THE PETERSSON INNER PRODUCT AND THE RESIDUE OF AN EULER PRODUCT

CARLOS MORENO
THE PETERSSON INNER PRODUCT AND THE RESIDUE OF AN EULER PRODUCT

CARLOS JULIO MORENO

1. Introduction. Implicit in the work of Rankin [6] and explicit in the work of Petersson [5] is a formula connecting the Petersson inner product of two holomorphic modular forms with a residue of the Dirichlet series formed with the products of the Fourier coefficients of the two modular forms. In view of the modern group theoretic interpretation of the eigenfunctions of the Hecke operators as unitary representations of an adele group, it appears that the ideas of Rankin and Petersson may have wider applicability; for example they may relate to multiplicity-one problems in the theory of automorphic representations. The purpose of this note is to extend these ideas to real analytic modular forms.

In §2 we recall the results of Petersson and Rankin and show (see Theorem 1) how the residue at $s = 1$ of a certain Euler product can be used to distinguish whether two eigenfunctions of the Hecke operators are orthogonal or not. In §3 we describe the essential nature of the method and derive (see Theorem 2) a formula which expresses the Petersson inner product of two real analytic cusp forms which are eigenfunctions of the Hecke operators as the residue at $s = 1$ of an Euler product.

2. Holomorphic cusp forms. Let H be the upper half plane and Let Γ be the group of linear fractional transformations of $H: z \mapsto \sigma(z) = (az + b)/(cz + d)$, with $a, b, c, d \in \mathbb{Z}$ and $ad - bc = 1$. Let $d\Omega = y^{-2}xdy$ be the SL$(2, \mathbb{R})$-invariant measure of H. Let k be a positive integer and let

$$f(z) = \sum_{n=1}^{\infty} a(n)q^n, \quad g(z) = \sum_{n=1}^{\infty} b(n)q^n, \quad q = \exp(2\pi iz)$$

be two holomorphic cusp forms of weight k on the group Γ; let p be a prime and suppose that $f(z)$ and $g(z)$ are eigenfunctions of the Hecke operator T_p:

$$(f \mid T_p)(z) = \sum_{n=1}^{\infty} a(np)q^n + p^{k-1} \sum_{n=1}^{\infty} a(n)q^{np} = a(p)f(z);$$

with a similar formula for $g(z)$. A particular case of Petersson's formula (Theorem 6, [4]) is the following.
$$\langle f, g \rangle = \int_{D(\Gamma)} f(z) \overline{g(z)} y^k d\Omega$$
$$= \frac{\pi}{3} \Gamma(k)(4\pi)^{-k} \operatorname{Res}_{s=1} L_{f,g}(s) ,$$

were

$$L_{f,g}(s) = \sum_{n=1}^{\infty} a(n)b(n)n^{-(s+k-1)}, \operatorname{Re}(s) > 1 .$$

If we use the multiplicativity of the coefficients $a(n), b(n)$ and the duplication formula for the gamma function, then Petersson's equality can be rewritten in the form

$$\langle f, g \rangle = 2^{-k} \operatorname{Res}_{s=1} L(s, \pi_f \times \pi_g) ,$$

where

$$2(4\pi)^{-(s+k-1)} \pi^{-s} \Gamma(s+k-1) \zeta(2s) \sum_{n=1}^{\infty} a(n)b(n)n^{-(s+k-1)}$$
$$= 2^{-k} L(s, \pi_f \times \pi_g)$$
$$= 2^{-k} \Gamma(s, \pi_f \times \pi_g) \zeta(s, \pi_f \times \pi_g)$$

and

$$\Gamma(s, \pi_f \times \pi_g) = G_R(s)G_R(s+1)G_R(s+k-1)G_R(s+k), G_R(s)$$
$$= \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) ,$$

$$\zeta(s, \pi_f \times \pi_g)$$
$$= \prod_p \frac{1}{(1-\lambda_p\bar{\lambda}_p p^{-s})(1-\lambda_p\bar{\lambda}_p p^{-s})(1-\bar{\lambda}_p\lambda_p p^{-s})(1-\bar{\lambda}_p\lambda_p p^{-s})} ,$$

$$a(p) = p^{(k-1)/2}(\lambda_p + \bar{\lambda}_p), b(p) = p^{(k-1)/2}(\bar{\lambda}_p + \lambda_p) .$$

REMARK. The Euler product $L(s, \pi_f \times \pi_g)$ is related to those introduced by Langlands ([2], p. 10).

