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Denoting by I' the semigroup of positive integers gen-
erated by two fixed primes, let r.(N) be the number of
partitions of N as a sum of % elements of I'. Our main
result is that »,(N) is a bounded function of N. Incidentally,
we obtain an estimate of the number of distinct prime divisors
of numbers of the form 1+ ¢*. Boundedness of 7,(N) would re-
solve an approximation theoretic conjecture of D. J. Newman.

Let I be a finitely generated semigroup of positive integers.
For a positive integer N, let r,(N) be the number of partitions of
N into k parts from I". Donald J. Newman has asked the following
question:

Is r.(N) a bounded function of N, for all k?

This question arose in the context of a general problem of approx-
imation theory; that is, the determination of when, for a given
function f(z), the functions {f(kx)}i=>. generate a dense subspace E;
of some function space. This problem has been considered by Neuwirth,
Ginsberg and Newman in [3] for f(x) a trigonometric polynomial.
In his report to the Canterbury conference on complex analysis ([4],
1973), Newman stated a conjecture: Let f(2) =2z + .2 + -+« + a,2"
(here z = ¢). To f(z) we associate a “Dirichlet polynomial”

D(s) =1+ a,/2° + +++ + a,/n°.

Then E; is dense in L?(1 £ p < o) if and only if D(s) has no zeros
in Res> 0, and E; is dense in L~ if and only if D(s) is bounded
away from zero in Res > 0. Newman asserts that the settling of
this conjecture for p < « depends on making a connection between
norms in the z and s variables, and that this connection can be made
according to a classical result of Szidon, if the above number theoretic
question has an affirmative answer.

In this paper we shall consider the simplest case of the question,
when I' is generated by two primes, and k= 2. A complete proof
of Newman’s conjecture for the corresponding f(z) would require a
proof for this I', for all k.

Let p, q be distinet primes; we shall denote by I the multiplicative
semigroup of nonnegative integers generated by {0, p, q}. For any
integer N, let 7,(N) denote the number of representations

N=a+ 8 (e, Bel).
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Our purpose is to prove:
THEOREM 1. 7,(N) s bounded.

We shall show in fact that »,(N) £ 5. This is merely the estimate
that falls readily out of the proof, not necessarily the best possible
one.

We begin with two simple observations, whose proofs are included
for the convenience of the reader. In what follows, Z denotes the
integers, and ord, denotes the standard valuation, order of divisibility
by ».

LemMA 1. (1 + ¢®|@A + g™ +f and only if m = An, with \ odd.

Proof. Let m = an + r, with 0 < » < n. For an indeterminate
Y, we may write

Py, if A is odd

A+ 9/ +y) = Q) +2/(y +1), if A is even

with P(y), Q(y) € Z[y].
Set f(x) = (x™ + 1)/(z" + 1). Then

flx) = (@™ + Dfa* + 1) + @ — a")/(x* + 1) .
If \ is odd,
f(@) = 2"P(z") — (@ — D)(z" + 1) ;
thus
f(g) = integer — (¢" — D/(¢" + 1)

and so f(q) is an integer if and only if » = 0.
If »\ is even,

flx) = 27(Q(a™) + 2/(z* + 1)) + (L — 2)/(x" + 1)
=2"Q(x™) + 1 + 2")/(1 + 2*) .

Thus
f(g) = integer + (1 + ¢")/(L + ¢

and so cannot be an integer.

LEMMA 2. Let p be an odd prime. Suppose for integers g, » > 1,
and r, s =1, we have
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r=ord, {1+ ¢

1
(1) r+s=ord, 1+ ¢").

Then ord, » = s.

Proof. Write 1 + ¢ = p"K, with (p, K) = 1. Then
¢ = (—=1+ p"K)

2 N
= —1+4+Ap"K — Zz(—l)”<v>p”K” .

Thus

14+ ¢ =p KW+ \),
where
(2) V=3 (—1>”<7;)pw10-1 :

It now follows from equation (1) that ord, (» + \') = s. From equation
(2) we obtain

. s
ord, M = mm{'r(v — 1) + ord, ( )} .
v2 Y
We now show that for each v = 2,

N
ord, » < r(v — 1) + ordp<v> .

