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It is shown that if M = \β ^ is a square 2n X 2n matrix
over a ring R, such that AC = CA e JBnXn, and with the pro-
perty that A and C possess Drazin inverses, then M is
invertible in R2ny<2n if and only if DA-BC is invertible in

1* Introduction. In a recent paper [7], Her stein and Small
extended the classic result of Schur [5, p. 46] to matrices over i?-rings.
These are rings for which every primitive image is artinian. This

result states that for a square complex block matrix M = \ -n TΛ\,

with A, B, C, D square of the same size such that AC — CA, then M

is invertible exactly when Δ — DA — BC in invertible. This is a

different but equivalent formulation of the problem as stated in [7],
The purpose of this note is to show that this result by Schur

is basically a consequence of the local existence of the Drazin inverse
[2] of the matrices A and C; that is, the strong-ττ-regularity of A
and C [1] [4]. The proof of [7] was based on the fact that Schur's
result for matrices over iϊ-rings is really equivalent to the corres-
ponding result for matrices over simple artinian rings (which may
be taken to be division rings). Since artinian rings with unity are
noetherian [8], p. 69, it follows that artinian rings with unity are
strongly-π-regular, so that our local result extends the Schur theorem
for artinian rings as proven in [7].

The Drazin inverse ad of a ring element α, is the unique solution,
if any, to the equations

(1) akxa = ak, xax = x, ax = xa ,

for some k ^ 0, while the group inverse a% of a is the unique solution,
if any, of these equations with k — 0, or 1. For example, if a is
algebraic over some field ^ and an+1b — an, with ab = ba, then ad =

α»5»+iβ The element ad exists if and only if a is strongly-τr-regular,
that is, when both chains {aιR} and {Ra*} are ultimately stationary,
[5, Theorem 4]. A ring element is called (von Neumann) regular
if aa~a — a for some ring element a~. If there exists such a~ that
is invertible, a is called unit-regxύ&r.

We shall assume familiarity with the properties of these inverses
[4] [2] [6] and in particular with the fact that ac — ca=^ adc = cad

[4, Theorem 1].
It is known that, unlike regularity and unit regularity, R2X2 does
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not inherit strong-regularity from R [9] [11]. It is not known however,
whether the strong-77-regularity of R, or the related concept of finite
regularity (ab — 1 => ba = 1) is inherited by R2X2 [10].

We shall use the notation °S and S° to indicate the right and
left annihilators of S respectively, e.g.,

S° = {x e R; xs = 0, V s e S} .

For notational convenience we shall state our results in terms of
rings R with unity, with the translation to matrices over R, being
self evident. In particular aR + cR = R is equivalent to the 1 x 2
matrix [a, c] having a right inverse.

2* Preliminaries. The key to our main result are the following
two lemmas.

LEMMA 1. Let R be a ring with unity 1, and let e, f be com-
muting idempotents in R. If g = e + / ( I — e) then

(i) g2 = g, (ii) eR + fR = gR, (iii) Re + Rf = Rg, (iv) e° n f° =
g\ (v) °en°/ = °g, (vi) eR + fR = R<=>g = l<=>Re
p = (0) «VΠ°/ = (0) - (1 - e)(l - /) - 0.

LEMMA 2. Lei R be a ring with unity 1, αwd ϊeί α, c 6e com-
muting elements of R. Then

( i ) aR + ci? = R<=> amR + cnR = R for some m,n^l<=> amR +
cwi2 = R for all m, n ^ 1.

(ii) °α Π °c = (0) <=> °(αm) n \on) = (0) /or some m,n^l*=> \am) f]
\cn) = (0) for all m,n^l.

(iii) Ra + Re — R^ Ram + J?c% = R for some m,n^l<=> Ram +
Be* = J? for all m, n*zl.

(iv) α° Π c° = (0) <=> (αw)° n (cw)0 = (0) for some m,n^l*=> (αm)° Γt

(cnγ = (0) /or α Zί m,n^l.
If in addition, the Drazίn inverses ad and cd exists, these con-

ditions are all equivalent to
(v) (1 - aad)(l - ccd) = 0.

