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THOMAS E. CECIL AND PATRICK J. RYAN

This is a study of the manifold structure of the focal
set of an immersed submanifold in a real space form M.
A typical result is the following:

THEOREM. Let M be an orientable (immersed) hypersurface in
M which is complete with respect to the induced metric. Let N be
a differentiable principal curvature of constant multiplicity v > 1
on M. Then the focal map f, factors through an immersion of the
(n — v)-dimensional manifold M, into M. In this way, (M) is an
immersed submanifold of M.

We explain the notation used in the theorem. Under the hypoth-
eses, the principal vectors corresponding to A form a smooth y-
dimensional distribution T, on M whose leaves are umbilic submanifolds
of M. On each leaf, )\ is constant. f; is the map from part of M
onto the set of focal points arising from the principal curvature .
M, is the space of leaves of T, which intersect the domain of f.
The proof relies on the work of Palais [13] on foliations.

This theorem generalizes that of Nomizu [10] who proved a
similar result for hypersurfaces in the sphere with constant principal
curvatures. Because of the abundance of examples of such hyper-
surfaces, one can produce (through stereographic projection) many
examples of hypersurfaces in Euclidean and hyperbolic space to which
our theorem applies (see §3.c).

If » has constant multiplicity one, then f,(M) is not an (n — 1)-
dimensional manifold without additional hypotheses. This case is
handled by Theorem 3.2 which is a generalization of the classical
determination of conditions under which a sheet of the foecal set of
a surface in E° is a curve. (See, for example, Eisenhart [6, p. 310~
3141)

A key ingredient in the proofs of the above results is the com-
putation of the rank of f;. Our result in this area (Theorem 2.1)
applies to submanifolds of arbitrary codimension.

The classical version of these theorems was used by Banchoff
[1] and Cecil [3] in characterizing taut immersions of surfaces in E®.
Applications of the results of the present paper to the classification
of taut immersions of S* x S"* into E""' may be found in our
forthcoming paper [5].

1. Preliminaries. In this paper, all manifolds and maps are
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taken to be C* unless explicitly stated otherwise. The words “smooth”
and “differentiable” are synonyms for C~. We will always be con-
sidering an immersion f: M — M, but we will treat f locally as an
embedding. Thus, we will often identify 2 with f(x) and suppress
the mention of f.

l.a. Space forms. We will assume that I is a real space form
of dimension n + k. Thus M is a Euclidean space, E***, a sphere,
S***, or a hyperbolic space, H"**, which has constant sectional curva-
ture 0, 1, —1, respectively.

We will use the following representation for the hyperbolic space,
H™ (for more detail, see [7, vol. II, p. 268]). Consider R™*' with a
natural basis e, ---, ¢,,, and a nondegenerate quadratic form (, )
defined by

<x’ y> — __xm+1ym+1 + Z xiyi R
=1

where

m+1 m+1

x = > % and y = >, Y%,.
i=1 =1

Then H™ is the hypersurface,
{xeR"‘“[(x, x> = —1, "t = 1} ’

on which {, ) restricts to a positive definite metric of constant
curvature —1.

Similarly, S™ is defined using the usual Euclidean inner product
in R™", that is,

m+1
(@, ) = ; xiyt,
and
S" = {xe R""|{x, x) = 1},

on which <, ) restricts to a metric of constant sectional curvature 1.

1.b. Horizontal lifts, Let NM denote the normal bundle of M
with natural projection #. Let s be a local cross-section of NM.
We recall the fundamental relationship which holds for any Xe T, M,
for any x e M,

(1.1) Vs =—AX + Vs,

where ¥ is the covariant differentiation in /7, A is the shape operator
determined by & = s(x), and F* is the connection in the normal bundle.
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Let £e NM. A vector Ze T.NM, the tangent space to NM at
g, is said to be horizontal if there is a local section s of NM such
that F‘s =0 at = =&, and Z = s, X, for some Xe T ,M. One can
show that Z is uniquely determined by £ and X. We will refer to
Z as the horizontal lift of X to & and denote this horizontal lift
by X..

