis Taylor, The strong bidual of Γ(K)</td>
<td>541</td>
</tr>
<tr>
<td>Willie Taylor, On the oscillatory and asymptotic behavior of</td>
<td>557</td>
</tr>
<tr>
<td>solutions of fifth order selfadjoint differential equations</td>
<td></td>
</tr>
<tr>
<td>Fu-Chien Tzung, Sufficient conditions for the set of Hausdorff*</td>
<td>565</td>
</tr>
<tr>
<td>compactifications to be a lattice</td>
<td></td>
</tr>
</tbody>
</table>