Proof. The proof of (i)-(iv) follows by induction. Now suppose
that ad and cd exist and that index (α) = k, index (c) = I. Then for
all m> k, amR = akR = αdi? = αdαi2. And so, taking m^ k, n^l,
we see that (i) is equivalent to

R = α m # + c%i2 = αλi? + cιR = adR + cdR = adaR + cdci2 ,

which by Lemma 1 is equivalent to

(3 ) (1 - aad)(l - ccd) = 0 .
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Left-right symmetry now shows that (iii) is also equivalent to (v).
Lastly, since for m ^ fc, (αw)° = (αfe)° = (αd)° = (ada)\ it follows that
with m^k, n^l, (iv) is equivalent to (ada)° Π (cdc)° = (0), which again
by Lemma 1 is equivalent to (v). Symmetry again yields the remaining
equivalence.

Before proceeding with our theorem we remark that:
1. It is not necessary for ad and cd to exist in order for

Ra + Re - R <===> a°f]c° = (0)

to be valid. It would suffice if a, c and e(l — a~a) were regular.
2. The equivalence of (iv) and (v) has uses in the theory of

differential equations, [2] Lemma 1. The above furnishes a short
and purely algebraic proof of this useful result.

3* Main results*

Va G~\
THEOREM 1. Let Rbe a ring with unity 1 and let M — \ h , e

[_o a_\
R2X2 with ac = ca. Suppose further that ad and [(1 — aad)c]d exist.
If Δ = da — be, then:

( i ) Δ is left invertible <=> M is left invertible.
(ii) M is right invertible *=> Δ is right invertible.
(iii) M is invertible <=* Δ is invertible.

( 4 )

Proof. Consider the matrix

a u~] \ a c
N =

b d\\θ

where u = (1 — aad)c and z = d — badc. Since α, ad and c commute
it follows that

( 5 ) za — bu •= (d — badc)a — 6(1 — aad)c — da — be — Δ .

Now because adu = 0 = uα^ = αd/^d = udad

f we may construct the
matrices:

(6)

and

( 7 )
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In general however, aud Φ 0 unless index (a) ^ 1. Suppose now that
A has a left inverse A~, then by (5),

( 8) R = Ra + Re = Ra + Ru .

By Lemma 2, applid to a and u, we see that

(1 - aad)(l - uud) = 0

or equivalently

( 9 ) aad + uud = 1 .

H e n c e , b y (7), i t fo l lows t h a t t h e m a t r i x P =\a

d ~~u i s i n v e r t i b l e .

N o w s i n c e

1 0

-Δ~t Δ-

1 0"

t Δ

1 0

0 1

it follows that M has a left inverse M and that

R = Ra + Rb = Re + Rd .

If in addition AA~ — 1, then

"1 (Γ

t Δ
- I
~ 2

and consequently M is also invertible.
Conversely, suppose that MM' = I. Then because iV also has a

right inverse, it follows that

aR + uR = R .

Again by Lemma 2, applied to a and u, we may conclude that (9) holds

so that P is invertible. Hence T = . J has a right inverse Γ~ =

o g . Now TT~ = /=>7 = 0=>Jδ = l, and so zί has a right inverse.

If in addition, M~~M — J, then T~T — I and hence again as 7 = 0,

δJ = 1, completing the proof.

COROLLARY 1. If R is a ring with unity and M — ? -, e i22x2

wίίfe ac = cα ŝ cfe ί/̂ αί αd α r̂f cd exisί, ίfee^ M is invertible if and

only if A — da — be is invertible.

Proof. Note that ae — ea implies that aadc = eaad, so that ud —
(1 — aad)ed. Again because square matrices over artinian ring with
unity possess Drazin inverses, this result includes the second part
of Theorem 2 of [7].
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COROLLARY 2. Let R be a ring with unity 1, and let a, ceR
such that ac = ca and ad, [(1 — aad)c]d exist. Then if R — Ra + Re

there exists deR so that \ a , is invertible.

Proof. From Theorem 1, it suffices to select deR such that Δ =
da — c2 is invertible. One such choice is given by d = ad + cV, because
then J = ααd — u2 which has inverse aad — udud. Indeed, if R =
ϋ!α + i?c = Ra + j?w, then aad + ww* = 1 which coupled with the fact
adud = 0, yields the desired result.

