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In earlier papers the author has formulated an axiomatic
foundation for an abstract theory of Baire category, one of
whose purposes is the unification of analogous concepts and
theorems occurring in topology and measure theory. In
the present article, a method is presented for unifying,
within this axiomatic framework, the Baire property in the
restricted sense and absolute measurability in complete
separable metric spaces.

In [14] we have defined the absolute Baire property in order to
unify the concepts of the Baire property in the restricted sense and
absolute measurability on the real line. After recalling this general
definition in § 2, we show how these two concepts can also be unified
for linear sets using a special case of the general definition which
involves order isomorphic mappings of the set of all irrational
numbers into the real line and which we call the ordinal version of
the absolute Baire property. In §3 we formulate the appropriate
topological analogue, utilizing homeomorphism of the set of irrational
numbers, of this ordinal version and show this topological version
of the absolute Baire property serves to unify these two concepts
in the setting of complete separable metric spaces. A general
theorem on the topological invariance in complete metric spaces of
this topological version is then proved in §4.

l Preliminaries* For the convenience of the reader, we in-
clude in this section pertinent notation, terminology, and results
contained in [13] and [14].

NOTATION. If Sf is any family of sets, then the elements of
Sf will be called

DEFINITION 1. A family <& of subsets of a nonempty set X is
called a ^-family if the following axioms are satisfied.

1. X = U ^
2. Let A be a ^-set and let J3? be a nonempty family of disjoint

^-sets which has power less than the power of <&.
( a ) If A Π (U «^0 contains a ^-set, then there is a ϋ^-set D

such that Af) D contains a ί^-set.
(b) If Af)(U 3f) contains no ^-set, then there is a ^-set BaA

which is disjoint from all ^-sets.

415
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The symbol <& will always signify a ^-family with respect to
which we define generalized Baire category concepts in the following
manner.

DEFINITION 2. A set S c l is ^-singular if each ^-set A con-
tains a ^-set B which is disjoint from S. We denote by ^ the
family of all countable unions of ^-singular sets and by c<^u the
family of all subsets of X which are not ^-sets .

A set S c X is a if77-set everywhere on a ^-set A if S Γ) B is a
^7 7-set for every ^-set Ba A. The set S is a ^7 7-set everywhere
if S n B is a ^7 7-set for every ^-set B.

A set S c l has the Baire property with respect to ^ if for
every ίf-set A there is a ^-set Be: A such that either B f] S or
B Π (X - S) is a <afrset.

The family of all subsets of X which have the Baire property
with respect to ^ will be denoted by 23(^). This family is a σ-
field containing the family ^ and the σ-ideal of ^-sets .

We next recall three of the main examples of ^-families.

EXAMPLE 1. Let ^ be the family of all nonempty open sets in
a topological space X. Then the ^-singular, ^z-sets, ami ^7 7-sets
coincide with the sets which are nowhere dense, of the first Baire
category, and of the second Baire category, respectively. The family
^&(^) coincides with the family of all sets which have the classical
topological Baire property (in the wide sense).

EXAMPLE 2. Let (X, Szf, μ) be a σ-finite measure space, let ^
be the family of all μ-measurable sets of positive measure, and let
(X, Szf,μ) be the completion of (X, J% μ). The classes of ^-singular
and <gVsets are identical and coincide with the sets of /I-measure
zero, the ^^-sets coincide with the subsets of X which have posi-
tive outer /^-measure, and 35(^) coincides with the family Jϊf of
all /^-measurable sets.

EXAMPLE 3. Let X be an uncountable, complete separable metric
space and let ^ be the family of all uncountable Borel sets. The
^-singular and ^7-sets are identical and coincide with the sets
having Marczewski's property (s°). 33(^) coincides with the sets
having Marczewski's property (s) (see [24]).

In general, the families ^ 7 , ^ 7 7 , and S3(^) are not uniquely
determined by ^ . Hence we are led to formulate the following
notion of equivalent ^-families.

DEFINITION 3. Two ^-families ^ and Si of subsets of the same
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set X are called equivalent if £f7 = Sfj and S3(<if) = 23(^0.

Examples of ^-families which are equivalent to those of Examples
1-3 above, when X is the real line with the usual topology and μ
is the Borel-Lebesgue measure, are given in Examples 1A-3A in §2.

Finally we recall the most important theorem of our general
theory of Baire category, which is a generalization of the so-called
Banach Category Theorem (see [13] Theorem 2).

FUNDAMENTAL THEOREM. If S is a ^Ίj-set, then S is a c^lΓset
everywhere on some ^-set.

