SUFFICIENT CONDITIONS FOR THE SET OF HAUSDORFF COMPACTIFICATIONS TO BE A LATTICE

Fu-Chien Tzung
SUFFICIENT CONDITIONS FOR THE SET OF HAUSDORFF COMPACTIFICATIONS TO BE A LATTICE

FU-CHIEN TZUNG

Let \(K(X) \) be the complete upper semilattice of compactifications of a completely regular Hausdorff space \(X \). We show that if \(\beta X \setminus X \) is \(C^* \)-embedded in \(\beta X \) and if either \(\alpha X \setminus X \) is realcompact or is a \(P \)-space for some \(\alpha X \) in \(K(X) \), then \(K(X) \) is a lattice.

1. Introduction. Throughout this paper, all topological spaces under consideration are supposed to be completely regular and Hausdorff, unless stated otherwise.

A compactification of a space \(X \) is a compact space \(\alpha X \) which contains \(X \) as a dense subspace. We say \(\alpha_i X \) and \(\alpha_j X \) are equivalent compactifications of \(X \) if there is a homeomorphism \(h \) from \(\alpha_i X \) onto \(\alpha_j X \) such that \(h \) restricted to \(X \) in \(\alpha_i X \) is the identity map onto \(X \) in \(\alpha_j X \). We do not distinguish between equivalent compactifications. For compactifications \(\alpha_i X \) and \(\alpha_j X \), we say that \(\alpha_i X \succeq \alpha_j X \) if and only if there is continuous function from \(\alpha_i X \) onto \(\alpha_j X \) such that \(h \) restricted to \(X \) is the identity. Thus, \(\alpha_i X \) is equivalent to \(\alpha_j X \) if and only if \(\alpha_i X \succeq \alpha_j X \) and \(\alpha_j X \succeq \alpha_i X \). Let \(K(X) \) denote the set of all compactifications of \(X \). Then \(K(X) \) with the order \(\succeq \) defined as above is a complete upper semilattice. Lubben [3] proved that \(X \) is locally compact if and only if \(K(X) \) is a complete lattice. Next, Shirota [6] showed that if \(X \) is first countable then \(K(X) \) is a lattice if and only if \(X \) is locally compact. Thus, \(Q \) (=rationals) provides us with the simplest example for which \(K(Q) \) is not a lattice. Visliseni and Flaksmaier [9] showed that if there exists a sequence in \(\beta X \setminus X \) which converges to a point in \(X \), then \(K(X) \) cannot be a lattice. In the same paper they also constructed a non-locally compact space \(X \) for which \(K(X) \) is a lattice.

In this paper we determine two classes of spaces which properly contain the class of locally compact spaces and for which \(K(X) \) is a lattice, whenever \(X \) is a member of either of them. Examples are constructed to show that none of these conditions are necessary.

2. Preliminaries. The terminology of [1] and [11] are used throughout. The following will be needed for subsequent development.
DEFINITION 2.1. Let $\alpha X \in K(X)$, $f_\alpha: \beta X \to \alpha X$ be continuous and $f_\alpha|_X = \text{id}$. Then f_α is closed and hence we can consider αX as the quotient space of βX induced by f_α. Define

$$\mathcal{F}(\alpha X) = \{f_\alpha^{-1}(p) | p \in \alpha X \setminus X\}.$$

THEOREM 2.2 (Magill [4]). Let $\alpha, X, \alpha_2, X \in K(X)$. Then $\alpha, X \leq \alpha_2, X$ if and only if each set in $\mathcal{F}(\alpha_2 X)$ is a subset of a set in $\mathcal{F}(\alpha X)$.

DEFINITION 2.3. A space X is said to be of countable type if and only if every compact subset is contained in a compact set of countable character (i.e., one having a countable neighborhood system).

THEOREM 2.4 ([2], page 115). A space X is of countable type if and only if $\beta X \setminus X$ is Lindelöf.

THEOREM 2.5 ([1], page 115). Lindelöf spaces are realcompact.

DEFINITION 2.6. A space X is of point countable type if and only if every point is contained in a compact set of countable character.

THEOREM 2.7 ([8], page 341). If X is a space of point countable type then $\beta X \setminus X$ is realcompact.

THEOREM 2.8 ([9], page 1424). If, in the subspace $\beta X \setminus X$ of the space βX, there exists a countable sequence of points converging to some point in X, then $K(X)$ is not a lattice.

3. Major results.

LEMMA 3.1 ([10], page 28). $\beta X \setminus X$ is C^*-embedded in βX if and only if $C_{l_{\beta X}}(\beta X \setminus X) = \beta(\beta X \setminus X)$.

