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In [4], [1], [7], and [5] certain algebras of zero-order pseudo-
differential operators were discussed which all were generated by
closing the operator algebra ¥ finitely generated from the elements

0.1) {a(M), b(D): a € ", be &%,

with multiplication operators u(x) — a(x)u(x) denoted by a(M) and
convolution operators (or formal Fourier multipliers) b(D)=F *a(M)F,
with F = Fourier transform. Various classes .&% and .%7% and
various operator topologies were used, with the purpose of using
the generated topological algebra for proving normal solvability of
singular elliptic problems Lu = f, x< R", with a suitable linear
differential operator L = >, <y @.(2)D"

At present let us focus on the algebra 9. obtained from the
classes

(0.2) T = {a e C°(R"): a(x) = O(1), a®(z) = o(1), B # 0}
and
(0.3) ¥t ={beC(R"): b»ecC(B", BecZ"},

with the compactification B" of R" obtained by continuous extension
of the vector-valued function x — x(1 + 2*)~'/%, where we close under
the following operator topology: 9, with o7+ and &% as in (0.2)
and (0.3) may be seen to be a subalgebra of <°(9,), the algebra of
continuous operators 9, — ©,, with the L*-Sobolev space 9, = {u:
ue. S, |1 — 4"u||;2 = ||u|l, < «} of R*. This is true for every
s€ R, and therefore the elements of 9( also take the Frechet space
$.. continuously to itself. A locally convex topology on 9o is gener-
ated by all the operator norms |[Al, = sup{|| Au|,: |||, £1}. In
fact this is a Frechet topology, and it suffices to only take the
norms ||A|,, k€Z. All this is discussed in details in [2]. We

define %, to be the completion of 9 under that topology.

o

Similarly one may complete 9 as a subalgebra of any given
fixed &($,) in the norm topology, to obtain a Banach algebra 9,
which proves to be a C*-subalgebra of <£(9,), containing the
compact ideal &, = K(9,) of F(9,). In faect, U,/R, is commutative,
thus we have /8, = C(M,), with a certain compact Hausdorff space
M, by the Gelfand-Naimark theorem. The space M = M, proves
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independent of s, and may be explicitly described as follows.
(0.4) M= P*x B — R" X R",

with the above compactification B™ of R", and another one, P*,
determined as smallest compactification allowing continuous extension
of all the funections in .o7%.

The homomorphism A, > A,/K, — C(M) assigns a continuous
function o, to every Ac?,, which is called the symbol of Ae,.
For AcU,C U, the symbol o, proves to be independent of s. In
fact, for AGQOI, the symbol coincides with the restriction to M of
the continuous extension of the Pseudo-differential-operator symbol
of A. The symbol o, of A proves of fundamental importance for
the normal solvability of an equation Au = f, u, f€ D, AcA.: A
necessary and sufficient condition for existence of a Green inverse
of order 0 (that is a Fredholm inverse B such that ||B||, is defined
for all s, and that 1-AB, 1-BA: 9_.. — .. are continuous and have
finite rank) is that o, = 0 on all of M.

All the above facts are discussed in [2]. Moreover, it is shown
there that . coincides with an algebra introduced by M. Taylor
|7], p. 505, denoted by PS(0), as the class of all A€, such that
1A —47rAQ — 4 — Ac &, for all s.

In the present paper we are going to attack the question of
proving existence of operators in ., having a given symbol o, =
a€C(M). For the C*-algebras 2, this question is easily answered:
For every continuous function a € C(M) there always exist operators
AeU, with g, = A, because for the C*-algebra with compact com-
mutator and with unit we get U,/R, equal to C(M). One may
expect that differentiability of @, in a manner to be specified, will
guarantee existence also of an A€, with o, = a. Our first result
will indeed make that point.

THEOREM 0.1. Let C3(M) denote the subalgebra of C(M) of all
Sunctions a such that Da(x, &) exists for all o on the subset

(0.5) W ={x,&:xeR"C P", {coB” = B" — R"}

of M, and that the functions a., = i"Dfa on W, =0 on M — W,
is in C(M). Then, if acCy;(M), there exists an operator Ac?,
with o, = a.

