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THE SPACE OF ANR’s OF A CLOSED SURFACE

LAURENCE BOXER

We study the hyperspace (denoted 2)) of ANR’s of a
(polyhedral) closed surface M. The topology of 2¥ is induced
by Borsuk’s homotopy metric. We show the subpolyhedra
of M are dense in 2). We obtain a necessary and sufficient
condition for an arc in 2/ joining two points. We show that
2¥ js an ANR (7). We prove that the subspace of 27 whose
members are AR’s has the homotopy type of M.

0. Introduction. For a finite-dimensional compactum X with
metric o, let 2f denote the space of nonempty compact ANR subsets
of X. The topology of 2; is induced by the metric o, defined by
Borsuk [3]. In [1] and [2], Ball and Ford studied several properties
of 2F, particularly for the case X = S§%. In this paper we generalize
several of their results.

Throughout this paper, M will denote a (polyhedral) closed surface.
We show the nonempty polyhedral subcompacta of M are dense in
2. We give a necessary and sufficient condition for the existence
of an arc in 2¥ joining two given members of 2%. We show 2¥ is
an absolute neighborhood retract for metrizable spaces (ANR (_#))
and that the subspace of 2y whose members are the compact AR
subsets of M has the homotopy type of M.

Most of the results of this paper appeared in the author’s doctoral
thesis at the University of Illinois, Urbana-Champaign. The author
wishes to thank his advisor, Mary-Elizabeth Hamstrom, for her
guidance and encouragement. The author also wishes to thank B. J.
Ball and the referee for several useful suggestions.

1. Preliminaries., Let p be a metric for M. We use the following
notation: If x e M and A c M, then

B(x, r) = {ye M|p(x, y) <7} ;

A,Int A, and Bd A are the closure, interior, and boundary of A
(in M) respectively.

Euclidean n-space is denoted R*. The interval [0, 1] is denoted
I. If 2z, ye R* and te R, then z + y will indicate the vector sum,
and ¢-2 will indicate scalar multiplication of xz by ¢.

If A is a polyhedron, we will assume A is compact unless otherwise
stated.

A map is a continuous function.

We use the following notation and terminology of [1] and [2]:
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48 LAURENCE BOXER

A 6-set or a d-arc is a set or arc of diameter less than §. A 6-map
or a d-embedding is a map or embedding that moves no point by as
much as 6. The words “every od-subset of A contracts to a point in
an ¢-subset of A” are denoted s(A4, g, ¢).

Where more than one topology is considered on a set, the topology
in which a sequence converges will be indicated by an obvious
notation. For example, an?ao indicates that the sequence {a,};-;

converges to a, in the topology of the metric p.

Let X be a finite-dimensional compactum. Let o be a metric
for X. Let A and B be nonempty compact ANR subsets of X. The
Hausdorff metric p, is given by

0:(A, B) = max {sup {o(a, B)|a ¢ A}, sup {0(b, A)|be B}} .

The homotopy metric p, is characterized in [3] by the following:
Let A and {4,)7-. be nonempty compact ANR subsets of a finite-
dimensional compactum X. Then A, — A if and only if

0
@) A, 4, and *

(b) give;l ¢ > 0, there is a ¢ > 0 such that for all », s(4,, J, ¢).

We denote by 2F the topological space whose members are the
nonempty compact ANR subsets of X and whose topology is induced
by the metric o,. It is shown in [3] that 27 is complete and separable,
and that 27 is a topological invariant of X. We mention here other
useful results of Borsuk: If p,(4, B) <e, then there are e-maps
f:A— Band g: B— A. For Ce2f, let [C]; denote the collection of
all members of 2f that have the same homotopy type as C. Then
[Clx is open in 2f. Since these sets partition 2, [C], is also closed.