DEFINITION 3.2. For $\alpha X \in K(X)$, let $f_\alpha: \beta X \to \alpha X$ be the quotient map, define

$$\mathcal{M}_\alpha = \{p \in \beta X \setminus X | |f_\alpha^{-1}(f_\alpha(p))| > 1\},$$

and

$$\mathcal{S}_\alpha = \{F \subseteq \mathcal{M}_\alpha | F = f_\alpha^{-1}(y), \text{ some } y \in \alpha X\}.$$

LEMMA 3.3. If $C_{l_{\beta X}}(\mathcal{M}_\alpha) \subseteq \beta X \setminus X$ for every $\alpha X \in K(X)$, then $K(X)$ is a lattice.
Proof. Since $K(X)$ is a complete upper semi-lattice, it is sufficient to show any two elements of $K(X)$ have a lower bound. Let $\alpha X, \alpha_2 X \in K(X)$. $A = C_{\beta X}(\mathcal{U}_a) \cup C_{\beta X}(\mathcal{U}_b)$ is compact in $\beta X \setminus X$. Obtain αX by identifying A to a point, then αX is a compactification of X. Clearly, each set in $\mathcal{F}(\alpha X)$ is a subset of a set in $\mathcal{F}(\alpha X)$ for $i = 1, 2$. By Theorem 2.2, $\alpha X \subseteq \alpha X, \alpha X$. Hence, $K(X)$ is a lattice.

Lemma 3.4 ([1], page 62). Let $f: X \to Y$ be continuous, A be dense in X. If $f|_A$ is a homeomorphism, then $f(X \setminus A) \subseteq Y \setminus f(A)$.

Definition 3.5. Let Y be a quotient space of X with the quotient map P. Let $\{A_i\}_{i=1}^k$ be a collection of disjoint, nonempty subsets in X with $k \geq 2$. We say $\{A_i\}_{i=1}^k$ is a section partition induced by P if and only if there exists $B \subseteq Y$ such that $P(A_i) = B$ and $P^{-1}(b) \cap A_i$ is a singleton for $1 \leq i \leq k, b \in B$. P induces a partition on $A = \bigcup_{i=1}^k A_i$, namely, $A = \bigcup_{b \in B} A_b$, $A_{i_1} \cap A_{i_2} = \emptyset$ if $i_1 \neq i_2$, where $A_b = \bigcup_{i=1}^k (P^{-1}(b) \cap A_i)$. This partition induces the section correspondence induced by P on A.

Lemma 3.6. If $\beta X \setminus X$ is C^*-embedded in βX then for every $\alpha X \in K(X)$, \mathcal{M}_α contains no copy of N which is C-embedded in $\beta X \setminus X$.

Proof. Let $\alpha X \in K(X)$ such that \mathcal{M}_α contains a copy of N which is C-embedded in $\beta X \setminus X$. F is compact for each $F \in \mathcal{G}_a$, so it can contain only finitely many points of N. Form A by choosing one point from each nonempty $F \cap N$, then A is infinite. Let $h \in C(\beta X \setminus X)$ such that $h(A) = N \subseteq R$. $h|_A$ carries A homeomorphically onto a closed set in R, so A is C-embedded in $\beta X \setminus X$ by 1.19 of [1]. Therefore, A is a copy of N, which is C-embedded in $\beta X \setminus X$. If $F = f^{-1}(f(a))$ for some $a \in A$ then since $a \in \mathcal{M}_\alpha$, we have $F \in \mathcal{G}_a$. Let $\mathcal{A} = \{F \in \mathcal{G}_a | F \cap A = \emptyset\}$. Form B by choosing one point from each $F \setminus A$, $F \in \mathcal{A}$. $\{A, B\}$ is a section partition induced by f_a. We want to show that B is closed in $\beta X \setminus X$. Let (b_2) be an ultranet in B, and $b_2 \to b \in (\beta X \setminus X) \setminus B$. Let (a_2) be the corresponding ultranet in A through the section correspondence induced by f_a on $f_a(A)$. Since βX is compact, $a_2 \to a \in \beta X$. Clearly, (a_2) is nontrivial, since (b_2) is nontrivial. Also, $a \in X$, since A is closed and discrete in $\beta X \setminus X$. It is known that f_a is continuous, so $f_a(a_2) \to f_a(a)$ and $f_a(b_2) \to f_a(b)$. Since $f_a(a_2) = f_a(b_2)$ for all λ, and the limit points of these nets are unique, it follows that $f_a(a) = f_a(b)$. This is not possible since $f_a(\beta X \setminus X) \subseteq \alpha X \setminus f_a(X)$ by Lemma 3.4. Thus B is closed in $\beta X \setminus X$. Since A is a C-embedded copy of N and B is a closed set disjoint
from A, so A and B are completely separated in $\beta X \setminus X$ by $3B$ of [1]. As $\beta X \setminus X$ is C^*-embedded in βX, therefore A and B are completely separated in βX by 1.17 of [1]. It follows that $\mathcal{C}l_{\beta X}(A) \cap \mathcal{C}l_{\beta X}(B) = \phi$. Choose (a_i) in A and (b_i) in B as before, with $a_i \to a \in X$, $b_i \to b \in X$. Then $f_{a_i}(a) = f_{a_i}(b)$. This is a contradiction, since $f_a|_X$ is one-to-one. Hence \mathcal{H}_a contains no copy of N, which is C-embedded in $\beta X \setminus X$ for all αX in $K(X)$.