First, write

and we obtain
P
ord, » — ord, v < ord, <”) .

But for y= 2, ord,y <y — 1 (since p > 2, so p* >z + 1 for x = 1),
and this does it.
It now follows that

ord, » < ord, N,
and thus
ord, » =ord, M +N)=s.
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An immediate consequence of Lemma 2 provides the key step in
our proof of Theorem 1:

LeEMMA 3. Let p, g be positive integers, with pa prime and etther
p#3o0rq#2. For Ne Z, with (p, N)=1, the simultaneous equations

3
( ) pr+sN — 1 + qm

have no solutions in integers r, s, m, m = 1.
Proof. Suppose we are given a solution (7, s, n, m) to (3). Ac-
cording to Lemma 1, we may write
m=xn, rodd.
Consider first the case p > 2. According to Lemma 2, ord, A = s; set
A= pl
m = pln,
where [ is odd. From equation (3) we obtain

p° =1+ ¢"")/1 + q")
— q(psl—l)n - q(psl—2)n 4 eee ok 1
> qps-z
>p°.

(*)

This last step follows from the inequality
qz—z > T s
which is valid under either of the following circumstances:

qg>38 and x2=3
g=2 and z=5.

This covers all present cases, and the contradiction completes the
proof for p > 2.
To dispose of p = 2, we observe that from equation (3),

2=1+¢H/A+qm
=n+ N

with A defined as in equation (2) of Lemma 2. Here A\ is clearly
even, and ) is odd; thus s = 0.

As an interesting consequence of Lemma 3 we obtain an estimate
of the number of primes dividing numbers of the form 1 + ¢*. We
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denote by @(N) the number of distinct prime divisors of N, and by
Q(N) the total number of prime divisors.

COROLLARY. Given integers q, n such that m is odd, and either

qg+2or 3,n)=1, we have
ol +gm) = 2n) + o +¢q) .t

Proof. Write n = [[i-; p;, With {»,} odd primes, not necessarily

distinet, and » = 2(n). Let ¢, = ¢, and for 1 <5< 7,
q; = (g;-)% .
The result will follow once we prove
oltg)zol+g)+1, A=si=7).

Dropping the subscripts, we must show that for p an odd prime,
ol+¢)=zwld +q) +1. Let {m,---, 7,} be the distinet primes
dividing 1 + ¢q. Since p is odd we may write

1+¢=M1+9q),

with M an integer. Suppose for some y, 7,|M; then, according to
Lemma 2, we have x,|p and thus w, = p. Now write M = p*M’ with
(M',1+ q)=1. Lemma 3 assures us that M’ = 1, and thus 1 + ¢*
is divisible by at least one prime not dividing 1 + q.

Note that for ¢ = 2 and n = 3k we now obtain

ol + 2% = ol + 8= 2%k +1;

similarly, if » is even we can obtain a bound by setting n = 2/,
with n’ odd, and replacing » by »’ and ¢ by ¢*'.
C. Gurwood has proven a result very closely related to Lemma 3

{2}
LEMMA (Gurwood). The equation
(m* + )n® = m°® + 1
has mo solutions in integers a, ¢ > 0 and b, m, n > 1.
This result is better than Lemma 3, but does not include it

because of the restriction b > 1.
We now proceed to the main result:
1 I would like to thank the referee for pointing out that E. Artin derived similar

results about numbers of the form ¢™ — 1 in his discussion of coincidences among orders
of the finite linear groups (see [1]).



238 DANIEL REICH
THEOREM 1. 7,(N) < 5.

Proof. Assume to begin with that p == 2, ¢ = 2.

Case (i). (p, N)=(q, N) = 1.
Suppose we are given a representation

(4) N=a+ 8

with @, BeI’. Then a and B cannot both be divisible by p or by gq.

Say »ta:
(a) Suppose gt a. Then @ =1, and (4) reads:

N=1+§8.