The terms homotopy, deformation retraction, isotopy, ete. will
be used in standard fashion, except that it will be convenient not
to insist that the interval be I. For example, if ¢ < d, a deformation
retraction of A onto B is a map H: A X [¢, d] — A such that H,=1d,
and H, is a retraction of A onto B. (We use the notation H,(a) =
H(a, t) for all (a,t)e A X [¢, d].) It will occasionally be convenient
to refer to the map H, as a deformation retraction. A map H: A X
[e, d] — A is strongly contracting if ¢ < u < v < d implies H,0H,(4)C
H,(A)c H(A) (1], p. 37).

The term surface will be used to refer to a (second countable)
connected 2-manifold, with or without boundary. A closed surface
is a compact surface without boundary. A bounded surface is a
compact surface with boundary. We differ from [1] and [2] in that
we will call an annulus any space homeomorphic to {(x, ¥) e R*|1 <
2+ ¥ < 2L

The following gives a useful criterion for convergence in 27:
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LemmA 1.1 ([1], 3.4, p. 38). Let A and B be members of 27 (X
an arbitrary finite-dimensional compactum). Let h: A X I-— A be
a strong deformation retraction of A omto B. Let {t,)3-. be an
inereasing sequence in I converging to 1. Suppose that for each
n, A4, = h; (A) is an ANR. If

(a) h is strongly contracting, or

(b) for all m, h|A, X [t., t...] is a strong deformation retraction
of A, onto A,.,, then A"Z B.

REMARKS. Case (b) above is not proved in [1], but the proof is
identical to that of (a). We will use both cases.
The next two lemmas will be used in questions of ares.

Lemma 1.2 ([1], 4.1, p. 43). If An~p—>A in 2% and if for each n
h
there is an ¢,-embedding g,: A, — X of A, into X, where ¢, — 0, then
9.(A,) - A,

LEMMA 1.3 ([1], 4.2 and 4.3, p. 43). If Ac2fand f: AXIT—X
i3 an isotopy, then {f(A)|teI} contains an arc in 25 from A to

Fi(4).

The next two results will be used several times:

THEOREM 1.4 ([11], 3.4, pp. 382-383). Let N be a compact surface
with m boundary curves. Let L be a closed surface containing
disjoint open disks D,, - -+, D,, such that N = L\, D;. Let r: N—>N
be a deformation retraction of N, and let B = r(N). Then L\R is
a union of m simply-connected components G,, --+, G,, with D;CG;
for j=1,---,m.

An immediate consequence of the above is:

COROLLARY 1.5. Let N be a bounded surface. Let RC Int N be
a bounded surface that is a deformation retract of N. Then each
component of N\R is an annulus.

In the following theorems of Epstein, N will denote a surface,
with or without boundary, compact or not.

THEOREM 1.6 ([8], 1.7, p. 85). If a simple closed curve SC N
contracts to a point in N then S bounds a disk im N.

THEOREM 1.7 ([8], A2, p. 106) (stated in a different form). Sup-
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pose N is a polyhedral surface and f:I1— N is an embedding with
SMBAN)=1{0,1}. Let U be a meighborhood of f(I) in N. Then
there is an ambient isotopy of N that is fixed on BAd N and outside
U and that changes f to a piecewise linear embedding.

The following lemmas will be used in the next section.

LeMMA 1.8. Let Y be a topological space, LCY, and let B be
an arc with endpoints w and v such that 8 C L. Suppose there is
an open set D in Y\{u, v} and an arc ¥< L with endpoints a and
b such that {a, b} Bd D and v = 3\{a, b} is a component of L N D.
Then either YN B = ¢ or ¥C B.

Proof. Let »:(I,0,1) — (B, u, v) be a homeomorphism. (The
notation means that p is a map from I to @ such that p(0) = % and
p(1) = v.) Suppose YN B # ¢. There is an 2 v and a ¢, (0, 1) such
that p(t,) = 2. Then A =p (BN D) is a nonempty open set in I
contained in (0,1). Thus ¢, lies in a component (a,, b,) of A. We
have z € p((a,, b)) BN DcC LN D, so p((a, b)) is a connected subset
of L N D containing . Thus p((a,, b,)) v and {p(a,), p(b,)} N D = 4,
so {p(a,), p(b,)} = Bd D. The arc B = p([a,, b,]) has its interior in 7,
but the endpoints of B are not in v. Therefore ¥ = Bc p(I) = B.