We conclude this note with several remarks.
1. If α# exists we could also select d = a + c2a* in the last corollary,

for then Δ = a2 — u2 has as inverse (α*)2 — uud since now au = 0.
Moreover, in this case

1 Γl - α V l Γ α udΊΓ 1 0"

~~ LO 1 J L ^ α J L - c α 1
a c
c a + c2a

ud - c(a*)2 α*

2. The fact that: "If ac = cα, and αd, ud exist, then R = Ra + Rc
ensures that ada + udu = l", should be compared with the corresponding
results for Moore-Penrose inverses [6]. Namely, if af and v1 =
[c(l — dta)Y exists, then

R = Ra + Re = > 1 = ara + tfv .

3. If a is ^^ΐί-regular, that is αα=α = a for some unit α=, then
under suitable conditions aR + cR ~ R => Ra + Re = R. Indeed if
u = (1 — aa=)c is regular and c# exists, then

aR + cR — R ===> αα= + (1 — α=)cu~(l — αα=) = 1 .

Thus αα=[(l — αα"cu~(l — αα=] + cu~(l — aa=) = 1, which on multiply-
ing through by

yields:

a + c£ = p = unit, where t = t6~(l — αα=)(α==)~1 .

Now if in addition, ac = cα α^cί α=c = cα= then we may take u~ =
Hence

α + (1 — αα=)(α=)~1c% = p

implying that Ra + Re = J?.
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4. It is now clear how to extend this to the following: If ak is
unit regular for some k ^ 1, say a\ak)=ak — ak, where (αA)= is a unit,
and if cd exist, such that ccd commutes with ak(ak)= and (ak)= then

R = aR + cR ==> R = Ra + Re .

The case where ad exists and ac — ca easily follows from this example
because then (akY exist, for some k ^ 1 and one may then take (akT =
(akγ + (1 - aad).
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Ryōtarō Satō, Contraction semigroups in Lebesgue space . . . . . . . . . . . . . . . . . 251
Tord Sjödin, Capacities of compact sets in linear subspaces of Rn . . . . . . . . . 261
Robert Jeffrey Zimmer, Uniform subgroups and ergodic actions of

exponential Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Pacific
JournalofM

athem
atics

1978
Vol.78,N

o.1

http://dx.doi.org/10.2140/pjm.1978.78.1
http://dx.doi.org/10.2140/pjm.1978.78.1
http://dx.doi.org/10.2140/pjm.1978.78.11
http://dx.doi.org/10.2140/pjm.1978.78.11
http://dx.doi.org/10.2140/pjm.1978.78.27
http://dx.doi.org/10.2140/pjm.1978.78.41
http://dx.doi.org/10.2140/pjm.1978.78.47
http://dx.doi.org/10.2140/pjm.1978.78.61
http://dx.doi.org/10.2140/pjm.1978.78.61
http://dx.doi.org/10.2140/pjm.1978.78.89
http://dx.doi.org/10.2140/pjm.1978.78.89
http://dx.doi.org/10.2140/pjm.1978.78.95
http://dx.doi.org/10.2140/pjm.1978.78.117
http://dx.doi.org/10.2140/pjm.1978.78.117
http://dx.doi.org/10.2140/pjm.1978.78.121
http://dx.doi.org/10.2140/pjm.1978.78.121
http://dx.doi.org/10.2140/pjm.1978.78.139
http://dx.doi.org/10.2140/pjm.1978.78.139
http://dx.doi.org/10.2140/pjm.1978.78.149
http://dx.doi.org/10.2140/pjm.1978.78.149
http://dx.doi.org/10.2140/pjm.1978.78.157
http://dx.doi.org/10.2140/pjm.1978.78.157
http://dx.doi.org/10.2140/pjm.1978.78.161
http://dx.doi.org/10.2140/pjm.1978.78.173
http://dx.doi.org/10.2140/pjm.1978.78.173
http://dx.doi.org/10.2140/pjm.1978.78.191
http://dx.doi.org/10.2140/pjm.1978.78.191
http://dx.doi.org/10.2140/pjm.1978.78.233
http://dx.doi.org/10.2140/pjm.1978.78.241
http://dx.doi.org/10.2140/pjm.1978.78.241
http://dx.doi.org/10.2140/pjm.1978.78.243
http://dx.doi.org/10.2140/pjm.1978.78.251
http://dx.doi.org/10.2140/pjm.1978.78.261
http://dx.doi.org/10.2140/pjm.1978.78.267
http://dx.doi.org/10.2140/pjm.1978.78.267

	
	
	