Theorem 3.7. If $\beta X \setminus X$ is C^*-embedded in βX, and if $\alpha X \setminus X$ is realcompact for some αX in $K(X)$ then $K(X)$ is a lattice.

Proof. If $\alpha X \setminus X$ is realcompact for some αX, then $\beta X \setminus X$ is realcompact by 8.13 of [1].

Claim. $\mathcal{C}l_{\beta X}(\mathcal{M}_a) \subseteq \beta X \setminus X$ for every $\alpha X \in K(X)$. Suppose not, then there exists $\alpha X \in K(X)$ such that \mathcal{M}_a has a limit point $x_0 \in X$. Let $Y = \{x_0\} \cup (\beta X \setminus X)$ endowed with the relative topology as a subspace of βX. $\beta X \setminus X$ is realcompact and dense in Y, so $\beta X \setminus X$ is not C-embedded in Y. Let $f \in C(\beta X \setminus X)$ such that f cannot be extended to Y. Let $[-\infty, \infty]$ be the two-point compactification of R. Clearly, f can be considered as a continuous function of $\beta X \setminus X$ into $[-\infty, \infty]$. f has an extension \tilde{f} from $\beta (\beta X \setminus X) = \mathcal{C}l_{\beta X}(\beta X \setminus X)$ into $[-\infty, \infty]$. Without loss of generality, we may assume $\tilde{f}(x_0) = \infty$. Since $x_0 \in \mathcal{C}l_{\beta X \setminus X}(\mathcal{M}_a)$, so f is unbounded on \mathcal{M}_a. By 1.20 of [1], \mathcal{M}_a contains a copy of N which is C-embedded in $\beta X \setminus X$. This contradicts Lemma 3.6, and hence $\mathcal{C}l_{\beta X}(\mathcal{M}_a) \subseteq \beta X \setminus X$ for every $\alpha X \in K(X)$. Lemma 3.3 shows that $K(X)$ is a lattice.

Corollary 3.8. If X is a space of point countable type and $\beta X \setminus X$ is C^*-embedded in βX then $K(X)$ is a lattice.

Theorem 3.9. If $\beta X \setminus X$ is C^*-embedded in βX and if $\alpha X \setminus X$ is a P-space for some $\alpha X \in K(X)$, then $K(X)$ is a lattice.

Proof. We claim that $f_a(\mathcal{M}_a)$ is finite. For if $f_a(\mathcal{M}_a)$ is infinite then it contains a countably infinite subset A. By 4K of [1], we see that A is a copy of N, which is C-embedded in $\alpha X \setminus X$. Let $f \in C(\alpha X \setminus X)$ such that $f(A) = N \subseteq R$. Hence, $f \circ f_a \in (\beta X \setminus X)$ is unbounded on $f_a^{-1}(A) \subseteq \mathcal{M}_a$. Thus $f_a^{-1}(A)$ contains a copy of N which is C-embedded in $\beta X \setminus X$. Since $\beta X \setminus X$ is C^*-embedded in βX, this contradicts Lemma 3.6. Therefore, $f_a(\mathcal{M}_a)$ is finite. Let $\gamma X \in K(X)$.