2* The absolute Baire property: ordinal version* We first
recall the definition of absolute ί^-sets and the absolute Baire pro-
perty given in [14] for linear sets. We shall use the letter Z,
throughout this article, to denote the set of all irrational numbers,
and the letter X will, in this section, denote the set of all real
numbers.

DEFINITION 4. Let (K, r^) be a ^-family, where K is a subset
of X. A set S c l has the absolute Baire property with respect
to (K, &*) [respectively, is an absolute <gVset] if for every order
isomorphism φ mapping K into X, the set S π Φ(K) has the Baire
property with respect to (φ(K), φ(^)) [respectively, is a

We shall denote the family of sets which have the absolute
Baire property with respect to (K, &*) by

The most important ^-families (K, ^) are those for which K — X
and & consists of perfect sets satisfying the condition

(+) for every ^-set A and every point x e A, there is a
descending sequence <A%> =̂1 of ^-sets such that x e An9

An c A, and diam (An) <̂  1/n for each n.

These families, called ^β-families, have the following properties:
1. Every ^3-family is an S-family; where an S-family is a $-

family satisfying the two conditions:
(a) every ^-set is a ^ / 7-set,
(b) every countable set is a ^V set.
2. Every Borel set has the Baire property with respect to

Property 1 we have referred to in [14] as Baire's theorem,
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since it is a generalization of the so-called Baire Category Theorem
according to which the real line cannot be represented as a countable
union of nowhere dense sets. W. H. Young has pointed out that
this latter theorem should be called the Baire-Osgood theorem, because
it was actually discovered about the same time by W. F. Osgood,
independently of R. Baire (cf. [15] p. 290, [16] p. 173, [1] p. 65, [17]
p 462, and [27] p. 426, 428) However, the method usually employed
to prove this theorem, by successively avoiding a sequence of no-
where dense sets and thereby determining a descending sequence of
closed intervals, goes back at least to 1870 (see [8] p. 90), and the
so-called Baire Category Theorem might be more appropriately at-
tributed to someone other than Baire and Osgood (see also [2] §50).

We now recall the three most important examples of ^-families.

EXAMPLE lA. ^ is the family of all bounded, closed intervals
[α, &]. As shown in [14], the absolute Baire property with respect
to (X, <£*) coincides with the topological Baire property in the
restricted sense and the absolute ^7-sets coincide with the sets
always of the first category.

EXAMPLE 2A. ^ is the family of all perfect sets which are of
positive Lebesgue measure in every neighborhood of each of their
points. The absolute Baire property here is identical to the notion
of absolute measurability and the absolute <gVsets are identical to
the absolute null-sets.

EXAMPLE 3A. ^ is the family of all perfect sets. In this case,
the sets which have the absolute Baire property are the same as
the sets having the property (s) of Marczewski and the absolute
^-sets are the same as the sets having Marczewski's property (s°)
(see [24]).

In order to motivate the definition of the topological version of
the absolute Baire property given in the next section, we shall show
how one may obtain from any *β-family (X, ^ ) of subsets of the
real line X, a ^-family (Z, %) of subsets of the set Z of all irra-
tional numbers such that %{<&) = Sϊ(JΓ) and the absolute <gVsets
coincide with the absolute ^Γ7-sets.

M. Frechet ([7], Note I) has proved, using measure-theoretic
methods, a theorem which has as an immediate consequence the fact
that every linear perfect set can be represented as a disjoint union of
a set of order type λ, the order type of the real line, and a countable
set; e.g., upon removing from a given perfect set P its first and
last elements, if any, and all points which are only right-hand-side



ON THE ABSOLUTE BAIRE PROPERTY 419

limit points of P, we obtain a set λ(P) of order type λ. In [14] §3,
another proof of this fact was given, devoid of measure-theoretic
notions, and a certain subset D of λ(P) was shown to be order-dense
in λ(P). This set D can contain only points which are either rational
numbers in P or are only left-hand-side limit points of P and if we
remove D from the set λ(P), we obtain a set λ(P) — D which can be
mapped onto the set Z by an order preserving homeomorphism.

For each perfect set P, let ζ(P) be the set obtained by removing
from P all points which are only unilateral limit points of P and
all rational numbers belonging to P. The set ζ(P), which may also
be formed by removing all rational numbers from λ(P) — D, is thus
order isomorphic and homeomorphic to Z.

LEMMA 1. If A and B are perfect sets then AaB if and only
ifζ(A)aζ(B).

Proof. Assume ζ(A)aζ(B). If xeA then x is a condensation
point of ζ(A) and also of ζ{B). Therefore x belongs to the perfect
set B.