The following is an immediate consequence of ([7], 4.2, p. 360):

- LEMMA 1.9. If A is an annulus with boundary curves T, and
T, let H: T, x I — A be a map such that H, =1d,, and H(T,) = T..
Then H(T, x I) = A.

We say Y dominates X if there are maps f: X -Y and g:Y - X
such that gof is homotopic to Idy. We write 4X = min {dimY/Y is
a finite simplicial complex that dominates X}.

2. The role of the polyhedra. In[3], Borsuk asked the following
questions: If X is a polyhedron, is the collection of all nonempty
subpolyhedra of X dense in 2f? What is the category (in the sense
of Baire) of the collection of all nonempty subpolyhedra of X in 27
In [1], the first question was answered affirmatively for the case
X = 8% and the second question was given the following answer:
If X is a connected polyhedron with no 1-dimensional open subset,
the collection of all nonempty polyhedra properly contained in X is
a first category subset of 27. It was also shown in [1] that the
collection of nonempty topological polyhedra (i.e., homeomorphic
images of polyhedra) properly contained in S* is a dense G;, hence
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second category, subset of 2§°. We will extend the above to closed
surfaces.

LEMMA 2.1. If X is a finite-dimensional compactum and U 1is
open in X, then Z = {Ce2F|Cc U} is open in 2%.

Proof. Let {A,)r..C2/\Z. Assume A, — A,. For each n there

On .
exists «, € A,\U. Since X is compact we may assume (by taking a
subsequence if necessary) that x, — x,€ X\U. Since An?AO, we
8

have x,€ A,. Therefore 4,¢ %, so Z is open.

We prove a theorem about the Baire category of the collection
of topological polyhedra in M as a subset of 2¥. (Recall M is a
(polyhedral) closed surface.)

THEOREM 2.2. Let .7 be the collection of monempty topological
polyhedra properly contained im M. Then .9~ is a second category
subset of 2.

Proof. Let D be a disk contained in M. By 2.1, % =
{Ye2¥|YcInt D} is open in 2, and thus is topologically complete.
Let f:Int D — S* be an embedding. Then the map f,: % — 25" given
by f.(Y)=f(Y) is an open embedding ([3], p. 198). Since the
collection of nonempty topological polyhedra contained in S* is a dense
G, subset of 2§* ([1], 8.12, p. 42), it follows that Z/\.7 is a first
category subset of Z. The classical Baire category theorem implies
ZZ N7 is a second category subset of %, and thus of 27. Hence
.7 is a second category subset of 2.

The rest of this section is devoted to proving the following:

THEOREM 2.3. The collection of nmonempty subpolyhedra of M is
dense in 2Y.

To prove 2.3, we show in 2.4 that for a given Ce 2y we can
split M into two pieces that join along simple closed curves such
that the intersection of C with each piece is an ANR. Each of the
pieces of M embeds in S%. In 2.5, we use the fact that the result
is known for S? to construct a sequence of polyhedra whose intersec-
tion is C satisfying the hypotheses of 1.1.

LeEMMA 2.4. Let q be a positive integer. Assume M 1is orientable
with genus q or monorientable with genus 2q. Let Ce2f. Then
there are compact subsurfaces X, and X, of M and simple closed
CuUrves &, <+, &,y " M such that:
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@ M=X UJX,.

(b) The a, are pairwise disjoint.

(e) BdX, =BdX,=X,nNX, =Ui a,.

(d) X, and X, both are homeomorphic to a sphere with q + 1
disjoint open disks removed.

(e) Uit a,\C has finitely many components.