With the above notations we can restate Petersson's result in the following form

Theorem 1. Let $f(z)$ and $g(z)$ be cusp forms of weight k on the full modular group Γ which are eigenfunctions of all the Hecke operators. Then $f(z)$ is orthogonal to $g(z)$ if and only if the Euler product

$$L(s, \pi_f \times \pi_g) = \Gamma(s, \pi_f \times \pi_g) \zeta(s, \pi_f \times \pi_g)$$

is regular at $s = 1$.
3. Real analytic cusp forms. Let $f(z)$ and $g(z)$ be two real analytic cusp forms in the sense of Maass [4]. Let

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

be the Laplace-Beltrami operator for the upper half plane and suppose that

$$\Delta f = \frac{1 - \lambda^2}{2} f, \quad \Delta g = \frac{1 - \gamma^2}{2} g.$$

Observe that because of the positivity of the Laplace-Beltrami operator the nonzero numbers λ and γ must lie in the imaginary axis or in the interval between -1 and 1. Suppose that $f(z)$ and $g(z)$ have Fourier expansions about the cusp at infinity of the form, $z = x + iy$,

$$f(z) = \sum_{m \neq 0} a(m) y^{1/2} K_\lambda(2\pi |m| y) \exp (2\pi imx), \quad a(1) = 1,$$
$$g(z) = \sum_{n \neq 0} b(n) y^{1/2} K_\gamma(2\pi |n| y) \exp (2\pi inx), \quad b(1) = 1,$$

where $K_\lambda(z)$ is the modified Bessel function. If $f(z)$ is an eigenfunction of the Hecke operators then Maass ([4], Theorem 12) has proved that

$$\sum_{n=1}^{\infty} a(n)n^{-s} = \prod_p \frac{1}{1 - a(p)p^{-s} + p^{-2}};$$

similarly for $g(z)$. To simplify our notation we suppose that $f(-z) = f(z)$ and $g(-z) = g(z)$. For $\Re(s) > 1$ we have the Euler product identity

$$\Gamma(s + \lambda + \gamma) \Gamma\left(\frac{s + \lambda + \gamma}{2}\right) \Gamma\left(\frac{s - \lambda - \gamma}{2}\right) \Gamma\left(\frac{s - \lambda - \gamma}{2}\right)$$

\begin{align*}
&\times \sum_{n \neq 0} a(n)b(n)n^{-s} \\
&= \frac{\Gamma(s, \pi_f \times \pi_g)\zeta(s, \pi_f \times \pi_g)}{\Lambda(2s)} \\
&= \frac{L(s, \pi_f \times \pi_g)}{\Lambda(2s)},
\end{align*}

where

$$\Gamma(s, \pi_f \times \pi_g) = G_R(s + \lambda + \gamma)G_R(s + \lambda - \gamma)G_R(s - \lambda + \gamma)G_R(s - \lambda - \gamma),$$
$$\zeta(s, \pi_f \times \pi_g) = \prod_p \frac{1}{(1 - \lambda_p \gamma_p p^{-s})(1 - \lambda_p^\circ \gamma_p^\circ p^{-s})(1 - \lambda_p^\circ \gamma_p p^{-s})(1 - \lambda_p^\circ \gamma_p^\circ p^{-s})},$$
$$a(p) = \lambda_p + \lambda_p^\circ, \quad b(p) = \gamma_p + \gamma_p^\circ, \quad \lambda_p \lambda_p^\circ = \gamma_p \gamma_p^\circ = 1,$$

and $\Lambda(s) = G_R(s)\zeta(s)$. This equality follows from the formal power
series identity
\[\sum_{p=0}^{\infty} a(p^s)b(p^s)T^s = \frac{1 - T^2}{(1 - \lambda_p^0 T)(1 - \lambda_p^0 T')(1 - \lambda_p^0 T'(1 - \lambda_p T))} \]

With these notations we have the following result.

Theorem 2. Let \(f(z) \) and \(g(z) \) be two real analytic cusp forms on the full modular group \(\Gamma \) which are eigenfunctions of all Hecke operators. Let \(L(s, \pi_f \times \pi_g) \) be the Euler product introduced above. Then we have

\[
\langle f, g \rangle = \frac{1}{2} \text{Res}_{s=1} L(s, \pi_f \times \pi_g).
\]

In particular \(f \) and \(g \) are orthogonal if and only if \(L(s, \pi_f \times \pi_g) \) is regular at \(s = 1 \).