Conversely, assume AczB and suppose x 0 ζ(B). We shall show
x£ζ(A). Now either xgA or xeA — ζ(B). If x<£A then obviously
x$ζ(A). Thus assume xeA — ζ(B). Since xeB — ζ(B), either x is
a rational number belonging to B or x is a unilateral limit point of
B. If $ is a rational number then we immediately have x g ζ(A).
On the other hand, if # is a unilateral limit point of B and xeA,
then x is also a unilateral limit point of A and consequently x $ ζ(A).

Without loss of generality, we can assume X is an element of
^ . For it can be easily seen that if (X, <£*) is a *β-f amily then
(X, i f U {X}) is an equivalent φ-f amily.

THEOREM 1. Let (X, ^ ) be a ty-family with l e ^ 7 and let

Then the following facts are obtained.
( i ) (Z, JΓ) is an 2-family, which we shall call the Q-family

associated with the $β-family (X, ^ ) .
(ϋ) %-z = [Se^jiSaZ] = {Tn Z: Te^x}

<©Uf) = {S eSCif): S c Z) = {T n Z: Γe»(^)}.
(iii) Sί(^) = S ϊ ^ ) and the absolute ^rsets coincide with the

absolute ^

Proof. An argument similar to that used to prove Lemma 4
[14] shows (Z, 3T) is a ^-family and
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jξf7 = {S e <if7: SaZ} ,

From these equalities it is easily seen that

;T7 = {Tf]Z:

and (Z, JT) is an 8-family.
Assume now that S is a set which has the absolute Baire

property with respect to (X, ̂ ) and let ψ be an order isomorphism
mapping Z onto a set UaX. We shall show S f] Uef8[ψ(^)].

Applying Lemma 5 [14], extend ψ to an order isomorphism φ
mapping X onto an ordinally closed set V containing U.

Suppose M = ψ(E), with Ee%T, is a ψ(%T)-set and S (Ί ί7 is a
^(-^Ou-set everywhere on Λf. The set A = E, where E denote the
closure of E, will then be a ^-set. We shall first show S Π U is a
0(^)//-set everywhere on the ^(^)-set ΛΓ = Φ(A).

Let P = φ(B), with ΰ e ^ , be any ^(^)-set contained in ΛΓ.
Since JBCA, the set F = ζ(B) is a ^-set contained in £? = ζ(A) and,
setting Q = ψ(F), we know (S Π U) ΠQ is a ψ(^)/ 7-set. From the
easily established equality ψ(^)TI = ψ(^u) it follows that (Sf| U)f]
Q = ̂ (ϊ7), where T is a ^ J 7 -set and hence is also a ^j-set. Using
the equality φ(^)n = Φi^u), we see that (S f] U) f] Q = Φ(T) is a
Φ(<έf)irset. Thus, (S Π Ϊ7) Π P is a ^(^)7I-set for every ^(^)-set
PdN.

As S n F e $b[φ(&)] and S n i7 is a 0(9f)77-set everywhere on JV,
there is a 0(<if)-set P c N such that P Π [V - (S Π Z7)] is a ^(^)7-set.
Let P = φ(C) where C is a if-set. The set L = ψ(ζ(C)) is a f ( r)-set
contained in M and L Γ\ [U — (S Γ\ U)]f which is contained in Pfi
[V-(Sf)U)], is a α/r(^)7-set. Therefore S nUeS8[ψ(βtr)] and we
conclude S has the absolute Baire property with respect to (Z, %*).

Conversely, assume S is a set which has the absolute Baire
property with respect to (Z, s£) and let φ be any order isomorphism
mapping X onto a set VaX. We show S Γ\ Ve^8[φ(^)].

Suppose M — Φ(A), with Ae^ 7 , is a ^(^)-set and S n V is a
^(^)77-set everywhere on M. The restriction ψ — φ\Z of ^ is an
order isomorphism mapping Z onto a set £7 c F and S f)U is a
α/r(^)77-set everywhere on the ψ(^)-set JSΓ = ψ(ζ(A))cM. Since Sn
ί/6S5[αK^)], there is a α/r(jr)-set P c i V such that P n (17- S) is a
α/r(^)7-set. Let P = ψ(2?), with Be %T. The set L = φ(B), where β
denotes the closure of B, is a ^(^)-set contained in ikf and L Π
( F — S), which differs from P Π(U — S) by at most a countable set,
is a 9(<if )7-set. Therefore S ΓiVe ^B[φ(^)] and we conclude S has
the absolute Baire property with respect to (X, ^ ) .

Finally, it is easily seen from the equalities φ(^)i — φ{^i) and
= ψ(%Ί) that the absolute ^7-sets coincide with the absolute
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As a consequence of this theorem, we see that we can unify
the concepts of the classical Baire property in the restricted sense,
absolute measurability, and Marczewski's property (s) by taking
K = Z (and <& = %) in Definition 4. We are thus led to introduce
the following definition, which is a special case of Definition 4 to
which we have added the notion of an absolute ^-singular set.

