
Pacific Journal of
Mathematics

COMPLEX BASES OF CERTAIN SEMIPROPER
HOLOMORPHIC MAPS

TOSHIO UDA

Vol. 78, No. 2 April 1978



PACIFIC JOURNAL OF MATHEMATICS

Vol. 78, No. 2, 1978

COMPLEX BASES OF CERTAIN SEMI-PROPER
HOLOMORPHIC MAPS

TOSHIO U D A

The existence theorem of complex bases of quasi-proper
holomorphic maps was studied by N. Euhlmann. In this
paper the existence of the complex bases in a more general
case will be shown.

0* Introduction. In the function theory of several complex
variables, the complex bases of holomorphic maps of analytic spaces
have been introduced as a generalized concept of Riemann surfaces
defined by inverse functions of given holomorphic functions of one
complex variable.

Let/:X—»Y be a holomorphic map of analytic spaces. How
does / have a complex base? Authors have discussed the sufficient
conditions which allow for the existence of a complex base of / (cf.
for example, [3], [5], [6], [7]). If / is proper, then / has a complex
base ([7]). N. Kuhlmann [3] showed existence theorems in the case
of quasi-proper (ΛΓ-quasi-proper). / is called quasi-proper (resp.
N-quasi-proper) if, for every compact subset K of Y, there exists
a compact subset K of X such that each of the irreducible branches
(resp. each of the connected components) of fibres on K intersects
K.

On this subject, an attempt will be made to abate the condition,
so that each of the given unions of connected components of fibres
intersects K. For such holomorphic maps, we shall have an existence
theorem of complex bases (of type of N. Kuhlmann's).

THEOREM. Let X be an irreducible normal analytic space, f:
X-+Y be a holomorphic map of X into an analytic space Y and
Ef be the set of degeneracy of f. Suppose that f satisfies (C) and
that f(Ef) is analytic in Y. Then f has a complex base (Z, ψ) and
Z is also normal. Moreover, the natural holomorphic map ψ with
f — ψoφ is proper and light, and ψ satisfies

1* Preliminaries. We assume in this paper that all analytic
spaces are reduced and have countable bases of open sets.

Let /: X —> Y and / t: X —> YΊ be holomorphic maps of analytic
spaces. fx is said to strictly depend on /, if fx is constant on each
connected component of fibres of /. f is said to be analytically
related to /, if / and /x strictly depend on each other. A pair
(Z, φ) is called a complex base of /, if Z is an analytic space, and
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if φ:X—>Z is a surjective holomorphic map which is analytically
related to /, and if, for each holomorphic map h:X—>T which
strictly depends on /, there exists a unique holomorphic map ψ: Z—> T
with h — ψ o φ.

A holomorphic map f:X-*Y is said to be semi-proper, if, for
each compact subset K of Y, there exists a compact subset K of
X such that f~\y) f]KΦ09 for yeKf] f(X); f is said to be quasi-
proper if B f] KΦ 0, for each irreducible branch B of f~\y). N.
Kuhlmann modified this definition ([3]); / is said to be N-quasi-
proper, if Nf]KΦ0, for each connected component ΛΓof f"\y). He
showed the existence of complex bases of iV-quasi-proper holomorphic
maps in [3].

Now, we consider a more general case in which each of the
given unions of connected components of f~\y) (y eKf)f(X)) inter-
sects K.

DEFINITION. A holomorphic map f: X-*Y is said to satisfy (C)
if / has the following property;

(C) Given an analytic set A in Y and a commutative diagram
of holomorphic maps

X- f ?

(f,h)\

(Y - A) x T

where ψ is light (that is, each fibre is discrete) and h: X-> T strictly
depends on f and (/, h) is a holomorphic map given by x\-> (f(x), h(x))f

and if K is a compact subset of (Y — A) x T, then there exists a
compact subset K of X — f~\A) such that φ~\p) Π K Φ 0, for

If / satisfies (C), then / satisfies the following (CJ (we take
A = 0 and h = / ) ;

(CL) Given a compact subset K of Y and a commutative diagram
of holomorphic maps

where ψ is light, then there exists a compact subset K of X such
that φ~\p) f]KΦ 0 for pe ψ~\K) Γ) <p(X).