Proof. Let

\[S_\Gamma = \{ z = x + iy : |x| \leq \frac{1}{2}, y \geq 0 \} \]

Let \(\Gamma_\infty = \{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \} \) and let \(D(\Gamma) \) be a fundamental domain for \(\Gamma \) in \(H \). We then have the formal congruence identity

\[(*) \quad S_\Gamma \equiv \sum_{\sigma \in \Gamma \backslash \Gamma_\infty} \sigma D(\Gamma) . \]

Now for \(\text{Re}(s) \) sufficiently large we have

\[
\int_{S_\Gamma} f(z)\overline{g(z)}y^s d\Omega \\
= \int_0^\infty \left(\int_{-1/2}^{1/2} f(z)\overline{g(z)} dx \right) y^{s-2} dy \\
= \int_0^\infty \left(\sum_m \sum_n a(m)\overline{b(n)} K_2(2\pi|m|y)K_2(2\pi|n|y) \int_{-1/2}^{1/2} e^{2\pi i z(m-n)} dx \right) y^{s-1} dy \\
= \sum_m \sum_n a(m)\overline{b(n)} \left(\int_0^\infty K_2(2\pi|m|y)K_2(2\pi|m|y)y^{s-1} dy \right) .
\]

The interchange of the order of summation and integration is justified by the fact that uniformly in \(x \) both \(f(z) \) and \(g(z) \) are \(O(y^A) \) (resp. \(O(y^-N) \)) when \(y \to \infty \) (resp. \(y \to \infty \)) for some positive constants \(A \) and \(B \).

We now use the well known identity ([3], p 102)

\[
\int_0^\infty K_2(2\pi |m|y)K_2(2\pi |m|y)y^{s-1} dy \\
= \frac{\alpha^{s-1}}{2^{s+2} \Gamma(1 - \zeta)}
\]
\begin{align*}
\times \Gamma\left(\frac{1 - \zeta + \mu + \nu}{2}\right) \Gamma\left(\frac{1 - \zeta + \mu - \nu}{2}\right) \Gamma\left(\frac{1 - \zeta - \mu + \nu}{2}\right) \\
\times \Gamma\left(\frac{1 - \zeta - \mu - \nu}{2}\right)
\end{align*}

which is valid for \(\text{Re}(\alpha) > 0\) and \(\text{Re}(1 - \zeta \pm \mu \pm \nu) > 0\). We apply this identity with \(\alpha = 2\pi ny\) and \(\zeta = 1 - s\) to obtain

\[
\int_{S} f(z) \overline{g(z)} y^{s} d\Omega = \frac{\pi^{-s}}{8\Gamma(s)} \Gamma\left(\frac{s + \lambda + \eta}{2}\right) \Gamma\left(\frac{s + \lambda - \eta}{2}\right) \Gamma\left(\frac{s - \lambda + \eta}{2}\right) \\
\times \Gamma\left(\frac{s - \lambda - \eta}{2}\right) \sum_{m \neq 0} a(m) b(m) m^{-s}
\]

\[
= \frac{\pi^{-s}}{4\Gamma(s)} \Gamma\left(\frac{s + \lambda + \eta}{2}\right) \Gamma\left(\frac{s + \lambda - \eta}{2}\right) \Gamma\left(\frac{s - \lambda + \eta}{2}\right) \\
\times \Gamma\left(\frac{s - \lambda - \eta}{2}\right) \sum_{m = 1}^{\infty} a(m) b(m) m^{-s}
\]

\[
= \frac{L(s, \pi_f \times \pi_g)}{4\Lambda(2s)} .
\]

We now use the congruence identity (*) for the region \(S_r\) to obtain

\[
\int_{S} f(z) \overline{g(z)} y^{s} d\Omega = \sum_{\sigma \in \Gamma \backslash \Gamma_{\infty}} \int_{D(\Gamma)} f(z) \overline{g(z)} y^{s} d\Omega \circ \sigma .
\]

By the automorphy property of \(f(z)\) and \(g(z)\) we get

\[
f(z) \overline{g(z)} y^{s} d\Omega \circ \sigma = f(z) \overline{g(z)} (\text{Im} \sigma(z))^{s} d\Omega ,
\]

and therefore

\[
\frac{L(s, \pi_f \times \pi_g)}{4\Lambda(2s)} = \int_{D(\Gamma)} f(z) \overline{g(z)} E(z, 2s - 1) d\Omega ,
\]

where

\[
E(z, s) = \sum_{\sigma \in \Gamma \backslash \Gamma_{\infty}} (\text{Im} \sigma(z))^{(1+s)/2}
\]

is the well known Eisenstein series associated to \(\Gamma\). The Fourier expansion of \(E(z, s)\) is ([1], p. 46)