Perhaps it is remarkable that no differentiability with respect
to the &-variables is required at all. In fact at the entire portion
|¢| = o of the ‘symbol space’ M no differentiability with respect
to either z or & is required. On the other hand there are indica-
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tions that even the above differentiability requirement is much too
strong for the assertion of Theorem 0.1.

Our proof of Theorem 0.1 is entirely independent of conven-
tional Pseudo-differential operator calculus. The basic idea is the
invariance of %, and 2, under the ‘translation group’

(0.6) (et":te RY .

In fact, conjugation with the unitary operators (0.6) defines a
strongly continuous group of linear operators: %A, — %, The condi-
tion a € CY(M) in effect means that a is in the joint domain of the
projection of the infinitesimal generators

(0.7 (adD)* = 1] (adD,), (adD,)A = [D;, A] = D;A — AD,, Ac?,

to A/R,. In other words, for a e C3(M) there will exist operators
Aec, such that all the commutators (ad D)*4 will be well defined
elements of Y, again. Such operators A can be shown to satisfy
Taylor’s condition, of belonging to PS(0) = A,. This idea of proof
will be discussed in details in §§1 and 3.

Let %,, denote the algebra of all A€ %, with the property that
(ad D)*A e, for all «. We shall see that ﬁc%dcmw. However,
examples are easily given which show that not all operators in A,
are pseudo-differential operators in the sense of [3], for example.
Accordingly one will not expect the calculus of pseudo-differential
operotors, like that in [3], §7, for example, to be valid in A,,.
Our second result is a ‘Leibnitz formula’ of the asymptotic kind,
showing that part of that calculus can be saved.

THEOREM 0.2. Let .7 C C*(R"™) denote the algebra of all func-
tions w such that for k =0,1, 2, --+ there exists N(k) with
xu® = O) for all (@] £k and all |B| = N(k) .

For Ae,, let A, = 1" (ad D)?A.
Then we have the asymptotic expansions

b(D)A = 3,47"/61 Apb®(D)  (mod Z(— o))
Ab(D) = 3,1"/01 b (D)Ay  (mod &(— <))

0

(0.8)

for all AcU,, and be . ~Z.

In details, we have the order o, of the remainder

(0.9) BD)A — 3, i71/01 Apb®(D) = Ry

10i=N
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going to — o, as N— o. Similarly for the second expansion (0.9).
Here we say that an operator B: 9. — 9. has order #» if it induces
a continuous map 9, — 9,_,, for all seR.

Theorem 0.2 will be discussed in § 2. We will begin our proofs
in §1 with showing that %. = PS(0) (Lemma 1.1), and then prove
that oy , = C,(M), or rather, a slightly more general result (Theorem
1.4). In §3 we will use the Leibnitz formulas of Theorem 0.2 for
a proof of the inclusion A,; < PS(0), which will establish Theorem
0.1. Most proofs are also discussed in [2], in much broader details.

1. Taylor’s algebra PS(0), and the algebras ., %,,. The fact
that our algebra . is identical with Taylor’s algebra PS(0) in [7]
is a consequence of the lemma, below.

LEMMA 1.1. The algebra U, is identical with the class of all
A e, such that, for every sc R, (or only for every integer s = ke
Z), the unbounded operator product A—AA, with A = 1 — A)** =
1 + D)% has dense domain and extends continuously to a bounded
operator on A, satisfying

(1.1) ATAL — Ae &, .

Proof. The inclusion A, PS(0), where PS(0) denotes the
algebra of operators satisfying (1.1) for all se R, is a consequence
of Lemma 6 in [4] (for more details c.f. [2], Chapter IV, 3). In
particular (1.1) is immediate for Aeil, and it then follows for Ae
., for which we have a sequence A,,eé’I with ||A — A,|l, — 0 for
all s due to ||[47°AA* — A A AL°], = ||A — AL,

Now let Ac¥, satisfy (1.1). It follows that A extends conti-
nuously to an operator A,: 9, — 9,, for s < 0, and that, for s >0
the restriction 4, = A |9, is bounded from $, to £,, by a calcula-
tion. In fact, we have ||A||, = ||4.|l, = |47°A4%||, < <. To com-
plete the proof we will construct a sequence of operators in .
which is Cauchy, and converges to A above in %, and in every ¥..
By Lemma 1.2 below, which we quote without proof, it suffices to
only consider the norms ||-||, with integers s = k.