DEFINITION 5. Let (Z, ΐf) be a ^-family. A set SczX has the
absolute Baire property with respect to (Z, <£*) [respectively, is an
absolute ^-set , is an absolute ^-singular set] if for every order
isomorphism φ mapping Z into X, the set S Π Φ(Z) has the Baire
property with respect to (φ(Z), φ{r^)) [respectively, is a φ(^)j-set,
is a 0(^)-singular set].

Denoting by (Z, %*) the S-family associated with the ^3-family
(X, ^ ) , we see that in Examples 2A and 3A, the absolute ^-singular
sets are the same as the absolute ^-sets. In Example 1A however,
these two classes of sets are distinct, with the class of absolute %?-
singular sets coinciding with the class of ordinalίy scattered sets.
The notion of an ordinally scattered set was introduced by F.
Hausdorff (see [9] p. 458) who defined a set to be ordinally scattered,
or in his terminology a 'zerstreute Menge', if it has no order-dense
subset (with at least two elements). Alternatively, the ordinally
scattered sets may be characterized as the sets which have no subset
order isomorphic to the set of all rational numbers.

We shall refer to Definition 5 as the ordinal version of the
absolute Baire property.

3* The absolute Baire property: topological version* Upon
replacing in Definition 5 the words "order isomorphism" by the
word "homeomorphism", we obtain the following definition which
we call the topological version of the absolute Baire property.

DEFINITION 6. Let X be a topological space and let (Z, &) be
a ^-family of subsets of the set Z of all irrational numbers. A set
SczX has the absolute Baire property with respect to (Z9 ^) [respec-
tively, is an absolute <gVset, is a n absolute ^-singular set] if for
every homeomorphism φ mapping Z into X, the set S Π φ{Z) has the
Baire property with respect to (φ(Z), φ{^)) [respectively, is a φ(^)r
set, is a ^(^)-singular set].

We now proceed to show that this definition embodies the classical
Baire property in the restricted sense, absolute or universal measur-
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ability, and Marczewski's property (s), at least in the setting of a
complete separable metric space X which is what we assume X to
be for the remainder of this section.

EXAMPLE IB. Let (Z, Sf) be the 8-family associated with the
^3-family of Example 1A.

Recall that a set SdX has the classical Baire property relative
to a set EdX if every set G open relative to E contains a set H
open relative to E such that either H Π S or H Π {E — S) is of the
first category relative to E. For each set EdX, let &{E) denote
the family of all subsets of E which have the classical Baire property
relative to E and let S^(E) denote the family of all subsets of E
which are of the first category relative to E.

Originally, the terminology "Baire property" was used to refer
to what is presently called the "Baire property in the restricted
sense" (see [21] p. 319 and [22] p. 38). A set S c l has the Baire
property in the restricted sense if S Π P has the Baire property
relative to P, for every perfect set PaX. In the event that SnP
is of the first category relative to P, for every perfect set PdX,
then, following Lusin ([11] p. 115), S is said to be always of the
first category.

Denjoy (cf. [4] p. 765 fn, [5] p. 156 fn, [6]) has called 'ensemble
clairseme' any set SdX with the property that S Π P is nowhere
dense relative to P, for every perfect set P. Such a set is called
a scattered set, in English, and coincides with Cantor's earlier notion
of a 'separierte Menge', which is a set which has no (nonempty)
dense-in-itself subset (cf. [3] p. 228). Alternatively, the scattered
sets may be characterized as the sets which have no subset homeo-
morphic to the set of all rational numbers. Further equivalent
conditions characterizing the scattered sets may be found in [19].

A linear scattered set is not necessarily an ordinally scattered
set. For example, the set of all midpoints of the intervals comple-
mentary to the Cantor set is a scattered set which is not an ordinal-
ly scattered set.

However, every linear set which is ordinally scattered must be
a scattered set. For, by repeated application of the fact that if x
is any element of a set T homeomorphic to the set of all rational
numbers which is neither a first nor a last element of Γ, then each
of the sets {t e T: t < x) and {t e T: t > x} is a denumerable dense-in-
itself set and hence, according to a theorem of Sierpiήski [20], is
homeomorphic to the set of rational numbers, one can determine,
in any set S which is not scattered, a denumerable subset of points
x which is order isomorphic to the set of rational numbers, to con-
clude the set S is not ordinally scattered.
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In the proof of our next theorem, we shall make use of the
following elementary fact.