Note that in such cases, /, φ, and (/, h) (in the two diagrams
above) are naturally semi-proper, and that if φ is surjective, ψ is
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proper; in this case ψ is finite! Every iV-quasi-proper holomorphic
map satisfies (C); for, if f:X->Y is JV-quasi-proper, so is {f,h).
Thus we have the following inclusion:

proper ===> quasi-proper ==> iV-quasi-proper

= > semi-proper .

LEMMA 1.1. ([4]) Let Y be a normal analytic space and f: X-+Y
be a proper modification map. If f is nowhere degenerate, then f
is a biholomorphic map.

LEMMA 1.2. Let X be an irreducible normal analytic space and
f: X^Y be a nowhere degenerate holomorphic map. If f satisfies
(CJ, then f has a complex base (Z, <p), and the natural holomorphic
map ψ: Z —>Y with f = ψoφ is proper and light.

Proof, f is nowhere degenerate, and so / has a complex base
(Z, φ) (cf. [6]). / is semi-proper, so f(X) is analytic in Y (cf. [1]).
Thus we may assume that / is surjective. Since / and φ are
analytically related and X has a countable basis, ψ~\y) — φ{f~\y))
is discrete for y e Y. Thus ψ is light and therefore, is proper, as
desired.

2* Proof of theorem* We shall prove our theorem by intro-
ducing modification of the proof of the theorem of N. Kuhlmann.

We may assume that / is surjective as in Lemma 1.2, and
moreover, that Y is a connected complex manifold since the set of
singular points of Y is a thin analytic set in Y. By [1], Proposition
1.24, f(Ef) is thin of dimension ^ dim Y - 2.

Let r = Γ - f(Ef), X'=X- f-\f(Ef)) and / ' - f\X' -> T.
Since / ' satisfies (CJ and is nowhere degenerate, / ' has a complex
base (Z\ φ') and the natural holomorphic map ψ' with / ' = ψΌ φf

is proper and light by Lemma 1.2. Z* is a normal analytic space.
By [5], Satz 1 (or [2], Satz A), we have a (unique up to biholomor-
phic equivalence) normal analytic space Z with a holomorphic map
ψ: Z-+ Y which is proper, light and surjective tuch that Z' = ψ~\Y')
and Z' is dense in Z and ψ' = ψ \ Zf.

We have to show that there exists a surjective holomorphic
map φ: X—> Z such that (Z, φ) is a complex base of /.

(a) A holomorphic map φf\ X' —> Z' can uniquely be extended
to the surjective holomorphic map φ:X—>Z such that φ is analy-
tically related to / and / = ψ°φ: Let G c I x Γ be a graph of
f:X-+Y and G ' c Γ x Z* be a graph of φ'\ X' -> Z'. Let c x ψ:
X x Z—> I x 7 be a holomorphic map given by (x, p) H-> (X, ψ(p)) and
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Gt: =(c x f)~~\G). There exists an irreducible branch G of Gι with
G Π ( Γ x Zf) = G'.

The projection π^.G—^X onto 1st component X is a proper light
modification map and therefore, πι is biholomorphic by Lemma 1.1.
Let π2: G —> Z be the projection onto 2nd component Z and <p: =
π2°πϊι: X-> Z. Then f—ψ°φ. And since $ is light, <p is analy-
tically related to /. Uniqueness of ψ is obvious.

(b) Let h:X-> T be a holomorphic map strictly depending on
/. Then there exists a (unique) holomorphic map ψ: Z~+ Γsuch that
h — ψoφ: Since / satisfies (C), (φ, h): X-+ Z x T is semi-proper and
therefore, Go: = (<p, Λ)(X) is analytic in Z x Γ. Let ^ and ίr2 be
projections of Go onto 1st and 2nd components, respectively.
TΓJGOΠCZ' X T ) - > 2 ' is a biholomorphic map. In fact, K\ = h\Xf

strictly depends on / ' and (Z', φf) is a complex base of /', so there
exists a holomorphic map ψ": Z' —> T with K — ψ" © ^>'. And then,
Go ίl (^' x Γ) is a graph of ψ". h strictly depends on φ, so π1 is
light. / satisfies (CJ and φ — fc^^φ, h), so π1 is proper. Thus π^ G0->Z
is a proper light modification map and therefore, it is biholomorphic.
Let ψ: — π2oicr1: Z—> T, then h — ψoφ.

With (a) and (b) we conclude the proof.
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