REPRESENTATIONS OF WITT GROUPS

JOHN BRENDAN SULLIVAN
REPRESENTATIONS OF WITT GROUPS

JOHN BRENDAN SULLIVAN

This paper gives a tensor product theorem for the coordinate rings of the finite-dimensional Witt groups. This theorem leads to a demonstration of the equivalence of the representation theory of the Witt groups with that of certain truncated polynomial rings.

Introduction. The Steinberg tensor product theorem [1, Ch. A, §7] for a simply connected, semisimple algebraic group G in characteristic p displays irreducible G-modules as tensor products of Frobenius powers of infinitesimally irreducible G-modules (modules which are irreducible for the kernel G^i of the Frobenius morphism of G).

A goal of modular representation theory is the expression of the coordinate ring of G in terms of tensor products of Frobenius powers of G-modules which are suitably elementary for G^i. In this paper, we give a tensor product theorem for the finite-dimensional Witt groups. We produce a subcoalgebra C of the coordinate ring A of the m-dimensional Witt group W_m which is isomorphic to the coordinate ring of the kernel W_m^i of the Frobenius morphism. A is the inductive limit of tensor products of Frobenius powers of C [§3, Theorem].

One can see some things about the representations of W_m. First, every finite-dimensional representation of W_m extends to a representation of W_m on the same representation space [§5]. Second, a representation of W_m on a finite-dimensional vector space V is determined by a family (f_1, \ldots, f_n) of commuting endomorphisms of V such that $f_i^{p^m} = 0$. In other words, the representations of W_m on V may be studied via the representations of the algebras $k[x_1, \ldots, x_n]/(x_1^{p^m}, \ldots, x_n^{p^m})_n$ on V [Theorem, §4]. In particular, the representations of W_m which correspond to the representations of $k[x_1]/(x_1^{p^m})$ give canonical extensions for the representations of W_m^i.

This linear formulation of the representation theory of W_m leaves one with the apparently difficult problem of determining the representation theory of $k[x_1, \ldots, x_n]/(x_1^{p^m}, \ldots, x_n^{p^m})$.

For the definition of the Witt groups, see [2, Ch. 5, §1].

NOTATION. Let A denote the coordinate ring of the m-dimensional Witt group W_m, as a reduced, connected group scheme over the prime field $k = F_p$. For any subcoalgebra C of A which contains k, let $C^{(p^i)}$ be the image of C under the ith-power of the Frobenius
morphism of A. We may form the inductive family of coalgebras
$\{C \oplus C(p) \oplus \cdots \oplus C(p^n)\}_{n=0}^{\infty}$, where $C \oplus \cdots \oplus C(p^n) \hookrightarrow C \oplus \cdots \oplus C(p^n) \otimes C(p^{n+1})$ is the canonical morphism onto $C \oplus \cdots \oplus C(p^n) \otimes k$. Let
$\lim_{n \to \infty} C \oplus C(p) \oplus \cdots \oplus C(p^n)$ be the coalgebra inductive limit of the family.

Let $\Pi: A \to A/M(p)A$ be the quotient morphism, where $M(p)$ is the image of the augmentation ideal M under the Frobenius morphism. We show in §3 that there is a coalgebra splitting $s: A/M(p)A \to A$ of Π such that A, as a coalgebra, is isomorphic to $\lim_{n \to \infty} C \oplus C(p) \oplus \cdots \oplus C(p^n)$ where $C = \text{image } s$.

0. We require some facts from [3, Def. 6] of K. Newman. Let W_{m+1} be the $(m + 1)$-dimensional Witt group over $k = F_p$, with coordinate ring A_{m+1}. As an algebra, A_{m+1} is the polynomial ring $k[X_1, X_p, X_p^2, \ldots, X_p^{m}]$ on $(m + 1)$-variables. Grade A_{m+1} by letting X_p^i have degree p^i. The coproduct Δ of A_{m+1} is the following: $\Delta X_p^i = \sum_{o \leq j \leq i} Q_j \otimes Q_{p^i-j}$, where Q_j is a homogeneous (relative to the grading) polynomial of degree j. In particular, $Q_0 = 1$, $Q_p^i = X_p^i$ and $\{Q_j\}_{j=0}^m$ is a sequence of divided powers.

Since degree $Q_j = j$, Q_j lies in $k[X_1, X_p, \ldots, X_p^{m-1}]$ for $j < p^m$. The coordinate ring A of W_m may be identified with the sub-Hopf algebra $k[X_1, X_p, \ldots, X_p^{m-1}]$ of A_{m+1}.