Proof. It is an easy consequence of the standard way to repre-
sent a surface that there are subsurfaces X, and X, of M and simple
closed curves ai, ---, a,,, in M satisfying (a) through (d). It follows
that for each % there is a two-sided collar N, of a;, in M such that
the N, are pairwise disjoint. For any n such that a;\C has finitely
many components, set «, = a,. Thus we suppose &’ is any of the
a, such that a,\C has infinitely many components. We write N = N,,.
Clearly we may write &'\C = Usn-,7,, Wwhere the v, are distinct
components of a’\C and each 7%, is an arc whose endpoints a, and
b, lie in C.

Let Z = lim sup {7,.}5-,, i.e., Z is the set of all xea’ such that
every neighborhood of x meets infinitely many ¥,. Then Z is closed
(see [13], p. 10). Thus Z is a compact subset of a'. It is easily
seen that Z c C.

Let w,, w,, and w, be distinet points of v, such that w, lies in
the arc w,w, of v, from w, to w,. Let f,: (I, 0, 1) — (a'\(w,w,\{w,, w,}),
w,, w,) be a homeomorphism. Since N is an annulus,

(1) there is a disk BC N such that N\B is homeomorphic to
Ix©0,1),weWN\BNadcN\BNa' v, and Z U f,(I) cInt B. Since
ANR’s are locally arcwise connected, (1) implies that for each ze¢ Z
there is a neighborhood U of z contained in Int B such that Un C
is arcwise connected. Since Z is compact,

(2) there are open sets U,, -+, U, such that Zc i, U, Int B
and each U, N C is arcwise connected.

It is easily seen that for almost all m there is a %k such that
Y¥m CUy. We assume 7,, ---, Vn, are those ¥, that fail to lie in any
U,. Define I'y =g, and for ke{0,1, ---, »p — 1} define

Ty = {70 C Ui T8 (Jr} .

Define I',,, = {¥,, +**, Ym,}. For each jlet I'; ={v,|7,e;}. Clearly
r,r,-.--,r,, partition {7,}o.,. Let the endpoints a, and b, of
T satisty fi'(an) < fi'(bn). For m > 1,7, = filfi'(@w), 5" ().

We begin an induction argument by observing that for &k = 0 we
have a map fi: (I, 0,1) — (Int B, w,, w,) such that:

(8) If tel and fi(t) ¢ C then fi(t) = fi(¢).
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(4) fuD)\C is a union of members of U%i., ;.

Suppose for some k < p, fi: (I, 0, 1) — (Int B, w,, w,) is a map satis-
fying (8) and (4). If f.(I)\C meets no member of I',,, we define
Sirr = fiu; then (8) and (4) are satisfied when k& is replaced by k + 1.
Otherwise we define ¢, = inf {t € I|f,(t) belongs to a member of /";..},
and d, = sup {¢t € I|f,(t) belongs to a member of I';.}. By (4) and
our choice of {w,, w,}, 0 < ¢, < d, <1l. By (3) and (4), each of fi.(¢c,) =
foler) and fi(d,) = fi(d,) must be an endpoint of some 7,€7l ., or a
member of Z. It follows that {fi(c.), fi(dw)} < U, 0 C.

If {filcw), fi(dr)} € Up,, then (2) implies there is an arc 7 in
U.i. N C from fi(c:) to fiu(dy).

If, say, fi(c,) ¢ U,,, then there must be infinitely many members
of I'i,; that meet f(I), for otherwise (4) implies fi(c,) is an endpoint
a, of some ¥,erl,,, and thus f.(c)e U, contrary to assumption.
Thus fi(c,) € ZN Uy, for some k,. There is a sequence {a,, } of endpoints
of membersv_mr of I',,, such that f,o f(,‘l(?,,:) #C and a,,, — fi(c,). Hence
there is an # such that a,, € U,. By (2) there areares 7 inU, NC
from fi(c;) to a,, and 7" in U,,, N C from a,, to fi(d,). Thereisan
arc 7, CY ' UY"cCnNInt B from f,(c,) to fi(d,).