LEMMA 2. If P is a perfect set in X and E is a Borel subset
of P such that P — E is of the first category relative to P, then for
every set SdX

( i ) Sf] EeS>*(E) if and only ifSn PeS^(P).
(ii) S n Ee^(E) if and only if S Π Pe^(P).

THEOREM 2. If X is a complete separable metric space then the
sets which have the absolute Baire property with respect to (Z, %*),
the absolute %rsets, and the absolute ^-singular sets coincide, re-
spectively, with the subsets of X which have the Baire property in
the restricted sense, the sets always of the first category, and the
scattered sets.

Proof. Let P be a given perfect set in X. By a theorem of
Marczewski ([26] Auxiliary Theorem I), there is a set E which is a
S^-set relative to P such that P — E is of the first category relative
to P and there is a homeomorphism φ mapping Z onto E. If SaX
has the absolute Baire property with respect to (Z, %) then S Π E e
SBfoCSf)] == ̂ ?(#) and, by Lemma 2, S n P e ^ ( P ) . If S is an
absolute J^-set then SnEeφ(Sr)j = Sf{E) and hence SpiPeS^(P).
Therefore, if S c X has the absolute Baire property with respect to
(Z, /T) then S has the Baire property in the restricted sense and if
S is an absolute ^-set then S is always of the first category.

Conversely, let φ be a homeomorphism mapping Z onto a set
EdX. Each point of E will be a condensation point of E and
consequently the closure of E in X is a perfect set P. Moreover,
E being a dense ^>set in P, the set P — E is of the first category
relative to P. Hence if S c X has the Baire property in the restricted
sense then Sf)Pe^(P) and, by Lemma 2, SnEe^(E) = 58[φ(βtr)].
If S is always of the first category then S P\ Pe S^(P) and con-
sequently SπEe^(E) = Φ(^)i. Thus, if S has the Baire property
in the restricted sense then S has the absolute Baire property with
respect to (Z, %) and if S is always of the first category then S is
an absolute ^Γ7-set.

It now remains only to show that the absolute ^-singular sets
coincide with the scattered sets. In the proof of this fact we shall
use the letters Q and R to denote the sets of rational and real
numbers respectively.

Assuming S is not scattered, there exists a homeomorphism /
mapping Q onto a set TczS. Apply Lavrentiev's theorem to extend
/ to a homeomorphism /* between S^Vsets Q* and T*9 with Q c
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Q* (Z.R and Γ c f c l . It follows from a theorem of Mazurkiewicz
(see [10] p. 441-442) that upon the removal from Q* of an at most
countable set of irrational numbers we obtain a set Q**, with Q c
Q**cQ*, which is homeomorphic to Z. Let g be a homeomorphism
mapping Z onto Q** and set ψ = f* °g. Since g~\Q) is dense in Zf

the set φ(g~\Q)) = /*(Q) = Γ is dense in ψ{Z) and consequently
S Π φ{Z) is not ^(^)-singular. Therefore the set S is not an absolute
^IΓ-singular set.

Conversely, suppose S is not an absolute ^-singular set. Then
there exists a homeomorphism φ mapping Z into X and a ^(^Γ)-set
E such that SfΊi^ is nonempty for every ^(^)-set FaE. Denoting
by Σ the set of all (nonempty) finite sequences of O's and l's, we
construct inside A — Φ~~\E) a dyadic schema (Aσ}σeΣ of ^Γ-sets
satisfying the conditions:

(a) if σ, TGΣ and σ is an initial section of τ, then AτaAσ.
(b) if σ, τ 6 Σ, a Φ τ, and both have the same length Aσ and

Aτ are disjoint.
( c ) if σ e 2* and σ has length n, then diam (Aσ) <Ξ 1/w diam (A).
(d) if σ e J , σ has a length w, and Σin + 1, σ) is the set of

all sequences of O's and l's of length n + 1 which have σ as an
initial section, then Aσ = \J {Aτ: τ e Σ{n + 1, σ)}.

Let T be a set formed by choosing one point in each of the
sets S Π φ{Aσ), for all σ e Σ. The set T is homeomorphic under φ
to a denumerable, dense-in-itself subset of Z and hence is homeo-
morphic to Q. Therefore, S is not scattered.

EXAMPLE 2B. Let (Z9 ?€) be the 8-family associated with the
^3-family of Example 2A.

For each set EaX, let .^(E) denote the family of all Borel
subsets of E. If E is a Borel set in X and μ is a measure on
(E, ,^{E)) then we shall denote by ^f(μ) the family of all subsets
of E which are measurable with respect to the completion μ of
μ and by ^V{μ) the family of all subsets of E which are of measure
zero with respect to the completion μ of μ.