1. The coalgebra splitting of Π. $M = (X_1, X_p, \ldots, X_p^{m-1})$ is the augmentation ideal of A. Let C be the k-span of $\{Q_j\}_{j=0}^{m-1}$. C is an irreducible coalgebra of dimension p^m, with $k \cdot X_1$ as its space of primitive elements. Since the coalgebra map $f: C \hookrightarrow A \xrightarrow{\Pi} A/M(p)A$ has an injective restriction to $k \cdot X_1$, f is injective [5, Lemma 11.0.1]. Since $(A/M(p)A)^*$ is the restricted universal enveloping algebra of $(M/M^2)^*$ [3, 13.2.3], $\dim_k (A/M(p)A)^* = p^{\dim_k (M/M^2)^*} = p^m$. Therefore, $\dim_k (A/M(p)A) = p^m$ and f is an isomorphism. $s = f^{-1}$ is the coalgebra splitting of Π that we use.

2. The value of Π at Q_j. Let $0 \leq j < p^m$. Write $j = \sum_{i=0}^{m-1} a_i p^i$ where $0 \leq a_i < p$.

Lemma. $\Pi(Q_j)$ is a nonzero scalar multiple of $\Pi(X_1^{a_0}X_p^{a_1} \cdots X_p^{a_{m-1}})$.

Proof. Q_j is a linear combination of elements $X_1^{b_0}X_p^{b_1} \cdots X_p^{b_{m-1}}$ where $\sum b_i p^i = j$ by §0. If $\{b_i\} \neq \{a_i\}$, then $b_i \geq p$ for some i, and $\Pi(X_1^{b_0}X_p^{b_1} \cdots X_p^{b_{m-1}}) = 0$. Therefore, $\Pi(Q_j) \in k \cdot \Pi(X_1^{a_0}X_p^{a_1} \cdots X_p^{a_{m-1}})$, where the coefficient of $\Pi(X_1^{a_0}X_p^{a_1} \cdots X_p^{a_{m-1}})$ is nonzero since the map
3. The coalgebra structure of the coordinate ring. Give the set of monomials in A the reverse lexicographic total order: $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}} > X_1^{b_0}X_2^{b_1} \cdots X_p^{b_{m-1}}$ if there is an index k such that $a_k > b_k$ and $a_i = b_i$ for $i > k$.

Let $(a_i)_{i=0}^{m-1}$ be a sequence where $0 \leq a_i < p$, and let $(b_i)_{i=0}^{m-1}$ be a different sequence, where $0 \leq b_i$.

Lemma. If $\sum_{i=0}^{m-1} a_i p^i = \sum_{i=0}^{m-1} b_i p^i$, then $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}} > X_1^{b_0}X_2^{b_1} \cdots X_p^{b_{m-1}}$.

Proof. Let k be the maximal index such that $a_k \neq b_k$. If $b_k > a_k$, then $\sum_{i=0}^{m-1} b_i p^i > \sum_{i=0}^{m-1} a_i p^i$ since $a_i < p$. Therefore, we must have $a_k > b_k$ and $X_1^{a_0} \cdots X_p^{a_{m-1}} > X_1^{b_0} \cdots X_p^{b_{m-1}}$.

Let C be the coalgebra formed in §1.

Theorem. The map $\lim_{n} C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \rightarrow A$, induced by multiplication; $C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \rightarrow A$, is an isomorphism of coalgebras.

Proof. Denote the map by g.

Surjectivity of g. Suppose that monomials $X_1^{b_0}X_2^{b_1} \cdots X_p^{b_{m-1}}$ less than $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}}$ in the ordering lie in the image of g. We show that $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}}$ also lies there.

Write $a_i = \sum_j a_{ij} p^j$, where $0 \leq a_{ij} < p$. Let $t_k = \sum_{i=0}^{m-1} a_{ik} p^i$. By the lemmas of §2 and §3,

$$Q_{t_k} = U_k \cdot X_1^{a_{0k}}X_2^{a_{1k}} \cdots X_p^{a_{m-1,k}} + Y_k,$$

where Y_k is a linear combination of monomials of degree t_k and less than $X_1^{a_{0k}} \cdots X_p^{a_{m-1,k}}$ in the ordering, and where U_k is a nonzero scalar. Therefore,

$$\prod_{k=0}^{m-1} Q_{t_k} = \prod_{k=0}^{m-1} U_k \cdot X_1^{a_{0k}}X_2^{a_{1k}} \cdots X_p^{a_{m-1,k}} + Y,$$

where Y is a linear combination of monomials which are less than $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}}$. Since $\prod_{k=0}^{m-1} Q_{t_k}$ and Y lie in the image of g, so does $X_1^{a_0}X_2^{a_1} \cdots X_p^{a_{m-1}}$.