\[
E(z, s) = y^{(1+s)/2} + \frac{\Lambda(s)}{\Lambda(s + 1)} y^{(1-s)/2} \\
+ \sum_{m \neq 0} \frac{2}{\Lambda(s + 1)} \frac{\sigma_{\text{st}(|m|)} y^{1/2} K_{s/4}(2\pi |m| y)}{|m|^{s/2}} e^{2\pi izmz} .
\]
and the only poles of the summation term are those arising from the zeros of Riemann's Euler product \(\Lambda(s + 1) \). Hence the only pole of \(E(z, s) \) at \(s = 1 \) comes from the numerator in the expression \(\Lambda(s)/\Lambda(s + 1)y^{(1+s)/2} \). In fact a well known application of the Kronecker limit formula gives the Laurent expansion in a small neighborhood of \(s = 1 \)

\[
E(z, 2s - 1) = \frac{3}{\pi} \frac{1}{s - 1} + \frac{6}{\pi} (c - \log 2) - \frac{1}{2\pi} \log (y^s |\Lambda(z)|) + \sum_{n=1}^{\infty} c(n)(s - 1)^n,
\]

were

\[
\Lambda(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.
\]

In particular it should be observed that the residue of \(E(z, s) \) at \(s = 1 \) is independent of \(z \). Therefore we have

\[
\text{Res}_{s=1} \int_{D(\Gamma)} f(z) \overline{g(z)} E(z, 2s - 1) d\Omega = \left(\int_{D(\Gamma)} f(z) \overline{g(z)} d\Omega \right) \text{ Res}_{s=1} E(z, 2s - 1) = \frac{3}{\pi} \langle f, g \rangle.
\]

On the other hand

\[
\text{Res}_{s=1} \frac{L(s, \pi_f \times \pi_g)}{4\Lambda(2s)} = \frac{3}{2\pi} \text{ Res}_{s=1} L(s, \pi_f \times \pi_g).
\]

This completes the proof of Theorem 2.

Remark 1. The functional equation for the Eisenstein series

\[
E(z, s) = \frac{\Lambda(s)}{\Lambda(s + 1)} E(z, -s)
\]

leads to the functional equation

\[
L\left(\frac{1+s}{2}, \pi_f \times \pi_g\right) = L\left(\frac{1-s}{2}, \pi_f \times \pi_g\right).
\]

2. The residue of \(L(s, \pi_f \times \pi_g) \) at \(s = 1 \) can be thought of as an intertwining operator.
3. In [7], Shimura has used the connection between the Petersson inner product and \(L\)-series to study the arithmetic properties of the periods of Eichler differentials.

REFERENCES

Received February 15, 1978.

UNIVERSITY OF ILLINOIS
URBANA, IL 61801
Simeon M. Berman, *A class of isotropic distributions in \mathbb{R}^n and their characteristic functions* .. 1
Ezra Brown and Charles John Parry, *The 2-class group of biquadratic fields. II* .. 11
Thomas E. Cecil and Patrick J. Ryan, *Focal sets of submanifolds* 27
Joseph A. Cima and James Warren Roberts, *Denting points in B^p* 41
Thomas W. Cusick, *Integer multiples of periodic continued fractions* 47
Robert D. Davis, *The factors of the ramification sequence of a class of wildly ramified ν-rings* .. 61
Robert Martin Ephraim, *Multiplicative linear functionals of Stein algebras* ... 89
Philip Joel Feinsilver, *Operator calculus* .. 95
David Andrew Gay and William Yslas Vélez, *On the degree of the splitting field of an irreducible binomial* ... 117
Robert William Gilmer, Jr. and William James Heinzer, *On the divisors of monic polynomials over a commutative ring* 121
Robert E. Hartwig, *Schur's theorem and the Drazin inverse* 133
Hugh M. Hilden, *Embeddings and branched covering spaces for three and four dimensional manifolds* ... 139
Carlos Moreno, *The Petersson inner product and the residue of an Euler product* ... 149
Christopher Lloyd Morgan, *On relations for representations of finite groups* ... 157
Ira J. Papick, *Finite type extensions and coherence* 161
R. Michael Range, *The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains* 173
Donald Michael Redmond, *Mean value theorems for a class of Dirichlet series* ... 191
Daniel Reich, *Partitioning integers using a finitely generated semigroup* 233
Georg Johann Rieger, *Remark on a paper of Stux concerning squarefree numbers in non-linear sequences* ... 241
Gerhard Rosenberger, *Alternierende Produkte in freien Gruppen* 243
Ryōtarō Satō, *Contraction semigroups in Lebesgue space* 251
Tord Sjödin, *Capacities of compact sets in linear subspaces of \mathbb{R}^n* 261
Robert Jeffrey Zimmer, *Uniform subgroups and ergodic actions of exponential Lie groups* .. 267