The other cases are treated as above. So in any case, CN Int B
contains an arc v, from f,(c,) to fi(d,). Let fi..: (Z, 0, 1)—(Int B, w,, w,)
be determined by: f..,|[c:, d:] is a homeomorphism of ([e,, d;], ¢, d)
onto (7i, filer), fildy); and fi..(t) = fi(t) for te I\[c, di]. Clearly fi,,
is continuous. The construction shows (3) and (4) are satisfied when
k is replaced by k + 1.

With the induction completed, we have by (4) a map f,: (Z, 0, 1) —
(Int B, w,, w,) such that f,(I)\C is a union of members of the finite
set I',,,. Now f,(I) contains an arc g from w, to w,. Let v, be a
component of f,(ID\C. Apply 1.8, with Y =M, L = f,(I), D =
M\(CU {w,, w,}), 7 = ¥,: We have ¥, B or 7, N B8 =¢. Therefore
B\C has finitely many components, and & = 8 U w,w, is a simple closed
curve such that «\C has finitely many components.

Let h:Int B— R? be a homeomorphism. Leth': (I, 0, 1)— (B, w,, w,)
be a homeomorphism. Let g:(—1,1],0,{—1,1}) — (&, w,, {w,}) be a
relative homeomorphism such that ¢g(I) cInt B. Define H:a' X [ —
Int N by

g(s) if —-1=s=0;

HOEL 0 = 1l = )-hog(s) + t-hek'(s)] if 0=s=<1.

Clearly H is well-defined and continuous, H, =1Id., and H, is a
homeomorphism of &’ onto a. It follows from ([7], 2.1, p. 87) that
there is a homeomorphism 7T: N — N such that T(a') = @ and T(x) =
for all x€Bd N.
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By applying this construction to each of the curves a,, we
easily obtain a homeomorphism P: M — M taking X, X;, ai, ---, a},,
onto sets satisfying (a) through (e).

Theorem 2.3 follows from 1.1 and the following:

THEOREM 2.5. Let Ce2)f be a proper subset of M. Then there
1s o sequence {A,}lo-, in 2} such that for all n:

(a) Each component of A, is a polyhedral bounded surface.

(b) CcAd,,,cIntA,.

Also there is a sequence 0 =t < t, <t, < --- with lim¢, =1
and a map h: A, X I— A, such that:

(e) h is a strong deformation retraction of A, onto C.

(d) For each n, h| A, X[t,, t,..] 18 a strong deformation retraction
of A, onto A,.,.

Proof. We remark that the proof is long, so some of the
technieal details have been omitted. A more complete proof is in
[5].

It is easy to see that there is no loss of generality in assuming
C is connected. By sewing a Moebius band onto the boundary of a
disk cut out of M\C if necessary, we can also assume that M is
nonorientable of even genus, or orientable. In view of ([1], 3.2, 3.3,
and 3.5, pp. 36-39) we assume M = S

For a given connected Ce2f with C# M, let «, ---, @,
N, +++, Ny, X, X, be as in 2.4 and its proof. It follows from 2.4(e)
and ([4], 2.12, p. 102) that X, =X,nC and X, = X,NC are ANR’s.
We may assume X, # ¢. For k = 1, 2, X, U U%! N; is homeomorphic
to X,, which is embeddable in S?. If X,cInt(U%LN;) then Cc
Int (X, U U¥%1 N;), in which case we are done, by [1]. Thus we assume

(1) X, ¢ Int (U3 N).

Let I' be the set of components v of (il a;\C such that v C «;
implies v ;. From 2.4(e), I' is a finite set. We argue by induction
on the number of members of I'.

If I’ = ¢ then for each je€{l,2, ---, ¢ + 1} either a; cC or a; C
M\C. Since C is connected and X1 #+ ¢, if no a; lies in C we have
C = X,, contrary to (1). We assume

(2) ?,a;C for some pwithl<p=<gqg+1l,andif p<g+1
then Ui, @; < M\C.