1 Yusuf Ünlü proved independently in his doctoral thesis [7] that $K(X)$ is a lattice if either (1) $\beta X \setminus X$ is realcompact and C^*-embedded in βX, or (2) $\beta X \setminus X$ is a P-space and $\mathcal{C}l_{\beta X}(\beta X \setminus X)$ is an F-space.
Claim. $f_a(\mathcal{M}_a \setminus \mathcal{M}_\alpha)$ is finite. Suppose $f_a(\mathcal{M}_a \setminus \mathcal{M}_\alpha)$ is infinite then $\mathcal{M}_a \setminus \mathcal{M}_\alpha$ contains a copy of \mathbb{N} which is C-embedded in $\beta X \setminus X$. This is a contradiction. $\mathcal{M}_a = \cup \{ f_a'(p) | p \in f_a(\mathcal{M}_a) \}$ so that \mathcal{M}_a is a finite union of closed (hence compact) subsets of βX. Thus \mathcal{M}_a is compact. Similarly, $\mathcal{M}_a \setminus \cup \{ f_a'(p) | p \in f_a(\mathcal{M}_a \setminus \mathcal{M}_\alpha) \} \cup \mathcal{M}_\alpha$ and both of these sets are compact. Therefore, $\text{Cl}_{\beta X}(\mathcal{M}_a) \subseteq \beta X \setminus X$. Since this is for an arbitrary $\gamma X \in K(X)$, the theorem follows from Lemma 3.3.

We summarize the major results of this section in the following theorem:

Theorem 3.10. If $\beta X \setminus X$ is C^*-embedded in βX then any of the following conditions implies that $K(X)$ is a lattice:

(i) $\alpha X \setminus X$ is realcompact for some $\alpha X \in K(X)$,

(ii) $\alpha X \setminus X$ is a P-space for some $\alpha X \in K(X)$,

(iii) X is of countable type,

(iv) X is of point-countable type.

Note that the class of spaces X for which $\beta X \setminus X$ is C^*-embedded in βX and for which $\alpha X \setminus X$ is realcompact for some αX in $K(X)$ contains the class of locally compact spaces. ($\beta X \setminus X$ is compact so that it is both realcompact and C^*-embedded in βX.) Likewise, the class of spaces X for which $\beta X \setminus X$ is C^*-embedded in βX and for which $\alpha X \setminus X$ is a P-space for some αX in $K(X)$ contains the class of locally compact spaces. ($\beta X \setminus X$ is C^*-embedded in βX since it is compact and $\omega X \setminus X = \{ p \}$ is a P-space.) Thus our results here can be considered as generalizations of those of Lubben [3].

4. Examples. Let Ω denote the class of ordinals. For $\alpha \in \Omega$, $W(\alpha) = \{ \alpha \in \Omega | \sigma < \alpha \}$. ω will denote the smallest member of Ω with infinitely many predecessors: $W(\omega)$ is infinite and for all $\alpha < \omega$, $W(\alpha)$ is finite. ω_1 will denote the smallest member of Ω with uncountably many predecessors.

Theorem 4.1 ([1], page 138). If X is compact, with $|X| < \mathfrak{N}$, $\alpha \neq 0$, then $\beta(X \times W(\omega_\alpha)) = X \times W(\omega_\alpha + 1)$.

Proof. See ([10], page 92).

Theorem 4.2 ([1], page 89). $X \subseteq Y \subseteq \beta X$, then $\beta Y = \beta X$.

Lemma 4.3. For $\alpha Y \in K(Y)$, there exists X such that $Y = \beta X \setminus X$ and $\text{Cl}_{\beta X}(Y) = \alpha Y$.

Proof. Let $\lambda \neq 0$ be chosen, so that $|\alpha Y| < \mathfrak{N}_2$. By Theorem
4.1, we have $\beta(\alpha Y \times W(\omega_x)) = \alpha Y \times W(\omega_x + 1)$. Let $X = \beta(\alpha Y \times W(\omega_x))(Y \times \{\omega_i\})$, then $\alpha Y \times W(\omega_x) \subseteq X \subseteq \beta(\alpha Y \times W(\omega_x))$ and hence $\beta X = \beta(\alpha Y \times W(\omega_x)) = \alpha Y \times W(\omega_x + 1)$. Since $\alpha Y \times \{\omega_i\}$ is compact and contains $Y \times \{\omega_i\} = Y$ as a dense subspace, X is the space desired.

Corollary 4.4. For any space Y there is an X such that $\beta X \setminus X = Y$ and Y is C^*-embedded in X.

Theorem 4.5. Given any two spaces X and Y, there is an $\alpha X \in K(X)$ such that Y is homeomorphic to $Cl_{\alpha X}(\alpha X \setminus X)$ iff there is a continuous map h from $Cl_{\beta X}(\beta X \setminus X)$ onto Y such that $h(\beta X \setminus X) \subseteq Y \setminus h(R(X))$ and h is one-to-one on $R(X)$, where $R(X)$ is the set of points at which X is not locally compact.