A set S c l is called absolutely measurable if Se^t(μ) for
every continuous probability measure μ on (X, &(X)) and is called
an absolute null-set if S e <yK(μ) for every such measure μ. In
Euclidean spaces, the absolutely measurable sets (respectively, the
absolute null-sets) coincide with those sets every homeomorphic image
of which is Lebesgue measurable (respectively, of Lebesgue measure
zero) (cf. [25], especially §4.2 (iii), and [12]).

The family S3(^) of sets which have the Baire property with
respect to (Z, JΓ) is the family of Lebesgue measurable subsets of Z
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and the ^-sets are the subsets of Z of Lebesgue measure zero.
We shall denote by λ a continuous probability measure defined on
(Z, &(Z)) such that ^€(X) = S3(^) and ^T(λ) = JT7. The existence
of such a measure λ follows from the fact that there exists a
Lebesgue measurability-preserving homeomorphism between Z and
the set of all irrational numbers in the unit interval.

THEOREM 3. If X is a complete separable metric space then the
subsets of X which have the absolute Baire property with respect
to (Z9 %) are the same as the absolutely measurable sets and the
absolute %[~sets, as well as the absolute ^-singular sets, are the same
as the absolute null-sets.

Proof. Let μ be a continuous probability measure on (X,
It is a consequence of Theorem 2 [18] of J. Oxtoby, that there exists
a homeomorphism φ mapping Z onto a S^-set EaX such that
μ(X - E) = 0, Φ[Λ?(\)] = ^(μE), and φ[^K(X)] = ^T(βE)9 where
μE denotes the restriction of μ to (E, &(E)). We then have

Therefore, if SaX has the absolute Baire property with respect to
(Z, %*) then S is absolutely measurable and if S is an absolute %*r

set then S is an absolute null-set.
Suppose now that φ is a homeomorphism mapping Z onto a set

EaX. Let μ = λ^Γ1 be the measure on (J?, &(E)) induced by φ and
λ; i.e., μ(B) = λ^" 1 ^)] for each Be&(E). The measure ^ is a
continuous probability measure on &(E) which is positive on sets
open in E. Moreover, Λ'(μ) = ^&[Φ(^)] and ^ r ( ^ ) = ^ ( ^ ) j . Extend
/i to a continuous probability measure μ on (X, &(X)) by defining
jδ(5) = μ(B n S) for each B e <5£{X). Then ^T(μ) = {SnE:Se ^tφ)}
and Λ^(μ) = {SnE:SeΛ^φ)}. Therefore, if S c X is absolutely
measurable then S has the absolute Baire property with respect to
(Z9 %) and if S is an absolute null-set then S is an absolute ^-set .

EXAMPLE 3B. Let (Z, %*) be the S-family associated with the
φ-family of Example 3A.

We call a set S c l a Marczewski set if every perfect set PcX
contains a perfect set Q such that either QcS or Q c l - S , and
call S a Marczewski singular set if every perfect set P contains a
perfect set Q disjoint from S. These sets coincide with the sets
having the properties (s) and (s°), respectively, introduced by
Marczewski in [24]. In view of the fact that every perfect set in
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X contains a set homeomorphic to Z, and vice versa, we may replace
the perfect sets in the foregoing definition by sets homeomorphic
to Zj to obtain an equivalent definition which we shall use below.

THEOREM 4. If X is a complete separable metric space then the
sets which have the absolute Baire property with respect to (Z, 3?)
coincide with the Marczewski sets and the absolute %Ί-sets, which are
the same as the absolute ̂ -singular sets, coincide with the Marczewski
singular sets.

Proof. Assume ScX has the absolute Baire property with
respect to (Z, %*) and let E aX be any set homeomorphic to Z\ say
E — φ(Z), where φ is a homeomorphism mapping Z onto E. Since

[φ(^r)] =0[S3C3r)], the set φ~\S f] E) belongs to the σ-field
which consists of all linear Marczewski sets contained in Z.

Hence there is a ^Γ-set Bd Z such that either B c φ~\S Π E) or
BCLZ - φ~\SnE). It follows that F = φ{B) is a (̂ T)-set contained
in E which is homeomorphic to Z, and either FczS or FczX — S.
Thus S is a Marczewski set in X.