Neither X, nor X, need be connected; nevertheless, the theorems
of [1] cited above (and their proofs) imply there are sequences
{BEw_, (k = 1, 2) such that for all n:

(3) Each component of B} is a polyhedral surface.

(4) X,c B, clInt BEc B:cInt(X,U Ui N;). Also there are
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maps h*: B x I — Bf and a sequence 0 = ¢, <¢t,<t, < --- such that
lim¢, =1,

(5) h*is a strong deformation retraction of B* onto X,, and
for each n:

(6) h*| Bf X[t t.s,] i1s a strong deformation retraction of B?
onto B, .

(7) h*|(Bd B) x [t,, t.+.] is an isotopy of Bd Bf onto Bd Bf,,.

(8) IfyeBd B;and xeh*({y} X [t., tas.]), then h*({a} X [t,, t.n]) C
R({y} X [ta) t.n]) and Rz, t) = B*(y, ?) for te[t, ., 1].

(9) For all xeBd B, h*({x} x I) is an arc and h*({x} x [0, 1)) is
a (noncompact) polyhedron.

(10) If D is a component of B?,E\X,, and E is a component of
Bd D such that Ec X,, then there is a boundary curve B of B such
that 8 D and h¥(B) =

From (2) and (4) we may assume for all # and for k =1, 2,

(11) 2, o; CInt BE and B: N Ui, a; = ¢.

For all n, let A, =B, NX)UB:NX,. We define a map & on
A, < I by

ho = [P@ D i ze BN X,
YU E W, t) it weBINX,.

Ifze (BN X)N BN X,)=Ur a;= X, n X,, then (5) implies hi(x, t) =
x = h¥x, t) for all £ e I. Therefore h is well-defined and continuous.
It is easily seen that

12) if xeBfFNX, then h(x,t)e BfiNnX,. It follows that
A, xXI)= A

By (11), if g is a boundary curve of B} then ScInt X, or S C
Int X,. The union of those boundary curves of B! that lie in Int X,
is (Bd 4,) N X,. It follows that A, is a polyhedral bounded surface.

For all n,CCcAd,,,=BiaNX)UBraNX)c[IntBy)N XU
[(Int B N X,] = Int (BanN X,) U U a; UIInt (B: N X,) = Int 4,.

It is clear that h, = Id,, and 4,|C = Id; for allte I. Also h,(4,) =
RBBINX)URBINX,) = (by (5) and (12)X,U X, =C. Thus & is a
strong deformation retraction of A4, onto C.

For all n, we see by (6) and (12) that |4, x [t,, t...] is a strong
deformation retraction of A4, onto A4,.,.

By (12), analogues of (7) through (9) hold when we replace
(Xi, {Bies, 1Y) with (C, (Ao, B).

If D is a component of 4,\C then by (11) D is a component of
B};\X',, for some k. Then (10) and the construction imply (C, {A,}o=1, k)
satisfies the analogue of (10). This concludes our discussion of the
case I’ = ¢.

Suppose the theorem is true whenever I” has less than # members
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(r > 0). Now let I" have 7 distinct members, v,, ---, v,. Topologically
7, is an open interval in some «;, say v,cCa,. Let {z, 2} be the
endpoints of v.(2, = 2, if 7, =a,). Let C' =CU7,. Clearly C' is a
connected ANR, and " = {v,, ---, 7,_,} is the set of all components
v of Uit a;\C’' such that v C a; implies v #+ a;. The inductive hypo-
thesis gives a sequence {B,}r-, 2 such that for all n:

(13) B, is a polyhedral bounded surface.

(14) C'c B,,,CInt B,.

Also there is a map +: B, X I — B, and a sequence 0 = ¢, <&, < t, < +--
such that lim¢, =1,

(156) + is a strong deformation retraction of B, onto C’, and for
all n:

(16) /B, X [t,, t,+.] is a strong deformation retraction of B, onto
B,...