Differentiation in horizontal directions on NM can be related to
differentiation on M as follows. Let »: NM — R, £e NM, x = &, and
XeT,M. Then

X\ = X(nos)

where s is any local section of NM with ¢ = s(z), and Fts = 0 at x.

l.c. Locating the focal points. For each & NM, let F(&) be the
point of M reached by traversing a distance |&| along the geodesic
in M with initial tangent vector & If £ is the zero element of the
tangent space to I at f(x), let F(&) = f(x).

DEFINITION. A point pe M is called a focal point of (M, x) of
multiplicity v if p = F(&) where n£ = x, and the Jacobian of F at
& has nullity v.

Assume now that & has unit length. The location of the focal
points along a particular geodesic F(t&) in M is determined by the
sectional curvature of MM, and the eigenvalues of A4, as follows.

PROPOSITION 1.1. Let M be a submanifold of a space form M.
Let & be a unit vector in NM with ¢ = x. Then F(£) s a focal
point of (M, x) of multiplicity v if and only if there is an eigenvalue
N oof A of multiplicity v such that,

(@) =1/t if M = E**,

(b) N =cott if M = S***,

() » =cotht if M = Ht*,

Proof. Statement (a) is well-known (see, for example, Milnor
[8, p. 84]). Statement (c) is proven in Cecil [4, p. 343] and (b) can
be proven similarly.

1.d. Principal curvature functions. The shape operator 4 defines
a smooth map £ — A. of NM into the space of symmetric tensors of
type (1,1) on M. If ANeR is an eigenvalue of A, ) is called a
principal curvature of A.. If the principal curvatures {\;(&)};., are
ordered ), = --- =\, for each £e NM, then each )\, is a continuous
on NM. Furthermore, a continuous principal curvature function
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function which has constant multiplicity on an open set Uc NM must
be smooth. Proofs of these two well-known facts may be found in
Ryan [14, p. 871] and Nomizu [11], respectively.

l.e. Sheets of the focal set. Proposition 1.1 demonstrates that
the location of focal points is determined by the eigenvalues of A,
where £ is a unit normal vector to M. Thus, the natural domain
of parametrization of the focal set of M is the bundle of unit normal
vectors to M, which we denote by UN(M).

Let U be an open set in UN(M), and let A: U — R be a differen-
tiable principal curvature of constant multiplicity v > 0. We define
the focal map fi:U— M by the following formulas where z = z¢,

@ f&) =ux+ %& ,

(1.2) (b) fi(&) = cos fx + sin 6 where cot § =\,
(e) fi(&) = cosh fx + sinh 6 where cothd = X\,

for M equal to E***, S*+*, H***, respectively. Then fy(U) is called
the sheet of the focal set over U corresponding to .

It is clear that f; is not defined if M(x)=0 in thecase I = E"**,
nor if |AM®)| <1 in the case M = H™*. In the spherical case, each
principal curvature )\ gives rise to two different focal points deter-
mined by substituting 8 = cot™\ and 6 = cot™\ + 7 into (1.2b).

1.f. Stereographic projection. Let ¢ be an arbitrary point of
S™, and let E™ be the Euclidean subspace of E™*' defined by,
Em" = {xe B[z, ¢ =0},

where {, > is the Euclidean inner product in E™*'. Then stereographic
projection from the pole ¢ is the map P from S™ — {q} onto E™ defined

by,
P@)=q+ @ —q),
where
e =1 —<x,q).
One can easily show that P is conformal diffeomorphism with,
(PyX, P, Y) =€""¢X, Y,

for all X, Y tangent to S™ at x.
Similarly, consider hyperbolic space H™ — R™" with the indefinite
inner product {,) as defined in §1l.a. Let ¢ be a point of R™*' such
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that —ge H”. Let D™ be the m-dimensional disk defined by
D" = {we R™"|{x, ¢) =0, <z, x) < 1},

on which the metric {, ) restricts to a Euclidean metric which we
now denote for emphasis by ¢g. (D™ is a unit disk with respect to
the metric g, although in terms of the usual coordinates on R™*,
the boundary of D™ is, in general, an ellipsoid.)