Conversely, suppose S is a Marczewski set in X and let φ be any
homeomorphism mapping Z onto a set EaX. Since the S -̂ set E is
a Marczewski set in X and the intersection of two Marczewski sets
is a Marczewski set, S Π E is a Marczewski set in X. If A is any
^(^)-set, then A contains a set C which is homeomorphic to Z such
that CaSnE or CaX - (S Π E). Moreover, C contains a ^(^)-set
B. Now, from the inclusion BaSΠ E we obtain BΠ [X-(SΠ E)] = 0
and from the inclusion BaX — (S Π E) we obtain I? Π (S Π E) — 0 .
Hence B is a ^(^Γ)-set contained in A and either BΠ(SΠ E) eφ(%Ί) =
φ(ST)j or B n [X - (S n #)] e 0(-ϊT )i; i.e., S n ^ e SBfo(,Sf)].

Thus the sets which have the absolute Baire property with
respect to (Z, 3Γ) coincide with the Marczewski sets. By a similar
argument it is seen that the absolute ^Γ7-sets coincide with the
Marczewski singular sets.

In [24] §5, Marczewski has shown that, in a complete separable
metric space, the σ-field of absolutely measurable sets and the σ-field
of sets which have the classical Baire property in the restricted
sense are contained in the σ-field of Marczewski sets. More generally,
by an argument similar to that used to prove Theorem 21 [14], one
can prove

THEOREM 5. Let (Z, %*) be the 2-family associated with a *β-
family of subsets of the real line. If X is a complete separable
metric space then the σ-field of subsets of X which have the absolute
Baire property with respect to (Z, %*) is contained in the σ-field of
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Marczewski sets in X and the σ-ίdeal of absolute %τ-sets in X is
contained in the o-ideal of Marczewski singular sets.

As we have seen above, Definitions 5 and 6 are not equivalent,
since the absolute ^-singular sets of Examples 1A and IB are not
the same. There are, however, many theorems in the theory of
linear ordered sets which have topological counterparts obtained by
replacing ordinal concepts by corresponding topological concepts,
and vice versa. Not only are the statements of these corresponding
theorems analogous, but one can frequently give completely analog-
ous proofs, in which any usage of Lavrentiev's theorem on extension
of homeomorphisms is replaced by the usage of an analogous theorem
on extension of order isomorphisms (see [14] Lemma 5). We shall
not enter here into a detailed discussion of these analogies, but
merely note that, with respect to this ordinal-topological duality,
Definitions 5 and 6 are the appropriate analogues of one another.

3. Topological invariance* Theorem 27 of [14] established,
under certain conditions, the in variance under order isomorphisms
of the absolute Baire property as defined in §2. By a similar argu-
ment, we prove in this section a general theorem on the invariance
under homeomorphisms of the absolute Baire property as defined in

O .

DEFINITION 7. Let (Z, &*) be any ^-family. A set S c Z is
called ^-homogeneous if for every point x e S and every open interval
I containing x, S Π I is a ^ / 7-set.

We assume throughout this section that (Zt ^) is a ^-family
which is equivalent to a family (Zf %) that has been derived from
a ^β-family of perfect subsets of the real line in the manner given
in Theorem 1. It then follows that all countable subsets of Z are
<gVsets, all Borel sets in Z have the Baire property with respect to
{Z, <&), and Z is a ^-homogeneous set. Moreover, the sets which
have the absolute Baire property with respect to (Z, ^) and the
absolute ^V-sets, in a given space X, are the same as the sets which
have the absolute Baire property with respect to (Z, ^Γ) and the
absolute ^-sets, respectively.

THEOREM 6. If (Z, ^ ) satisfies the conditions
(1) ^ is the set of all ^-homogeneous sets homeomorphic to

Z,
(2) for every ^-set A, there is a homeomorphism ψ mapping

Z onto A such that f(^) = {B e <if: B c A},
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then the absolute Baire property with respect to (Z, <£*) and the
property of being an absolute cέ?rset are topologically invariant in
complete metric spaces.

Proof. Assume X is a complete metric space, S is a subset of
X, and / is a homeomorphism mapping S onto a set T contained in
a complete metric space Y. Apply Lavrentiev's theorem ([10] p.
429) to extend / to a homeomorphism g between 2^>sets $* and T*,
where S c S * c I a n d Γ c f c 7 ,

Let φ be any homeomorphism mapping Z onto a set L = φ(Z) c Y
and suppose E is a ^(^)-set on which T Π L is a φ(&?)II-set every-
where. We shall first establish the existence of a homeomorphism
h mapping Z onto a set K = h{Z) c X such that K is an ^(^)-set
and S Π JBΓ is an h(&?)II-8et everywhere on K.

The set E, being homeomorphic to Z, is a S^-set, as is also the
set J5n ϊ7*. According to a theorem of Mazurkiewicz (see [10] §36),
upon the deletion of an at most countable set from E Π T*, we
obtain a set F which is homeomorphic to Z.