A7) +4/(Bd B,) X [t,, t.+.] is an isotopy of Bd B, onto Bd B,.,.

(18) If y e Bd B, and x € ¥({y} X [ts, tasa]) then yr({a} X [¢4, uri])
Y({y} X [tay taii]) and y(x, t) = ¥(y, {) for e[ty 1].

(19) For all x € Bd B,, v({z} x I) is an arc and +({z} x [0, 1)) is
a (noncompact) polyhedron.

(20) If D is a component of B,\C' and E is a component of
Bd D such that E c C’, then there is a boundary curve g of B, such
that g D and ¥,(B) = E.

For all n» we define ¢, = sup {diam ({x} x I)/x € B,}. By compact-
ness, ¢, is finite, and we easily see

(21) lime, = 0.

Let D be a component of B\C’' such that ¥, lies in a boundary
component F of D. From (20) there is a boundary curve g8 of B,
such that 8 D and %,C 4,(8). It can be shown that:

(22) B contains a continuum B’ such that 4 (8) =7%,. If B is
an arc whose endpoints are ¢, and e, then 4, ({e, ¢}) = {2z, 2,} and
¥:(B8'\ley, }) = 7.

Further, we show:

(23) If U is an open set contained in D such that BN BdU = ¢,
then UN (B x I) + 4.

For U meets a component U, of B,\B,,, for some n. By (14), (16),
and 1.5, U, is an annulus. From (16), (17), 18), and 1.9, U, =
Y(B X [t,, tasi)), and (23) follows.

Let y,€7,. By (23) there are continua P,k =1, 2) such that
B’ = P, satisfies (22) and P, N (Int X,,) N B(y,, &,) # ¢é. It can be shown
that P, N P, = ¢. By (17), for all =,

(24) (P, X {t.}) N (P, X {t.}) = ¢.

It can be shown that not both of P, and P, are simple closed
curves. Hence we assume P, is an arc. Then P, is an arc or a
simple closed curve.
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By (22) we may assume the endpoints ! and b} of P, satisfy
P (a}) = 2, ¥, (B) = z,. If P, is an arc then we may assume its
endpoints a? and b? satisfy +(a}) = 2z, ¥, (0} = 2,. If P, is a simple
closed curve then 2, = z,, and by analogy with the above we choose
ai = bie P, N yi'(R).

By (19), »* = 4 ({af} x I) and & = +({bf} x I) are ares. By (17)
and (18) we have

(25) 7\{z}, 7"\{2.}, &\{z} (and &\{z,} if &~ %) are pairwise disjoint.

Let p, e P, N47'(Y,), k =1,2. Let P; be the arc of P, from a}
to p,. Let P} be the arc of P, from p, to bi. If a} = b, let P?and
P? be the arcs of P, from a? to p, and from p, to b} respectively.
If a? = b} then 2z, = z,. Then let P? be the arc of p, from a? to p,
contained in P, N ¥ (v (P2) and let P; be the other arc of P, from
ai to p,.

Clearly T, = Ui- [7"U PiUy({p x I)] and T, = Ui-[¢*U P} U
Pw{{py} X I)] are simple closed curves that are deformed by « into
proper subsets of a,. By 1.6, T, and T, bound disks M, and M,
respectively in B,. Clearly M, = (T, x I).

There is an arc A; in M, N B(z,, ¢,) from a; to a? such that {a}, a?} =
MmN BdM,. Then N < B, N Bz, ¢) and M N Bd B, = {a}, a?}. By (19),
Mz, ¥} is a (noncompact) polyhedron, so by 1.7 there is an ambient
isotopy of M, that is fixed on (M\B(z, ¢,)) UBd M, and that carries
N, onto a polyhedral arc »,. Similarly, there is a polyhedral are g
in M, N B(#,, ¢,) from b} to b} such that {b}, b} = g, N Bd B,.