LEMMA 1.2. Suppose an operator A:.&” — . maps into 9, N
9, for some pair of reals s < t, and that

(1.2) [Au|l, = c.llwll, [1Aull, = cllwll, ues”.
Then we have

(1.3) lAull, = ¢ llull. nes”,
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for all s <»r < t, where the constant ¢, may be chosen as

(1.4) C, = c;t—r)/(t—w)cér—s)/(t—s) .

For the proof of Lemma 1.2 we refer to Seeley [6] (or [2]).
This interpolation lemma shows in effect that the topology of 9., is
Frechet.

For A9, satisfying (1.1) first choose a sequence A; e, with
NA — A;|l,—0, as j-— . Let yeC(R"), x =1 near 0,0y <1,
and let x.(x) = y(@/m), m = 1,2, ---, and let X, = y.(D). Conclude
that X,AX, €., because we get

HXMAXM - XmAJ'XmHl = ”A—ZXM(A - AJ')XMALHO

—— 0, as J — oo

(1.5)

’

for fixed m, [, since A'X,, = \'Y)(D) is bounded in £, Mz) = (1 +
x*)7*2, Introduce the operator A,;c %, by

(1.6) A, =X, AX, + 1 — X )A X, + A;,(1 — X,,) .
(Observe that X, €., in that respect.) We write
A A — A A = A1 — X, )0A — A) X, A
(1.7) + AMA - AN)A - X )4 =1 - X,)A— A)X,,
+(A—-A)Q - X,) +C; — X0 X, ,
with
(1.8) Cyi =4 A — AL — (A — A)e8,,
because A satisfies (1.1), and A; e, also satisfies (1.1). For N =

1, 2, --- first choose k = ky such that ||A — A,ll, < 1/4N. Then keep
k fixed and choose m = m, large to insure that

(1'9) ||Ck1vl - XmNCkNleN”o = 1/4N’ l = 0, ily ctcy —tNr

as follows because X, — 1, as m — o, in strong operator conver-
gence, while the operators C,, are compact.

(1.10) A — Ayymyll =1/N, [N,
so that indeed limy .. Aym, = 4 in A.

In the remainder of this section we shall be concerned with
the group (0.6) of unitary operators, referred to as the translation

group. In the introduction we have sketched the intended use for
this group.

LemmA 1.3. For Ae, with symbol 6, = a let us define B; =
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(1.11) B, — Sme"'pﬂ"Ae"Df‘e“’dt, i=1,,m.
0
Assertion. (i) The integrals (1.11) converge as improper Riemann
integrals in norm convergence of < (9,), and B; € ¥,.
(ii) The symbol b; = 05, has its first derivative 0b;/0x; conti-
nuous over W, and zero at |x| = <o, and is explicitly given by

Il

(1.12) b Swa(x — te;, E)e'dt

with e; = (0, *++, 0,;), and * — h =z, as |x| = oo, |h] < co.
(iii) The function b; is uniquely determined as the solution of

(1.13) ovfox; +v=a on M, v, dv/ox;eC(M),

where we interpret ow/ox; = lim,_, (v(x + he;, &) —v(x, £))/h = 0, as
|x| = oo, (because x + he; = x implies the difference quotient to be
Zero).

(iv) The commutator [D;, B;] = D;B; — B;D; between the un-
bounded operator D; of 9, with domain £,, and the bounded opera-
tor B; has dense domain and extends to an operator in (9,),
which in fact is in 9, and is explicitly given by the equation

(1.14) A =i[D,, B;] + B; .