Then, stereographic projection from the pole ¢ is the map
P: H™ — D™ which is defined by the formula,

Px) =q + (2 —q),
where
e =1+, q.

As in the spherical case, one easily shows that P is a conformal
diffeomorphism onto the Euclidean disk D™ with,

g(P.X, P,Y) = e*(X, Y),
for all X, Y tangent to H™ at z.

1.g. Conformally related spaces. In this section, we note some
facts about conformal diffeomorphisms which can then be applied to
the specific case of stereographic projection.

Let ¢: (I, g) — (M, ¢') be a conformal diffeomorphism of Rieman-
nian manifolds with,

93X, $.Y) = ¢“9(X, Y),

for all X and Y tangent to /7 at z.

For a submanifold M of M, let & be a local field of unit normals
to M near x. Then & = ¢,(e°¢) is a field of unit normals to ¢(M)
near ¢(x), and the corresponding shape operators are related by

B = ¢7°(A; — g(grad g, §)I) .
This relationship, obtained by a straightforward computation, yields

as a consequence the following statement in the codimension one case.

PROPOSITION 1.2. Let M be a hypersurface in M and let N be
a differentiable principal curvature of constant multiplicity. Then

¢ = e~°(\ — g(grad o, &)

18 a differentiable principal curvature of the same constant mul-
tiplicity on #(M), and the respective principal distributions of
and Mt coincide on M.
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2. The rank of f,. Asin §1, let M be an n-dimensional smooth
manifold immersed in a real space form M of dimension n -+ k.
Suppose &€ UN(M), and ) is an eigenvalue of A,. Let T)(&) be the
eigenspace of A.

THEOREM 2.1. Let M be an n-dimensional submanifold of an
(n+k)-dimensional real space form M. Let \ be a differentiable
principal curvature of constant multiplicity v near a point £ in
UN(M). If there is an X e T)(&) whose horizontal lift to & satisfies
XN#=0, then the rank of f, at Eis n + k — y. Otherwise, f; has rank
n+k—y—1.

The proof is a rather long but straightforward computation
which we leave to the reader. It may be broken down into four
steps. First, one shows that # + k — v is an upper bound for the
rank of f,. Next, one shows that % + % —v — 1 is a lower bound.
Thirdly, one proves the following result which distinguishes the two
possibilities.

ProrosiTioN 2.1. The rank of f is m + k — v at & if and only
if the range of (fy), contains

(a) ¢& when M = E**k,

(b) = —NE)  when M = S,

() x+M&  when M = H"*,
where x = wé.

Finally, one proves that the respective conditions of Proposition
2.1 hold if and only if there is X € T;(¢) such that X An=0. Note that
Proposition 2.1(a) generalizes the classical result that the normal to a
surface is tangent to its evolute (focal set) when f; has maximal rank.

The question answered by Theorem 2.1 can formulated in more
general ambient spaces. Along normal geodesics, the occurrence of
focal points is still related to the principal curvatures, but the
curvature of the ambient space must be taken into account. Given
sufficient homogeneity properties for M, however, one should be able
to define f; and compute its rank.

3. Focal sets of hypersurfaces. Let M be an orientable hyper-
surface of a real space form M. Let & be a global field of unit
normals on M. The following result is basic to our discussion. See
[14, p. 871-378], for example, for a proof.

PROPOSITION 3.1. Suppose : is a principal curvature of constant
multiplicity v>1 on M. Then T, is involutive and X\ =0 for all
XeT,.
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If ) has constant multiplicity one, then one cannot conclude that
Xx =0 for XeT;. Given the dependence of the rank of f; on X\
as shown in Theorem 2.1, it is natural to consider the two cases
v > 1 and v = 1 separately.