Injectivity of g. Since g is surjective, so is $\Pi \circ g : \lim_{n} C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \rightarrow A \otimes A/\{M^{(p^t)}A \}$ for any t; at the same time, $C^{(p^j)} \hookrightarrow A \rightarrow A/M^{(p^j)}A$ has image $= k$ if $j \geq t$. Therefore, $C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^{t-1})} \rightarrow A \otimes A/M^{(p^t)}A$ is surjective. Since $\dim_k (A/M^{(p^t)}A) = p^{mt}$
by [4] or by inspection, and \(\dim_k (C \otimes C^{(p)} \otimes \cdots \otimes C^{(p_{t-1})}) = p^{m t} \),
\(\Pi \circ \text{mult.} \) is an isomorphism of coalgebras. In particular, \(C \otimes C^{(p)} \otimes \cdots \otimes C^{(p_{t-1})} \xrightarrow{\text{mult.}} A \) is injective. Hence, \(g \) is injective.

4. Representation theory of \(W_m \). The dual algebra \(U = (A/M^{(p)} A)^* \) is the restricted universal enveloping algebra of the abelian \(p \)-Lie algebra \(L = (M/M^p)^* \) [5, 13.2.3].

Lemma. There is a \(k \)-basis \(f_0, \ldots, f_{m-1} \) for \(L \), where \(f_i = f_{i+1} \) for \(i < m - 1 \) and \(f_{m-1}^p = 0 \).

Proof. Define \(f_j \) on the \(k \)-basis \(X_1, X_2, \ldots, X_p \) for \(M/M^2 \) by \(f_j(X_{p^i}) = \delta_{ij} \). We have the following to complete the proof.

1. If \(i \neq j + 1 \), then \(f_j(X_{p^i}) = (\text{mult} f_j)(d^{p-1}X_{p^i}) = 0 \), since \(d^{p-1}X_{p^i} \) is homogeneous of degree \(p^i \) under the grading of \(\text{mult} A \). \(A \) induced from the grading of \(A \), while \(\text{mult} f_j \) can be nonzero only at monomials in \(\text{mult} A \) of degree \(p^{j+1} \).

2. One may check that \(f_j(X_{p^{j+1}}) = 1 \).

To proof is complete.

By this lemma, the algebra map from the polynomial ring \(k[f] \) to \(U \) mapping \(f \) to \(f_i \) induces an isomorphism of \(k \)-algebras \(k[f]/(f^{p^m}) \cong U \).

Denote by \(R_n \) the set of isomorphism classes of finite-dimensional representations of \(W_m \) whose coefficients lie in \(C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^{n+1})} \hookrightarrow A \). The canonical map \(C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \hookrightarrow C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \otimes C^{(p^{n+1})} \) induces \(R_n \hookrightarrow R_{n+1} \). Then \(R = \bigcup_n R_n \) is the set of isomorphism classes of finite-dimensional representations of \(W_m \).

Let \(B \) denote the quotient of the polynomial ring \(F_p[X_0, \ldots, X_n, \ldots] \) on generators \(\{X_i\}_{i=0}^n \) by the ideal \((X_0^{p^n}, \ldots, X_n^{p^n}, \ldots) \). Denote by \(\hat{B} \) the set of isomorphism classes among those finite-dimensional representations of \(B \) in which all but a finite number of the \(X_i \) act as the zero endomorphism. Denote by \(\hat{B}_n \) the set of isomorphism classes of finite-dimensional representations of \(B \) in which all but a finite number of the \(X_i \) act as the zero endomorphism. Denote by \(\hat{B}_n \) the set of isomorphism classes of finite-dimensional representations of \(k[X_0, \ldots, X_n]/(X_0^{p^n}, \ldots, X_n^{p^n}) \). The map \(k[X_0, \ldots, X_n]/(X_0^{p^n}, \ldots, X_n^{p^n}) \to k[X_0, \ldots, X_n]/(X_0^{p^n}, \ldots, X_n^{p^n}) \), \(X_i \mapsto X_i \) for \(i \leq n \) and \(X_i \mapsto 0 \) for \(i > n \), induces \(\hat{B}_n \hookrightarrow \hat{B} \), and \(\hat{B} = \bigcup_n \hat{B}_n \).

Theorem. There is a canonical bijection \(R \to \hat{B} \), under which \(R_n \) and \(\hat{B}_n \) correspond.