Proof. It is known that ¢'”", r € R* is the translation operator
w(x) — u(x + ), so that e *?ra(M)e’’” = a(M + r). Also e *’"b(D)e’’ =
b(D), so that the function @(r) = ¢7*’"Ae*’" is norm continuous for
r e R* whenever A is a generator of A, This also holds for the
general A € 9,, which is uniform limit of finitely generated elements.
Also, the integrand in (1.11) is O(1), in the norm |- ||,, which implies
(i). We may take symbols under the integral sign, by (i) and be-
cause the projection A, — A,/&K, is continuous. Also, since we know
the action of the automorphism A — e *?"Ae'’” on the generators of
A, we can easily calculate the action on the symbols, using techni-
ques involving the dual map, as in [4]. This will serve to confirm
(1.12), and thus (ii). Now (iii) follows by methods involving the
Greens function of the ordinary differential operator D; = /dx; + 1
on R, or by simple differentiation. Regarding (iv) consider the
commutator [D;, B;] as an operator in (9, $_,), and then write

[Dj, B]] — Sm(Dje—wtheinjt _ e—wthewthj)e—tdt
0

(1.15) - iSwd/dt(e‘iDJ'tAe“’J")e“dt = {605t Ae it
0 0
0

+ 'LS e~0it AePite~tdt — — iA + iB,;
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where all operations may be seen to be legitimate. This proves (iv)
and establishes Lemma 1.3.

THEOREM 1.4. Let Uy, for k=0,1, -+, oo, denote the algebra
of all operators A€, with the property that

(1.16) Aw =i"(@dDyAc, [a] =Maxa,<k,

with (ad D)* defined as operators in L (D, O—n) by (0.7). Let
CHM), for k=0,1, ---, oo, be the class of functions in C(M), with
the property that a., = 1*Dia(x, &) exist and are in C(W), and
vanish, as (x| — oo, for all [a] £k, as in Theorem 0.1.

Assertion. For every function a € CX M) there exist operators
AeU,,, such that o, = a, and, more generally, 04, = A, for all
la] < E.

Proof. For finite £ Theorem 1.4 is an almost immediate con-
sequence of Lemma 1.3: For aeCk, with finite &k let a* = (k, k---,
k, k) be the unique ‘largest multi-index’, and just pick any operator
Pc, with symbol a,r. Notice that the operators E,c & (%,
defined by Lemma 1.3 all commute. Then define A, = E“*~“P with
E® =T[7, E%. Then notice that A, has symbol D*a, with D, =
8/ox; + 1, D? = [}, D%. This suggests defining operators A, by
properly combining the Ay.;: A = 4y, Ay = A(ej, — A, ete. This
choice may be seen to also satisfy the commutator relations (1.16),
by (1.14), establishing the result for finite %.

Next let k¥ = . Then we can make the above selection of A
and A, [a] <k for every k=1,2, ---. Let the corresponding
operators be denoted by A, and 4., for a moment, and note that

1.17) A, — A =CLefy Awni— Aw. €8,
for all %, I such that the terms are defined. Specifically,
(1.18) Ay — %(D)Chir (D) = Ay + {Criii — X(D)CririX(D)}

with a suitable funetion ¥, C{(R™), 0 < %, <1, and %, = 1 near 0.
Introducing the notation F',., and G,,, for the compact operator at
left and at right in (1.18), respectively, we find that

m

~ k k
(1-19) Ak:Ak_lZ‘sz:Am"‘ Z Gl_ZFly

I=m+1 =1

where we have used induction. The operators F, may carry as
many commutations (ad D)* as desired, since the factor x(D) neutra-
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lizes the unboundedness of arbitrary powers D7, from left or right.
On the other hand a proper choice of x;, for example as y;(x)=y(x/z;)
with sufficiently large 7;, will insure

(1.20) ll(ad D)G;ll, =277, [a] <7 .

Now the right hand side in (1.19) will converge, as k — <o, supply-
ing an operator A=lim A4,. Moreover, it follows that also (ad D)*A4,
converges to (ad D)*A, using (1.20). Then it follows that A = lim A,
is the desired operator satisfying the assertion for %k = co. This
proves Theorem 1.4.

It is clear that U,, = A.y.. Accordingly Theorem 1.4 shows
that all functions in C$(M) can be obtained as symbols of operators
in A,;. For the proof of Theorem 0.1 we therefore must show
that A, C U, using the Leibnitz formulas of Theorem 0.2.