3.a. The case of multiplicity ¥ >1. Before we state the first
proposition, we recall the following definition. A submanifold V of
any space M is said to be umbilic if for each z€ V, there is a real-
valued linear function w on T}V such that for any 7, the shape
operator B, of V satisfies the equation B, = w(%)I, where I is the
identity endomorphism on T,V.

PropOsSITION 8.2. The leavgs of the foliation T, are umbilic v-
dimenstonal submanifolds of M.

Proof. Let V be any leaf of T, The normal space to V in I
at x is

TV =TiM D Ti(x) .

Let ne T;V, and let B, be the shape operator of V determined by
7. If peT:M, then clearly B, =AI. On the other hand, suppose
ne Ti(x) is a principal vector of the shape operator A of M. Extend
7 to a vector field Ye Ty on W. There is a unique vector field Z ¢
T+ such that {Z, Y) =0 and

(3.1) AY =pY + Z

for some function g2 on W. This is possible since T4 is invariant
under A4, even though the eigenvalues of A need not be smooth.

Let Xe T, be a vector field on W. Since Z = 0 at x, one easily
shows that V;Z e T} at . Using equation (8.1), the Codazzi equation
VLAY = (FyA)X becomes

(X)Y — (YNX +VyZ =(A—pIW;Y — (A -\, X.

Since VyZe T+ at z, one finds from the above equation that the
T.-component of V,Y at x is

~(X

A=
Since (4X, Y) =0, this is also the T,-component of 7;Y, and one
obtains

Bx = (WX
7 N—"p’
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thus proving that V is umbilic.
We now prove the main theorem of this section. In the statement
below, M, is the space of leaves U/T;, where U is the domain of f,.

THEOREM 3.1. Let M be an orientable (immersed) hypersurface
in a real space form M which is complete with respect to the induced
metric. Let N be a differentiable principal curvature of constant
multiplicity v > 1 on M. Then the focal map f; factors through an
immersion of the (n — v)-dimensional manifold M, into M. In this
way, f(M) is an immersed submanifold of M.

Proof. Since the leaves of T, are umbilie, T, is a regular foliation
as defined by Palais [13, p. 13] and the space of leaves is an (n — v)-
dimensional manifold in the sense of Palais, which may not be Haus-
dorff. Moreover, the computations involved in proving Theorem 2.1
show that (i), =0 on T,. Thus by [13, p. 25], f; factors through
a map g; from the space of leaves M; =U/T, into M. Since rank
g, =rank f, = n — v, ¢g; is an immersion. Finally, the regularity of
T, implies that each leaf is a closed subset of M [13, p. 18]. Thus if
M is complete, each leaf is also complete with respect to its induced
metric (see, for example, [7, vol. I, p. 179]). Hence each leaf which
intersects U is a v-dimensional metric sphere in M. Because such
leaves are compact, M; is Hausdorff [13, p. 16]. This completes the
proof of Theorem 8.1.

The following remark demonstrates that the assumption of com-
pleteness in Theorem 3.1 is necessary to guarantee that M, is a
Hausdorff manifold.

REMARK 3.3. An example in which rank f;, is constant but M,
18 not a Hausdorff manifold.

Let

(et if >0
7o) = 0 if t<0.

Let K be the envelope of a 1-parameter family of spheres of
radius 1 in E®* whose centers lie on the curve,

7(t) = (ti 09 f(t))r te (_17 1) .

Then ~v(¢) is the sheet of the focal set of K corresponding to the
constant principal curvatures ) = 1.

Let N be the intersection of K with the closed upper half-space,
z = 0, with the points satisfying 2z =0, 2 = 0 removed. Let M be
the union of N with its reflection in the plane z = 0.
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The leaf space M/T; is not Hausdorff since the two semi-circular
leaves in the plane ¢ = 0 cannot be separated in the quotient topology.
This is consistent with the fact that the focal set,

Fi(M) = {(=x, 0, 2)|z = | f(@)], -1 <& <1},

is not a 1-manifold in a neighborhood of the origin. Nevertheless,
the rank of f; is identically equal to 1 on M.