Example 4.6. (1) Let ωN be the one-point compactification of N. Then there exists X such that $\beta X \setminus X = N$ and $Cl_{\beta X}(N) = \omega N$. There exists a sequence, namely N, which converges to $(\omega, \omega_i) \in X$. Thus $K(X)$ is not a lattice by 2.8.

In the above example, $\beta X \setminus X$ is realcompact and a P-space but not C^*-embedded in βX.

Example 4.7. (2) If $Y = W(\omega_1)$, then $\beta Y = W(\omega_1 + 1)$. Let $X = (\beta Y \times \beta Y)(Y \times \{\omega_i\})$, then $\beta X \setminus X = Y$. Let \mathcal{D} be the collection of subsets of βX of the form $\{((\lambda + 2j, \omega_1), (\lambda + 2j + 1, \omega_1))\}$ for λ a limit ordinal, $j = 0, 1, 2, \ldots$, and all other singletons. Then \mathcal{D} is a decomposition space of X. Let $P: X \to \mathcal{D}$ be the quotient map, then \mathcal{D} can be considered as the quotient space of X induced by P. Clearly $P(\beta X \setminus X)$ is compact Hausdorff. By 4.5 we have $\mathcal{D} = \alpha X \in K(X)$. Similarly, let \mathcal{D}' be the collection of subsets of βX of the form $\{(\alpha + 2j - 1, \omega_1), (\alpha + 2j, \omega_1)\}$ for α a limit ordinal, $j = 1, 2, \ldots$, and all other singletons, then $\mathcal{D}' = \alpha_2 X \in K(X)$. If $\alpha X \in K(X)$ and $\alpha X \leq \alpha_1 X, \alpha_2 X$, then the following diagram commutes:

$$
\begin{array}{c}
\beta X \\
\alpha X
\end{array}
\begin{array}{c}
\downarrow f_{\alpha_1} \quad \quad \quad \quad \quad \downarrow f_{\alpha_2}
\end{array}
\begin{array}{c}
\alpha_1 X \\
\alpha_2 X
\end{array}
\begin{array}{c}
\downarrow f_1 \quad \quad \quad \quad \quad \downarrow f_2
\end{array}
$$

Thus, if $f_\alpha((\lambda, \omega)) = y$, for some λ a limit ordinal then $f((\lambda + j,$
\(f_\alpha(W \times \{\omega_j\}) = y = f_\alpha((\omega, \omega_j)) \), which is a contradiction since \(f_\alpha(\beta X \setminus X) \subseteq f_\alpha(\beta X) \setminus f_\alpha(X) \). Hence \(K(X) \) is not a lattice.

In this example, the subspace \(\beta X \setminus X \) is \(C^* \)-embedded but not realcompact nor a \(P \)-space. We also claim that \(\alpha X \setminus X \) is not a \(P \)-space for any \(\alpha X \in K(X) \). For if \(\alpha X \setminus X \) is a \(P \)-space, then \(\alpha X \setminus X \) contains a \(C \)-embedded copy of \(N \), which implies \(Y \) contains a \(C \)-embedded copy of \(N \). But this is not possible since \(Y \) is pseudo-compact.

Example 4.9. (3) Let \(Y \) be the subspace of \(W(\omega_1) \) obtained by deleting all nonisolated points having a countable base, then \(Y \) is a \(P \)-space that is not realcompact ([11], page 138).

Let \(X \) be chosen so that \(\beta X \setminus X = Y \) and \(Y \) \(C^* \)-embedded in \(\beta X \), then \(K(X) \) is a lattice by Theorem 3.9, \(\beta X \setminus X \) is not realcompact.

Example 4.3. (4) Let \(Q \) be the set of rationals. Choose \(X \) so that \(\beta X \setminus X = Q \) and \(Q \) is \(C^* \)-embedded in \(\beta X \). Since \(Q \) is realcompact, \(K(X) \) is a lattice. We claim that \(\alpha X \setminus X \) is not a \(P \)-space for any \(\alpha X \in K(X) \). For if \(\alpha X \setminus X \) is a \(P \)-space, then \(\alpha X \setminus X \) contains a \(C \)-embedded copy of \(N \) which contradicts Lemma 3.6.

