Vol. 78, No. 2, 1978

Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
The Journal
Editorial Board
Special Issues
Submission Guidelines
Submission Form
Author Index
To Appear
ISSN: 0030-8730
On representing analytic groups with their automorphisms

G. Hochschild

Vol. 78 (1978), No. 2, 333–336

A real or complex Lie group is said to be faithfully representable if it has a faithful finite-dimensional analytic representation. Let G be a real or complex analytic group, and let A denote the group of all analytic automorphisms of G, endowed with its natural structure of a real or complex Lie group. The natural semidirect product G A is a real or complex Lie group, sometimes called the holomorph of G. We show that if G is faithfully representable and if the maximum nilpotent normal analytic subgroup of G is simply connected then G A is faithfully representable.

Mathematical Subject Classification 2000
Primary: 22E45
Received: 25 February 1978
Published: 1 October 1978
G. Hochschild