3.b. The case of multiplicity ¥ = 1. In this case, the fact
that for hypersurfaces of H*'!, the domain of f;, U, does not include
those x € M where |\(x)| = 1, becomes quite significant. In fact, the
conditions (a), (b), and (¢) of Theorem 3.2 are equivalent on U, but
not necessarily on all of M. Specifically, (a) and (b) are equivalent
on M, and they imply (c). However, one can construct a surface M
in H® such that the focal set fi}(M) is a curve, and yet not all the
lines of curvature of M corresponding to \ are of constant curvature.
This is done by beginning with a standard example K on which (a),
(b), and (c) are satisfied and modifying K on the region where |A] <
1, so as to destroy property (b), but introduce no new focal points
and thus preserve (c).

THEOREM 3.2. Let M be an orientable (immersed) hypersurface
in M. Suppose )\ is a differentiable principal curvature of constant
multiplicity 1 on M. Then the following are equivalent on M if
M = E~* or 8™, and on U, the domain of f3 if M = H.

(a) N\ is constant along each leaf of T, (the lines of curvature).

(b) The leaves of T, are plane curves of constant curvature.

(¢) The rank of fi is identically equal to n — 1 on its domain.

Unlike the case vy > 1, one must use a different proof for the
different ambient spaces. We first give a proof for the Euclidean
case, then handle the others by stereographic projection.

Proof of Theorem 3.2 (Euclidean case):

(a) = (¢). This follows immediately from Theorem 2.1 and the
connectedness of the leaves of T,.

(a) = (b). We will give an outline of the proof, leaving details
to the reader. Assuming (a), let W be a coordinate patch of the
form ¢(U X V), where UC R, V C R~ such that each leaf of T} is
determined locally by {(u, v)|v = constant}.

We first assume that ) is a nonzero constant on each leaf which
passes through W. By a proper choice of & we may assume that
A >0 on W. Using the fact that (f;), annihilates T, and is injective
on T}, we ecan factor
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fl:W'__’ Ertt
through an immersion
p:V— E",

In addition, the real function » = 1/)» is well-defined on V, and one
can show that for x = ¢(u, v),

(3.2) (f(@) — p(w), ps(v)) = —r(@)(or),
for all ve T,V, and
(3.3) [f(@) — p(v)| = 7(v) .

Thus, for a particular value of v, f(x) lies on the circle determined
by intersecting the sphere indicated in (3.3) with the 2-plane indicated
in (3.2). Hence each leaf lies locally on a circle. By the connectedness
of the leaves, the whole leaf must lie on the same circle and thus
be a plane curve of constant curvature.

Finally, if v is a leaf of T, on which A = 0, one can choose an
inversion I of E"*' such that I(v) is a line of curvature of I(M) on
which the associated principal curvature is a nonzero constant. By
the above argument, I(v) lies on a circle so that v itself lies on a
circle or a straight line.

(b) = (a). This is easily shown using the Frenet equations for
plane curves.

Proof of Theorem 3.2 (non-Euclidean case): (a)<=(c). This follows
as in the Euclidean case from Theorem 2.1, the fact that f; is defined
at each x € U, and from the connectedness of the leaves.

(a) = (b). First one can easily show by explicit calculation that
the leaves of T, are plane curves of constant curvature in S**,
respectively, H**, if and only if P embeds the leavas of T, as plane
curves of constant curvature in E"*!, respectively, D*™., Here P is
stereographiec projection from any pole ¢, and (see Proposition 1.2)

p=e(n —<{gradog, §)),

for o as defined in 1.f, and for the appropriate choice of {, ). The
proof of the theorem will thus follow from the equivalence of (a)
and (b) in the Euclidean case, and from the following result.

