REMARK ON A PAPER OF STUX CONCERNING SQUAREFREE NUMBERS IN NON-LINEAR SEQUENCES

Georg Johann Rieger
REMARK ON A PAPER OF STUX CONCERNING SQUAREFREE NUMBERS IN NON-LINEAR SEQUENCES

G. J. RIEGER

Stux studied squarefree numbers of the form \([f(n)]\); his most interesting application is \(f(n) = n^c\) for real \(c\) with \(1 < c < 4/3\). We would like to point out that a stronger result follows immediately from estimates of Deshouillers.

Let \(1 < c < 2\), \(x \geq 1\); denote by \(N_c(x; k, l)\) the number of natural numbers \(n \leq x\) with \([n^c] \equiv 1 \mod k\). According to [1], we have

\[
N_c(x; k, l) = \frac{x}{k} + O_c((x^{c+1}k^{-1})^{1/3}) \quad \text{for} \quad x^{c-5/4} \leq k < x^{c-1/2},
\]

\[
N_c(x; k, l) = \frac{x}{k} + O_c((x^{4+c}k^{-1})^{1/7}) \quad \text{for} \quad k < x^{c-5/4}.
\]

Denote by \(S_c(x)\) the number of squarefree numbers of the form \([n^c]\) with natural \(n \leq x\); the inclusion-exclusion principle in the form \(|\mu(n)| = \sum_{d \mid n, d > 0} \mu(d)\) gives

\[
S_c(x) = \sum_{d^2 \leq x^c} \mu(d)N_c(x; d^2, 0) \quad (x \geq 1).
\]

For \(d^2 \geq x^{c-1/2}\) we use the trivial estimate \(N_c(x; d^2, 0) = O(x^c d^{-2})\); using

\[
\sum_{d \geq t} d^{-2} = O(t^{-1}) \quad (t \geq 1),
\]

we obtain

\[
S_c(x) = \sum_{d^2 < x^{c-1/2}} \mu(d)N_c(x; d^2, 0) + O(x^{(2c+1)/4}).
\]

In case \(c \leq 5/4\), we use (1) and

\[
\sum_{0 < d \leq t} d^{-2/3} = O(t^{1/3}) \quad (t \geq 1)
\]

in (5); this gives

\[
S_c(x) = \sum_{d^2 < x^{c-1/2}} \mu(d)d^{-2}x + O_c(x^{(2c+1)/4}).
\]

In case \(c > 5/4\), we split the sum in (5) according to \(d^2 < \text{or} \geq x^{c-5/4}\) and apply (2) and (1); using \(\sum_{0 < d \leq t} d^{-2/7} = O(t^{1/7}) \quad (t \geq 1)\) and (6), we obtain again (7). But (7), \(\sum_{d > 0} \mu(d)d^{-2} = 6\pi^{-2}\), and (4) give immediately
Theorem 1. For real c with $1 < c < 3/2$, we have
\[S_\beta(x) = 6\pi^{-2}x + O_c(x^{(2c+1)/4}) \quad (x \geq 1). \]

Looking at $m - [n^c]$ instead of $[n^c]$ we obtain similarly

Theorem 2. For real c with $1 < c < 3/2$, the number of representations of the natural number m as $m = q + [n^c]$ with squarefree q and natural n equals
\[6\pi^{-3}m^{1/c} + O_c(m^{(2c+1)/4c}). \]

This can easily be generalized to r-free instead of squarefree. It should not be difficult to extend the method of [1] to cover the function class studied in [2].

References

Received June 26, 1977 and in revised form December 16, 1977.

Technische Universität
D-3000 Hannover, Germany
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simeon M. Berman</td>
<td>A class of isotropic distributions in \mathbb{R}^n and their characteristic functions</td>
<td>1</td>
</tr>
<tr>
<td>Ezra Brown and Charles John Parry</td>
<td>The 2-class group of biquadratic fields. II</td>
<td>11</td>
</tr>
<tr>
<td>Thomas E. Cecil and Patrick J. Ryan</td>
<td>Focal sets of submanifolds</td>
<td>27</td>
</tr>
<tr>
<td>Joseph A. Cima and James Warren Roberts</td>
<td>Denting points in B^p</td>
<td>41</td>
</tr>
<tr>
<td>Thomas W. Cusick</td>
<td>Integer multiples of periodic continued fractions</td>
<td>47</td>
</tr>
<tr>
<td>Robert D. Davis</td>
<td>The factors of the ramification sequence of a class of wildly ramified v-rings</td>
<td>61</td>
</tr>
<tr>
<td>Robert Martin Ephraim</td>
<td>Multiplicative linear functionals of Stein algebras</td>
<td>89</td>
</tr>
<tr>
<td>Philip Joel Feinsilver</td>
<td>Operator calculus</td>
<td>95</td>
</tr>
<tr>
<td>David Andrew Gay and William Yslas Vélez</td>
<td>On the degree of the splitting field of an irreducible binomial</td>
<td>117</td>
</tr>
<tr>
<td>Robert William Gilmer, Jr. and William James Heinzer</td>
<td>On the divisors of monic polynomials over a commutative ring</td>
<td>121</td>
</tr>
<tr>
<td>Robert E. Hartwig</td>
<td>Schur’s theorem and the Drazin inverse</td>
<td>133</td>
</tr>
<tr>
<td>Hugh M. Hilden</td>
<td>Embeddings and branched covering spaces for three and four dimensional manifolds</td>
<td>139</td>
</tr>
<tr>
<td>Carlos Moreno</td>
<td>The Petersson inner product and the residue of an Euler product</td>
<td>149</td>
</tr>
<tr>
<td>Christopher Lloyd Morgan</td>
<td>On relations for representations of finite groups</td>
<td>157</td>
</tr>
<tr>
<td>Ira J. Papick</td>
<td>Finite type extensions and coherence</td>
<td>161</td>
</tr>
<tr>
<td>R. Michael Range</td>
<td>The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains</td>
<td>173</td>
</tr>
<tr>
<td>Donald Michael Redmond</td>
<td>Mean value theorems for a class of Dirichlet series</td>
<td>191</td>
</tr>
<tr>
<td>Daniel Reich</td>
<td>Partitioning integers using a finitely generated semigroup</td>
<td>233</td>
</tr>
<tr>
<td>Georg Johann Rieger</td>
<td>Remark on a paper of Stux concerning squarefree numbers in non-linear sequences</td>
<td>241</td>
</tr>
<tr>
<td>Gerhard Rosenberger</td>
<td>Alternierende Produkte in freien Gruppen</td>
<td>243</td>
</tr>
<tr>
<td>Ryōtarō Satō</td>
<td>Contraction semigroups in Lebesgue space</td>
<td>251</td>
</tr>
<tr>
<td>Tord Sjödin</td>
<td>Capacities of compact sets in linear subspaces of \mathbb{R}^n</td>
<td>261</td>
</tr>
<tr>
<td>Robert Jeffrey Zimmer</td>
<td>Uniform subgroups and ergodic actions of exponential Lie groups</td>
<td>267</td>
</tr>
</tbody>
</table>