Example 4.10. (5) \(E = \{2n | n \in N\} \) and \(0 = \{2n+1 | n \in N\} \). Then \(N = E \cup 0 \) and \(E \cap 0 = \phi \). Define \(t : N \rightarrow N \) by \(t(2n) = 2n + 1 \) and \(t(2n + 1)2n, n \in N \). Thus, \(t(E) = 0 \) and \(t(0) = E \). For each \(p \in \beta N \setminus N \), there exists a unique free ultrafilter \(U_p \) on \(N \) such that \(U_p \rightarrow p \).

Let \(\mathcal{U} = \{U_p\}_{p \in \beta N \setminus N} \). It is clear that \(\mathcal{U} \) is exactly the set of free ultrafilters on \(N \). Define \(\mathcal{U}_E = \{U_p \in \mathcal{U} | E \in U_p\} \) and \(\mathcal{U}_0 = \{U_p \in \mathcal{U} | 0 \in U_p\} \). Obviously, \(\mathcal{U}_E \) and \(\mathcal{U}_0 \) form a partition of \(\mathcal{U} \). If \(U_p \in \mathcal{U}_E \), then \(t(U_p) \) the ultrafilter generated by \(\{t(u) | u \in U_p\} \) is identical to \(\{t(u) | u \in U_p\} \), furthermore, \(t(U_p) \in \mathcal{U}_0 \). Similarly, \(t(U_p) \in \mathcal{U}_E \) if \(U_p \in \mathcal{U}_0 \). Thus, \(t \) induces a one-to-one correspondence between \(\mathcal{U}_E \) and \(\mathcal{U}_0 \). Each \(p \) in \(\beta N \setminus N \) corresponds to unique \(U_p \) in \(\mathcal{U} \), therefore the partition \(\mathcal{U} = \mathcal{U}_E \cup \mathcal{U}_0 \), \(\mathcal{U}_E \cap \mathcal{U}_0 = \phi \) induces a partition on \(\beta N \setminus N \). The induced partition is \(\beta N \setminus N = (Cl_{\beta N}(E) \setminus E) \cup (Cl_{\beta N}(0) \setminus 0) \) with \((Cl_{\beta N}(E) \setminus E) \cap (Cl_{\beta N}(0) \setminus 0) = \phi \).

Define a relation \(\sim \) on \(\beta N \) as follows: \(p_1 \sim p_2 \) if and only if \(p_1 \neq p_2 \) or \(t(U_{p_1}) = U_{p_2} \). Then \(\sim \) is an equivalence relation on \(\beta N \). Let \(\mathcal{D} \) be the identification space \(\beta N / \sim \) with the quotient map \(P \). Clearly \(\mathcal{D} \) is compact and \(T_1 \). We want to show \(\mathcal{D} \) is Hausdorff. For \(x \in P(N) \), \(P^{-1}(x) \) is a singleton in \(N \), so \(P^{-1}(x) \) is both open and closed in \(\beta N \). It follows that \(\{x\} \) is both open and closed in \(\mathcal{D} \). Thus \(x \) can be separated from any other point by open sets in \(\mathcal{D} \). Let \(p, q \in P(\beta N \setminus N) \). Then
\(P^{-1}(p) = \{p_1, p_2\} \), and \(P^{-1}(q) = \{q_1, q_2\} \) for \(p_1, q_1 \in \text{Cl}_{\beta N}(E) \setminus E \) and \(p_2, q_2 \in \text{Cl}_{\beta N}(0) \setminus 0 \). Let \(u, v \) be open in \(\beta N \) such that \(u, v \subseteq \text{Cl}_{\beta n}(E) \), \(p_1 \in u \), \(q_1 \in v \) and \(u \cap v = \emptyset \). Let \(\bar{t} \) be the extension of \(t \) from \(\beta N \) to \(\beta N \). Obviously, \(\bar{t} \) is a homeomorphism, so \(\bar{t}(u) \) and \(\bar{t}(v) \) are open in \(\beta N \), moreover \(\bar{t}(u), \bar{t}(v) \subseteq \text{Cl}_{\beta N}(0) \) and \(p_2 \in \bar{t}(u), q_2 \in \bar{t}(v) \). Let \(G = P(u \cup (\bar{t}(u)), H = P(v \cup (\bar{t}(v))) \). Clearly, \(P^{-1}(G) = u \cup (\bar{t}(u)) \) and \(P^{-1}(H) = v \cup (\bar{t}(v)) \), so \(G \) and \(H \) are open in \(\mathcal{D} \). Since \(p \in G, q \in H, G \cap H = \emptyset \), so \(p, q \) can be separated by open sets. Thus \(\mathcal{D} \) is Hausdorff. Thus there is a \(\gamma N \in K(N) \) such that \(\gamma N = \mathcal{D} \).