2. An asymptotic formula. An operator A ¢ ¥ (9..) is said to
have order r if for every se R there exists a continuous extension
A: 9, — D,_.. Let &7(r) denote the class of all operators of order 7.
Suppose A; e 7(p;), with p;\, — . Then we shall say that Ae
Z(9..) allows an asymptotic expansion

2.1) A= 2 A; (mod 2 (— o))
if for every N=0,1,2, ---, we have

N
(2.2) A= A4;€(T0xn) -

With this notation we now will discuss the proof of Theorem
0.2. In that respect it is sufficient to establish the first formula
(0.8), because the second formula follows by taking adjoints.

It is convenient to introduce a concept called Fourier kernel
product (for details c.f. [2], IV, 4). For an operator @ € &£ (9.., D_..)
let .&“'(R*™) denote the Fourier distribution kernel, defined as the
distribution ¢ such that

(2.3) (FQFu, v) ={q, u @ vy, u,ve.s” .

If P, Q have the kernels p and ¢, and if »p = ¢, q, with a function
@ e C=(R™) then we shall call P the kernel product of ¢ and Q.
This relation shall be written as

(2.3) P=pAQ.

For example, if ¢ = ¢(&, ) = ¢(&) depends only on &, then ¢ A Q=
o(D)Q, and ¢ A Q = Qp(D), if ¢ depends only on 7. Also, if &; =
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& — 1y, & = 11; &, then (ad D)@ = & A Q.

For Ae¥,,, and a function be.#Z let us apply Taylor’s formula
with integral remainder, in conjunction with the above kernel pro-
duet:

bDIA = ( 2 bOIONE =) + ra(E M A A
= 3, 17 Y01AND D) + ry A A,

10lsN

(2.4)

where

2.5) (e 1) = S}N S (N + D/t + opyde, ¢+t =1.

0 |6I=N+1
Comparing (2.4) and (0.8) it is found that for Theorem 0.2 we must
show that the order of the remainder r, A A decreases to — <, as
N — co. This will be accomplished, evidently, if Lemma 2.1, below,
is proven.

LeMMA 2.1. For every integer 1 = 0,1, 2, -+, there exists Ny(I)
such that for N = Ny(l) we get
(2-6) RN =Ty A A = AZIQNAAH, With QN,l € 2{0 .

Proof. We note that explicitly

@.7) Ry = S%Ndr S (N + DO BIEE + o) A Ay

[f1=N+1

where the discussion of limit interchanges is postponed. In order
to control the kernel product we write

(2.8) bOtE + ) = Sd'ﬁb(ﬂ)v(x)e“”e”e’ ,

with d'k = (2r) "*dx, and with the inverse Fourier transform V.
Accordingly,

2.9) b+ ) A A = | R A, =T

with the ‘translated operator’ P, = ¢'”*Pe*”*, In that respect, the
Fourier transform 5%V = F~'b'” proves to be a function in L*R"),
making the integral (2.8) meaningful as an improper Riemann inte-
gral in norm convergence of ¥, for large |#|. In details we note
Lemma 2.2, below.

LemMmA 2.2. Let &5 denote the class of distributions ue.S”’
with singular support at 0 only, such that (1) u equals a function
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in &7 for |x| =1, (ii) z*u € C¥R") for all |a| = Nk), with suitable
Nk), and for every k=0,1, ---. Let .# c C™(R") be defined as in
the introduction. Then we have we . # if and only if u" = Fue
% (or if and only if u¥ e . S7%).

The proof of Lemma 2.2 will be omitted (c.f. [2], I, Thm. 6.3).
Continuing with Lemma 2.1 note that c(k) = b'V(k) = (— k)bV(k) €
C*R™), as 6 gets large enough, by Lemma 2.2. Also ce.&” for
2] = 1. Using the identity e“ =1 + &)1 — 4,)%¢*", 1=0,1,2, ---,
we formally get

(2.10) J = /Iﬂmgd’lfe“”(l — 4. (k) Ay, —xe) -

There will be no trouble justifying (2.10), as an improper Riemann
integral in norm convergence of %, after Lemma 2.3, below.

LEMMA 2.3. For Ae,, we have A, = ¢'”"Ae”*"' ¢ C~(R", A,), and
the derivatives are explicitly given as

(2.11) IDtA, = A, = A e .

The proof of Lemma 2.3 is an immediate consequence of Lemma
1.3. Applying Lemma 2.3 it is found that J of (2.10) is a linear
combination (with complex constants as coefficients) of the expres-
sions

(2.12) A gd'lfe“pc(“)(ﬁ)Awm,_m | + 18l =2l.