Proof. Since \(C \cong A/M^{(p)} A \) as coalgebras, \(C^* \cong U \) as algebras. Since \(A \) is reduced, the Frobenius morphism on \(A \) is injective, and \(C \cong C^{(p)} \). Therefore,
The first isomorphism is induced by the maps \(I^7 \rightarrow (C(g, C(3, g) \cdot g^* C(p^n)) \) which are dual to the maps
\[
\beta_j \text{ is the counit of } C^{(p)}; \text{ the second isomorphism is induced by } X_t \mapsto 1_0 \otimes \cdots \otimes 1_{t-1} \otimes f_1 \otimes 1_{t+1} \otimes \cdots \otimes 1_n, \text{ where } 1_j \text{ is the identity of } U_j. \text{ Here } u_j \text{ is the } j\text{th copy of } u \text{ in } \otimes^{n+1} u. \text{ Moreover,}
\]
\[
(2) \text{ under dualization, the canonical map } C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)} \mapsto C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^{n+1})} \text{ yields the map } k[f_0, \cdots, f_{n+1}]/(f_0^p, \cdots, f_{n+1}^p) \rightarrow k[X_0, \cdots, X_n]/(X_0^p, \cdots, X_n^p) \text{ where } X_i \mapsto X_i \text{ for } i \leq n \text{ and } X_{n+1} \mapsto 0.
\]
\[
The isomorphism \((C \otimes C^{(p)} \otimes \cdots \otimes C^{(p^n)})^* \cong k[X_0, \cdots, X_n]/(X_0^p, \cdots, X_n^p)\) of \((1)\) induces a bijection \(R_n \rightarrow \hat{B}_n\) such that \(R_n \rightarrow B_n\) commutes by \((2)\). Therefore, \(R \sim \hat{B}\).

5. Representations of \(W_m\). The coalgebra \(C\) constructed in \S 1 is isomorphic to the coordinate ring \(A/M^{(p)}A\) of \(W_m\) under the mapping \(\pi: A \rightarrow A/M^{(p)}A\) restricted to \(C\). Therefore, the representations of \(W_m\) with coefficients in \(C\) correspond to the representations of \(W_m^i\) via the isomorphism between the coefficient coalgebras \(C\) and \(A/M^{(p)}A\), and very finite-dimensional representation of \(W_m^i\) extends to a representation of \(W_m\) on the same representation space.

REFERENCES

Received May 7, 1977. Supported in part by a National Science Foundation Grant.

UNIVERSITY OF WASHINGTON
SEATTLE, WA 98195
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su-Shing Chen</td>
<td>Weak rigidity of compact negatively curved manifolds</td>
<td>273</td>
</tr>
<tr>
<td>Heinz Otto Cordes and D. A. Williams</td>
<td>An algebra of pseudodifferential operators with nonsmooth symbol</td>
<td>279</td>
</tr>
<tr>
<td>Herbert Paul Halpern</td>
<td>Normal expectations and integral decomposition of type III von Neumann algebras</td>
<td>291</td>
</tr>
<tr>
<td>G. Hochschild</td>
<td>On representing analytic groups with their automorphisms</td>
<td>333</td>
</tr>
<tr>
<td>Dean G. Hoffman and David Anthony Klarner</td>
<td>Sets of integers closed under affine operators—the closure of finite sets</td>
<td>337</td>
</tr>
<tr>
<td>Simeon Ivanov</td>
<td>On holomorphic relative inverses of operator-valued functions</td>
<td>345</td>
</tr>
<tr>
<td>O. P. Juneja and M. L. Mogra</td>
<td>Radii of convexity for certain classes of univalent analytic functions</td>
<td>359</td>
</tr>
<tr>
<td>Hadi Kharaghani</td>
<td>The evolution of bounded linear functionals with application to invariant means</td>
<td>369</td>
</tr>
<tr>
<td>Jack W. Macki</td>
<td>A singular nonlinear boundary value problem</td>
<td>375</td>
</tr>
<tr>
<td>A. W. Mason and Walter Wilson Stothers</td>
<td>Remarks on a theorem of L. Greenberg on the modular group</td>
<td>385</td>
</tr>
<tr>
<td>Kevin Mor McCrimmon</td>
<td>Peirce ideals in Jordan algebras</td>
<td>397</td>
</tr>
<tr>
<td>John C. Morgan, II</td>
<td>On the absolute Baire property</td>
<td>415</td>
</tr>
<tr>
<td>Gerard J. Murphy</td>
<td>Commutative non-Archimedean C*-algebras</td>
<td>433</td>
</tr>
<tr>
<td>Masafumi Okumura</td>
<td>Submanifolds with L-flat normal connection of the complex projective space</td>
<td>447</td>
</tr>
<tr>
<td>Chull Park and David Lee Skoug</td>
<td>Distribution estimates of barrier-crossing probabilities of the Yeh-Wiener process</td>
<td>455</td>
</tr>
<tr>
<td>Irving Reiner</td>
<td>Invariants of integral representations</td>
<td>467</td>
</tr>
<tr>
<td>Phillip Schultz</td>
<td>The typeset and cotypeset of a rank 2 abelian group</td>
<td>503</td>
</tr>
<tr>
<td>John Brendan Sullivan</td>
<td>Representations of Witt groups</td>
<td>519</td>
</tr>
<tr>
<td>Chia-Chi Tung</td>
<td>Equidistribution theory in higher dimensions</td>
<td>525</td>
</tr>
<tr>
<td>Toshio Uda</td>
<td>Complex bases of certain semiproper holomorphic maps</td>
<td>549</td>
</tr>
</tbody>
</table>