Let \(X \) be obtained as in Lemma 4.3 such that \(\beta X \setminus X = N \) and \(\text{Cl}_{\beta X}(N) = \gamma N \). For \(\alpha X \in K(X) \), we claim \(\alpha X \) has the following properties.

(1) \(\mathcal{S}_1^\alpha = \{ F \in \mathcal{S}_\alpha \mid |F| \geq 3 \} \) is finite,

(2) \(\mathcal{S}_2^\alpha = \{ F \in \mathcal{S}_\alpha \mid |F| = 2, F \subseteq E \} \) and

\(\mathcal{S}_3^\alpha = \{ F \in \mathcal{S}_\alpha \mid |F| = 2, F \subseteq E \} \) are finite,

(3) Let \(\mathcal{S}_4^\alpha = \{ F \in \mathcal{S}_\alpha \mid |F \cap E| = |F \cap 0| = 1 \} \), then

\(\mathcal{S}_4^\alpha = \{ F \in \mathcal{S}_\alpha \mid F \neq \{2n, 2n + 1\} \} \) for any \(n \in N \) is finite.

Proof of (1). If \(\mathcal{S}_1^\alpha \) is infinite, then \(\mathcal{S}_1^\alpha \) contains three copies of \(N \), say \(\{A_i\}_{i=1}^3 \), which are C-embedded in \(N \subseteq \beta X \) such that \(\{A_i\}_{i=1}^3 \) is a section partition induced by \(f_\alpha \). Clearly, \(\{f_\alpha^{-1}(A_i)\}_{i=1}^3 \) is a section partition induced by \(g_\alpha \circ f_\beta \) where \(g_\alpha \) is the restriction of \(f_\alpha \) to \(\text{Cl}_{\beta X}(N) = \gamma N \). Let \((a_i^{(1)}) \) be an ultranet in \(A_1 \) and \(a_i^{(1)} \to a_1 \in \beta N \setminus N \). Let \((a_i^{(2)}) \subseteq A_2, (a_i^{(3)}) \subseteq A_3 \) be ultranets induced by the section correspondences which are induced by \(g_\alpha \circ f_\beta \) on \(\text{Cl}_{\beta X}(N) \). Let \(a_i^{(2)} \to a_2, a_i^{(3)} \to a_3 \), where \(a_2, a_3 \in \beta N \setminus N \). Obviously \(a_1, a_2, a_3 \) are distinct. By the definition of \(\gamma N, |f_\beta^{-1}((a_i^{(1)})_{i=1}^3)| \geq 2 \). \(f_\beta^{-1} \) is one-to-one, so \(|(g_\alpha \circ f_\beta)((a_i^{(1)})_{i=1}^3)| \geq 2 \). This is not possible, since \((g_\alpha \circ f_\beta)(a_i^{(1)}) = (g_\alpha \circ f_\beta)(a_i^{(2)}) = (g_\alpha \circ f_\beta)(a_i^{(3)}) \) for all \(\lambda \) which implies \(|(g_\alpha \circ f_\beta)((a_i^{(1)})_{i=1}^3)| = 1 \). Thus (1) holds.

Proof of (2). It is sufficient to show \(\mathcal{S}_2^\alpha \) cannot be infinite. Suppose \(\mathcal{S}_2^\alpha \) is infinite, then \(E \) contains two copies of \(N \), say \(A_1, A_2 \), which are C-embedded in \(N = \beta X \setminus X \) such that \(\{A_i\}_{i=1}^2 \) is a section partition induced by \(f_\alpha \). This is not possible, since no two-points in \(\text{Cl}_{\beta N}(E) \) are equivalent with respect to \(\sim \), and \(f_\beta^{-1} \) is one-to-one. Thus (2) holds.