Again ¢ e L'(R") for sufficiently large N (and these functions are
continuous). Thus all the terms (2.12) are of the form A¥*P, with
some Pec?l,.

This process may be repeated to create a power A* at right:

Write the operator P = Sd’/ce”l’c<“)(lc)A((,_,,ﬁ),,” in the form

2.13) [@re ) A e

Here again we may use the exponential identity, and integrate by
parts to arrive at expressions of the form

2.14) (CEEECY I Vs

The integrals (2.14) exist, as before, and supply operators Q(¢) €
9, depending continuously on ¢, in the norm of %,. Hence the inte-

1
grals S‘c”dz'Q(t) exist in norm convergence, and give operators in
0
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%, again. Finally it will be necessary to justify the limit exchanges
leading to (2.7) and (2.9). But this simply is a consequence of the
fact that the integrals (2.5) and (2.8) converge as (improper) Rie-
mann integrals, in the Frechet topology of .&°. This proves Lemma
2.1 and thus establishes Theorem 0.2.

COROLLARY 2.4. For the operator Qy.€, of Lemma 2.1 we
have

(2.15) Ooy, =0 for (x,5)eM— W, N=1.

Proof. We simply must observe that all the operators Ay, s.ie x:
occurring in (2.14) have symbols vanishing at M — W. Also, it
already was found that all the integrals leading to the construction
of Qy, converge in the sense of %, so that symbols may be
calculated by integrating the symbols. This implies the corollary.

3. The inclusion U, < PS(0). It is clear now that for Theo-
rem 0.1 we now only are left with proving that %, < PS(0). For
then, if aeC,(M) we apply Theorem 1.4, with & = «, to construct
an operator A€, ., = W, With 0, = a. We have Aec¥,, c PS(0)=
UA., by Lemma 1.1 which proves Theorem 0.1. For the inclusion
A © PS(0) we only must prove Lemma 3.1, below.

LeEmMMA 8.1. Let AcU,y. Then we have AAA™ — A e R, for all
seR.

Proof. Let us repeat the discussion of §2 for the special func-
tion b(&) = M) = (1 + &)¥*. From Lemma 2.1 we get
(3.1) AAA? — A = 13%@ 17190) A tte(D) + A¥Qy A7,
with the functions g, = )?@/A° (3.1) is valid for large N only,
depending on the choice of I. For a given s we choose [ according
to 2] > s, and then N = 1 large enough to insure (3.1). Then it is
observed that the entire right hand side of (3.1) is in &, by Corol-
lary 2.4, because the symbol is calculated to be zero on all of M.
In particular we notice that p,e.7% 60, thus g(D)e, and
that ¢, =0 as || = oo, thus 0., = 0 on W. This proves Lemma
3.1.

REFERENCES
1. H. O. Cordes, Lecture notes on Banach algebra methods in partial differential

equations, Lund 1970-71.
2. , Partial differential equations, Lecture notes, Berkeley, 1977.




290 H. O. CORDES AND D. A. WILLIAMS

3. H. O. Cordes, A global parametriz for pseudo-differential operators over R", with
applications; SFB 72 U. Bonn No. 90, 1976.

4. , and E. Herman, Gel’fand theory of pseudo-differential operators, Amer.
J. Math., 90 (1968), 681-717.

5. R. Illner, On algebras of wseudo-differential operators in LP(R™), Comm. in Part.
Diff. Equ., 2 (4) (1977), 359-393.

6. R. T. Seeley, Topics in pseudo-differential operators, CIME conference on pseudo-
differential operators, Stresa, 1968.

7. M. Taylor, Gelfand theory, of pseudo-differential operators and hypo-elliptic opera-
tors, Trans. Amer. Math. Soc., 153 (1971), 495-510.

