Vol. 79, No. 1, 1978

Recent Issues
Vol. 325: 1
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Geometrical implications of upper semi-continuity of the duality mapping on a Banach space

John R. Giles, David Allan Gregory and Brailey Sims

Vol. 79 (1978), No. 1, 99–109
Abstract

For the duality mapping on a Banach space the relation between lower semi-continuity and upper semi-continuity properties is explored, upper semi-continuity is characterized in terms of slices of the ball and upper semi-continuity properties are related to geometrical properties which imply that the space is an Asplund space.

Mathematical Subject Classification 2000
Primary: 46B20
Milestones
Received: 14 October 1978
Revised: 14 April 1978
Published: 1 November 1978
Authors
John R. Giles
David Allan Gregory
Brailey Sims