But then B is determined by N; i.e., there is at most one such
representation.
(b) Suppose gt B. Then (4) reads:

N=g¢"+p.
Here one of the two conditions

N2< ¢ <N
N2 <p"< N

must be satisfied. Thus (a, b)) have at most two possible values.
Combining (a) and (b), we have

r(N)=3.
Case (ii). p|N, (¢, N) = 1.
Suppose first N¢ I'. Then in all representations (4), a8 = 0.

Write N = p"N’, with (p, N') = 1, a = p*, and 8 = ¢°pt. Equation
(4) now takes the form

(5) p'N' = p* + ¢*p’ .

We now note that multiplication by p~ provides a one-to-one corre-
spondence between the set of such representations of N with s=»,t=7r,
and the set of all representations of N’; that is,

(6) % {representations of N with s, ¢ = 7} = r(N).

It follows from (5) that = = min{s, ¢}, and = min{s, t} if s == ¢.
Thus the left side of (6) includes all representations of N with s = ¢;
and we have

(7) #{representations of N with st or s =t = r} = r(N') .
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Now suppose we have a representation (5) with s =t <. Then we
have

(8) PN =14

Since p # 2, we can conclude a = 1. According to Lemma 3, s and
a are then determined by N;i.e., there is at most one such repre-
sentation. Thus equation (7) yields

r(N)Sr(N)+ 1= 4.

Now suppose NeI'; then N = p*, and since p is odd, r(N) = 1.
Thus in case (ii),

r(N)= 4.

Case (iii): ¢|N, (p, N) = L.
As for case (ii), 7(N) < 4.

Case (iv): pq|N.
Let N=9p"N’, with p /Y N’ and ¢|N’. Given a representation (4), write
a — psqd
B =pq.
As before, we may use (7) to count representations with s # ¢, or

s=t=1v. Now suppose s =t < . Then since p * 2, we know a = b;
say b >a =0. Setting N’ = ¢* + ¢, we have

N=p'N'=p"N'.
Writing u =7 — s,¢=b — a, then v > 0,¢ > 0 and
N"=p*N' =q“(1 + ¢q°) .
Now, setting N = N'/q°,
(**) p*N" =14 ¢q°.

Here ¢ = ord, N, » = ord, N, and N’ = N/p"q* are all determined by
N, and so applying Lemma 3 to (**), w is also determined. That is,
there is at most one such representation of N. Combining this with
(7) and the result of case (iii), we obtain:

T(N)=n(N)+1=5.

This completes the proof of the theorem for p, ¢ odd.

The same reasoning goes through for p = 2, ¢ = 5, or vice versa,
with one minor modification. In case (ii), we cannot exclude a = 0
in equation (8). But if there is such a representation of N with
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a = 0, it is unique; and since 7 > s, N = 2". Consequently N’ =1,
7{(N") =1 and 7,(N) < 3. Case (iv) requires no change, since if
p = 2 we can interchange the roles of » and q.

For {g, p} = {2, 3}, we must modify Lemma 3 as follows:

LEMMA 8. The equations
FN=1+2"

9
(9) TN =1+ 2"

have exactly one solution with r > 0, s > 0; namely r = s = N=mn =
1, m = 3.

Proof. The argument given for Lemma 3 is applicable up to
(*). Thus, given a solution to (9), we have

38 > 233*‘2
and so s = 1. Applying this to (9), we have
1+2m/@A+27) =23,

from which it easily follows that n = 1, m = 3, and thus N =1, r=1.
We now indicate the changes that have to be made in the proof
of Theorem 1 when ¢ = 2, p = 3:

Case (ii). According to Lemma 8', equation (8) will have at most
one solation unless N’ =1, N=38", in which case it can have at most
two. But then 7,(N’) =1 and so

TA{N)Zr(N)+2Z53.

Case (iv). The argument is the same up to (**). This equation
can have two solutions only when N’ = 1 (by Lemma 3’). But then
N’ = 2% and we have seen that in this case r,(N') £ 3. Thus 7,(N) <
5, This completes the proof of Theorem 1.
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