PROPOSITION 3.4. Let M be hypersurface in S, respectively,
H*'. Suppose \ 18 a principal curvature of constant multiplicity
1 on M, and let X denote the field of unit principal vectors of N on
M. Let p =e¢°(\ — {grada, &) be the corresponding principal
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curvature on P(M) in E*, respectively, D**'. Then Xa=0at xc M
1f and only if X, =0 at z.

Proof. For M* in 8", and P:S"* — {q} — E™", stereographic
projection from the pole ¢, the function o is defined by the equation,

e =1 —<x, q).
A straightforward computation yields that,
grad o = ¢°(q¢ — {x, ¢)x) .
Thus, using the fact that {(x, £ = 0, one obtains,
p=e"(n —<e'q, ) =N —<q, &,
and
Xp = —e (Xo)\ + e7(X\) — (g, Ds&),

where D is the usual Euclidean connection on R**. Since (X, & =0,
it follows that D& = ;& where / is the Levi-Civita connection in
S*+', However, /& = —\X, s0o Dy& = —AX. This and the fact that,

Xo = {grado, X) =¢{q, X),
allow the above expression for Xu¢ to be written as,
Xp = —{g, XON + e7(X\) + {g, X)N = e7(X)),

and, clearly, Xy = 0 if and only if X = 0.
Similarly, for M in H"*', the equation,

e’ =1+ @,
implies,
grado = —e’'(q + (&, O)x) ,

and the result follows as in the spherical case.

As in the case of Theorem 3.1 for multiplicity v > 1, if one
assumes, in addition, that M is complete with respect to the induced
metric, then one can produce a natural manifold structure on fi,(M)
by introducing the space of leaves M; = U/T;, where U is the domain
of f;.

This case differs slightly from the vy > 1 case. As in the vy >1
situation, the completeness of M implies that each leaf of T} is also
complete with respect to the induced metric. This is sufficient to
guarantee that each leaf in M, is a covering space of the metric
circle on which it lies (see, for example, [7, vol. I, p. 176]). Since
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the circle is not simply connected, however, one cannot conclude that
the leaf itself is compact, as in the v > 1 case. However, using the
fact that each leaf is a covering of the circle on which it lies,
one can produce a direct argument that M; is Hausdorff, and we will
omit the proof here. Thus, one obtains the following global version
of Theorem 3.2.

THEOREM 3.3. Let M be an orientable (immersed) hypersuface
in M which is complete with respect to the induced metric. Let )
be a differentiable principal curvature of constant multiplicity 1
on M. Suppose the equivalent conditions (a), (b), (¢) of Theorem 3.2
are satisfied on the domain of fr. Then f, factors through an im-
mersion of the (m — 1)-dimensional manifold M, inmto M. In this
way, fi(M) is an immersed submanifold of M.

3.c. Example of hypersurfaces whose focal sets are manifolds.
There is a large class of hypersurfaces in S**' which have constant
principal curvatures. These are the so-called isoparametric hyper-
surfaces which have been studied by Cartan [2], Nomizu [10] Taka-
hashi and Takagi [15], Ozeki and Takeuchi [12], and Munzner [9].
Nomizu [10] showed that each sheet of the focal set of such a
hyersurface is a minimal submanifold of S™*.

Let M be a hypersurface in S*** with constant principal curvatures,
and let P denote stereographic projection from S*** to E"*' from
any pole g. Then by Propositions 1.2 and 3.4, the principal curvatures
of the hypersurface P(M) in E*" have constant multiplicities, and
they are constant along their corresponding principal foliations. Thus
each sheet of the focal set of P(M) is a manifold by Theorems 3.1
and 3.3.

Examples of hypersurfaces in H*** whose focal sets are manifolds
are now easily constructed. Let K be a hypersurface of E"™ as
constructed in the above paragraph. Let L be the image of K under
a contraction of E**' such that L is contained in the unit disk D~*!
centered at the origin in E"*'. Now, let P denote stereographic
projection from H"** onto D**' from the pole (0, ---, —1). Then
P~Y(L) is a hypersurface in H™" with the property that each sheet
of its focal set is a manifold.
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