Proof of (3). If \(\mathcal{S}_3^\alpha \) is infinite, then there exists \(A = \{a_n\}_{n=0}^\infty \subseteq E, B = \{b_n\}_{n=0}^\infty \subseteq 0 \) such that \(\{A, B\} \) is a section partition induced by \(f_\alpha, \{a_n, b_n\} \in \mathcal{S}_3^\alpha \) for \(n \in N \), and \(t(A) \cap B = \emptyset \). Let \(a \in \text{Cl}_{\beta N}, \) then \(t(\mathcal{Z}_\alpha) \to \bar{t}(a) \in \text{Cl}_{\beta N}(B), \) since \(B \in t(\mathcal{Z}_\alpha) \). Let \((a_2) \) be the ultranet in \(A \) based on \(A \cap \mathcal{Z}_\alpha \) such that \(a_2 \to a \). Let \((b_2) \) be the ultranet in \(B \) induced by the map \(a_2 \to b_2 \). Then \(b_2 \to b \in \text{Cl}_{\beta N}(B) \). \(a \) and \(b \) are not
SUFFICIENT CONDITIONS FOR THE SET OF HAUSDORFF

Thus \(f_1(a) \neq f_2(b) \). However, \((g \circ f_1)(a) = (g \circ f_2)(b) \). This is a contradiction. Hence (3) holds.

Let \(\mathcal{S}_a = \{ F \in \mathcal{G}_a | F = \{2n, 2n + 1\} \text{ for some } n \in \mathbb{N}\} \), \(G_a = \{ x \in \mathcal{M}_a | x \in F \text{ for some } F \in \mathcal{S}_a \} \). Let \(K_a = \{ x \in \mathcal{M}_a | x \in \bigcup_{i=1}^{n} \mathcal{S}_a \} \). Then \(\mathcal{M}_a = G_a \cup K_a \).

Using these notations, for \(\alpha_1 X, \alpha_2 X \in K(X) \), we write \(\mathcal{M}_a = G_a \cup K_a \). We want to show that \(\alpha_1 X \) and \(\alpha_2 X \) have a lower bound in \(K(X) \). Let \(\tau X \) be obtained by identifying subsets of \(\beta X \) of the form \(\{2n, 2n + 1\} \) to a point for each \(n \in \mathbb{N} \). It is clear that \(\tau X \in K(X) \). Let \(K = f_1(K_a \cup K_a) \). Obtain \(\alpha X \) by identifying \(K \) to a point, then \(\alpha X \in K(X) \). Each set in \(\mathcal{F}(\alpha X) \) is a subset of a set in \(\mathcal{F}(\alpha X) \), thus \(K(X) \) is a lattice by Theorem 2.2.

This example shows that the condition \(Cl_{\beta X}(\mathcal{M}_a) \subseteq \beta X \setminus X \) for every \(\alpha X \in K(X) \) in Lemma 3.3 is not necessary for \(K(X) \) to be a lattice.

REFERENCES

Received April 29, 1977 and in revised form October 14, 1977. This paper is based on my doctoral thesis submitted to North Carolina State University at Raleigh under the direction of Richard E. Chandler to whom I wish to express my sincere appreciation for his guidance and encouragement.

NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NC 27607
Graham Donald Allen, *Duals of Lorentz spaces* ... 287
Gert Einar Torsten Almkvist, *The number of nonfree components in the
decomposition of symmetric powers in characteristic p* 293
John J. Buoni and Bhushan L. Wadhwa, *On joint numerical ranges* 303
Joseph Eugene Collison, *Central moments for arithmetic functions* 307
Michael Walter Davis, *Smooth G-manifolds as collections of fiber
bundles* .. 315
Michael E. Detlefsen, *Symmetric sublattices of a Noether lattice* 365
David Downing, *Surjectivity results for \(\phi \)-accretive set-valued
mappings* ... 381
David Allyn Drake and Dieter Jungnickel, *Klingenberg structures and
partial designs. II. Regularity and uniformity* .. 389
Edward George Effros and Jonathan Rosenberg, *\(C^* \)-algebras with
approximately inner flip* ... 417
Burton I. Fein, *Minimal splitting fields for group representations. II* 445
Benjamin Rigler Halpern, *A general coincidence theory* 451
Masamitsu Mori, *A vanishing theorem for the mod \(p \) Massey-Peterson
spectral sequence* ... 473
John C. Oxtoby and Vidhu S. Prasad, *Homeomorphic measures in the
Hilbert cube* ... 483
Michael Anthony Penna, *On the geometry of combinatorial manifolds* 499
Robert Ralph Phelps, *Gaussian null sets and differentiability of Lipschitz
map on Banach spaces* ... 523
Herbert Silverman, Evelyn Marie Silvia and D. N. Telage, *Locally univalent
functions and coefficient distortions* ... 533
Donald Curtis Taylor, *The strong bidual of \(\Gamma(K) \)* 541
Willie Taylor, *On the oscillatory and asymptotic behavior of solutions of
fifth order selfadjoint differential equations* ... 557
Fu-Chien Tzung, *Sufficient conditions for the set of Hausdorff
compactifications to be a lattice* ... 565