Received January 15, 1978. The first author was supported by an NSF contract.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California

Los Angeles, CA 90007
CHARLES W. CURTIS &e
University of Oregon R. FINN and J. MILGRAM

Eugene, OR 97403 Stanford University
Stanford, CA 94305
C.C. MOORE

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA
SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuscript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Items of the bibliography should not be cited there unless absolutely necessary, in which case
they must be identified by author and journal, rather than by item number. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $72.00 a year (6 Vols.,, 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
should be sent to Pacific Journal of Mathematics, P.0. Box 969, Carmel Valley, CA 93924, U.S.A.
Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1978 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 78, No. 2 April, 1978

Su-Shing Chen, Weak rigidity of compact negatively curved manifolds . . . .. 273
Heinz Otto Cordes and D. A. Williams, An algebra of pseudodifferential

operators with nonsmooth symbol . ......... ... .. ... . ... ... 279
Herbert Paul Halpern, Normal expectations and integral decomposition of

type Il von Neumann algebras . ............ ... . ..., 291
G. Hochschild, On representing analytic groups with their

AUIOMOTPRISIS . ..\ttt e et ettt et e s 333
Dean G. Hoffman and David Anthony Klarner, Sets of integers closed under

affine operators—the closure of finite sets....................c...... 337
Simeon Ivanov, On holomorphic relative inverses of operator-valued

JURCHIONS . e e 345
O. P. Juneja and M. L. Mogra, Radii of convexity for certain classes of

univalent analytic functions ..............c.c.ouuiiiiiiieennnnninn.. 359
Hadi Kharaghani, The evolution of bounded linear functionals with

application to invariant Means . .............c.c.ouuueeeuuununnnnnnnns 369
Jack W. Macki, A singular nonlinear boundary value problem. ............ 375
A. W. Mason and Walter Wilson Stothers, Remarks on a theorem of L.

Greenberg on the modular group .................cciiiiiieeeniinn. 385
Kevin Mor McCrimmon, Peirce ideals in Jordan algebras ................ 397

John C. Morgan, II, On the absolute Baire property . ... ..
Gerard J. Murphy, Commutative non-Archimedean C*-al
Masafumi Okumura, Submanifolds with L-flat normal co

complex projective space.........................
Chull Park and David Lee Skoug, Distribution estimates o

probabilities of the Yeh-Wiener process .............
Irving Reiner, Invariants of integral representations . . .. . .
Phillip Schultz, The typeset and cotypeset of a rank 2 abel
John Brendan Sullivan, Representations of Witt groups . . .

Chia-Chi Tung, Equidistribution theory in higher dimensi
Toshio Uda, Complex bases of certain semiproper holomo


http://dx.doi.org/10.2140/pjm.1978.78.273
http://dx.doi.org/10.2140/pjm.1978.78.291
http://dx.doi.org/10.2140/pjm.1978.78.291
http://dx.doi.org/10.2140/pjm.1978.78.333
http://dx.doi.org/10.2140/pjm.1978.78.333
http://dx.doi.org/10.2140/pjm.1978.78.337
http://dx.doi.org/10.2140/pjm.1978.78.337
http://dx.doi.org/10.2140/pjm.1978.78.345
http://dx.doi.org/10.2140/pjm.1978.78.345
http://dx.doi.org/10.2140/pjm.1978.78.359
http://dx.doi.org/10.2140/pjm.1978.78.359
http://dx.doi.org/10.2140/pjm.1978.78.369
http://dx.doi.org/10.2140/pjm.1978.78.369
http://dx.doi.org/10.2140/pjm.1978.78.375
http://dx.doi.org/10.2140/pjm.1978.78.385
http://dx.doi.org/10.2140/pjm.1978.78.385
http://dx.doi.org/10.2140/pjm.1978.78.397
http://dx.doi.org/10.2140/pjm.1978.78.415
http://dx.doi.org/10.2140/pjm.1978.78.433
http://dx.doi.org/10.2140/pjm.1978.78.447
http://dx.doi.org/10.2140/pjm.1978.78.447
http://dx.doi.org/10.2140/pjm.1978.78.455
http://dx.doi.org/10.2140/pjm.1978.78.455
http://dx.doi.org/10.2140/pjm.1978.78.467
http://dx.doi.org/10.2140/pjm.1978.78.503
http://dx.doi.org/10.2140/pjm.1978.78.519
http://dx.doi.org/10.2140/pjm.1978.78.525
http://dx.doi.org/10.2140/pjm.1978.78.549

	
	
	