Now F is a 0(<^)77-set everywhere on the φ(^)-set E. To see
this, it suffices to show E n T* is a 0(^)77-set everywhere on i?,
since (E Π Γ*) — F is countable and consequently is a 0(<^)7-set. If
C is any ^(£f>set contained in E, then ( T f l L ) n C = T Γ\ C = C f]
(E n Γ) is a ^(^)7/-set. Hence Cn(J?n Γ*) is a (̂<if )ZJ-set for
every ^(^)-set CdE. F being a φ(^)n-set everywhere on the
φ(^)-set E, the set A = Φ~\F) is a ^Z7-set everywhere on the ^~
set B = Φ~\E). We shall show A is itself a 'Sf-set.

Suppose xeA and 7 is any open interval containing x, then x
belongs to the ^-set B and I f] B is a ^ I Z-set. By the Fundamental
Theorem, IΠ -B is a ^jj-set everywhere on some ^-set C. The set
β Π C is then a <^7/-set which, by Proposition 1 [14], contains a <g5'-
set D. Since I (Ί J5 has the Baire property with respect to ^ and
is a ^ J 7-set everywhere on D, the set D — (I Π i?) = D — I is a ^ j -
set. It follows from the equality A Π D = [(A n 23) ΓΊ /] U [(A Π D) - 1 ]
and the fact that A is a ^ J 7-set everywhere on B, hence also on D,
that (A n D) Π / is a ^ J 7 -set. Therefore, A Π / is a ^j-set for
every open interval I containing a? and we conclude A is a

Let ψ be a homeomorphism mapping Z onto A such that
} and set h — g~lQ{φQψ). It is easily seen that φ o

c ί 7 } and, by Proposition 1 [14], that every
set [ J c F i s a 0(<^)7-set. As Td F is a ^(^)77-set everywhere on
ί7, the set TΠF is a ^oψ>(^)7I-Set everywhere on F, and g-\TnF) =
S Π fe(Z) is an fe(^)77-set everywhere on g~\F) = Λ(Z). Setting
i ί = λ(Z), we have established the existence of the desired homeo-
morphism.
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It now follows immediately that if S is an absolute ^7-set, then
T = f(S) is also an absolute ί̂ V-set.

On the other hand, if S has the absolute Baire property with
respect to (Z, ^ ) , there is an h(^)-set Hag~~\F) such that H Π
[g'\F) - g-\TΓ\F)] is an h(5f)raet; whence D = g(H) is a φoψ{%?)r

set. Therefore D is a ^(ΐf)-set contained in E and ΰ n [ L ~ ( Γ ί Ί L ) ]
is a ^(ίTVset. T h e s e t TΠ L = Td Φ(Z) is thus seen to have the
Baire property with respect to (Φ(Z), φ{^)) for any homeomorphism
φ mapping Z into Y; hence T = /(S) has the absolute Baire property
with respect to (Z,

EXAMPLE 1C. The topological invariance of the classical Baire
property in the restricted sense was first established for Euclidean
spaces by W. Sierpiήski [21]. By means of Lavrentiev's theorem
on the extension of homeomorphisms for complete metric spaces,
Sierpiήski's theorem readily extends to this more general situation
(cf. [10] p. 432).

If we take ^ to be the family of all ^-sets in Z which are
homeomorphic to Z and of the second category in Z at each of
their points, then we obtain a ^-family (Z, ^) which is equivalent
to the S-family (Z, %) of Example IB and which satisfies conditions
(1) and (2) of Theorem 6. In view of Theorem 2, we may then
conclude from Theorem 6.

COROLLARY 1. The classical Baire property in the restricted
sense and the property of a set being always of the first category
are topologically invariant in complete separable metric spaces.

EXAMPLE 2C. The topological invariance of absolute measurabili-
ty was established for complete separable metric spaces by W.
Sierpiήski and E. Szpilrajn/Marczewski (see [23], [25]).

Taking ^ to be the family of all SVsets contained in Z which
are homeomorphic to Z and of positive Lebesgue measure at each
of their points, we obtain a ^-family equivalent to the S-family
(Z, 3Γ) of Example 2B. Applying Theorems 3 and 6, we obtain

COROLLARY 2. Absolute measurabilίty and the property of being
an absolute null-set are topologically invariant in complete separa-
ble metric spaces.

EXAMPLE 3C. If ^ is the family of all gVsets contained in Z
which are homeomorphic to Z, then (Z, &) is a ^-family equivalent
to the S-f amily (Z, %) of Example 3B. By means of Theorems 4 and
6, we obtain the following theorem of E. Marczewski [24].
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COROLLARY 3. The class of Marczewski sets and the class of
Marczewski singular sets are topologically invariant in complete
separable metric spaces.
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