For all =, let af = +(a}, t,) € Bd B,, and let b} = b}, t,) ¢ Bd B,.
Let nf = n*, & = &, nt = y({ak} X [t,.1, 1]) (the arc of »* from a%,, to
2.), &8 = p({b¥} X [t.iy, 1]) (the arc of & from bk, to z,). Note that
we have begun an induction argument by showing that for n =1,
the following statements (26) through (29) are valid:

(26) There are polyhedral arcs N\, M, N B, N B(z, ¢,) from a}
to ai, nt, < M, B, N B(z,, ¢,) from b, to b2 such that:

270 {ai, ai} =, N Bd B, =\, N Bd M,.

{05, b3} = £, NBA B, = ¢, N Bd M, .

(For n =1, (27) and (28) follow from observing which points are left
fixed by the ambient isotopies.)

29) M NN =¢=p, N for j<m.

Suppose m > 0 and (26) through (29) are valid forn =1, ---, m.
The inductive step is done as above, with obvious modifications.
For example, to obtain \,,, satisfying (26) through (29), we work
in the disk bounded not by T,, but by the simple closed curve

UV U U@y U D U D5 U w05,
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where u,v, is the arc of A, whose endpoints u, and v, satisfy
Um € V(P X {tn)), Va € (P X {En})s UV \{Uhny V) CINt Broys Uy, 18
the are of ¥(P, X {tn.,}) from u, to a..,; and v,a,, is the arc of
M, N (P, X {tny}) from v, to a%,,. Thus (26) through (29) hold for
all n.

Since N, C M, ¢, M, and (Bd M) N (Bd M)\+{p, v} x I) =
NN &, (25) and (27) imply

(30) (gt = ¢1f'n¢.7., or 1f.n—3 and 7+ &;
fai =03} if mn=j7 and 7" =¢&.

For k =1, 2, let @, be the boundary curve of B, containing P,.
Let Q% = y(Qx{t.), Pi = ¥(Pp X {t.}). Let E,=[(QFUQO\(PrU PHIU
N U 2. Clearly E, is a polyhedron, and E, N E; = ¢ for n = j. If
Q, # Q,, then (17), (24), (27), and (30) imply E, is a simple closed curve.
(Note (30) implies if N, N g, = {a2} then Q;=P7, so E,=(Q\P?) U\, UK,.)
Similarly, if @, = Q, then either FE, is a simple closed curve for all
n or K, is a digjoint union of two simple closed curves for all =.

For all n, let J,C M, be the disk bounded by %._,U%%i_,U\, and
let J, M, be the disk bounded by &, Ué& _,U g, Define 4, =
[B\M, U M) UJ,UdJ,. To complete the proof, we must show (13)
through (20) are satisfied when ({4,}7-,, C) replaces ({B.}y-, C') and
an appropriate map & replaces .

We have

Bd 4, = E, U[(Bd B)\(Q U )] and E,N[(BdB)\(Q U] =9¢.

Therefore A, is a polyhedral bounded surface. The analogue of (13)
is satisfied.

Since E, N E; = ¢ for n # j, (Bd 4,) N (Bd 4;) = ¢. Clearly z,¢
JowCdJ, and z,ed,,, CJ.. It follows that Cc A4,,,cInt A,. The
analogue of (14) is satisfied.

It is easily seen that there are maps bh': J, x I — J, and h': J X
I— J; such that for all xen' Un,, ye& U& tel,

(81) h'(x,t) = +(x, t); h''(y, t) = ¥(y, t); and such that A’ and »"”
satisfy analogues of (15) through (19):

(15") A’ is a strong deformation retraction of J, onto {z}, and
for all #n:

(16") R'|J, X [, t.y.] is & strong deformation retraction of J, onto
Jn+1'

A7) A'|n, X [t t.0.] is an isotopy of A, onto A,,,.
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(18") If x e h'({y} X [ty tasi]) for y €N, then B'({x} X [£,, t.0u]) C B/ ({y} X
[t., t.ii)) and R'(x, t) = B'(y, t) for te[t,., 1].

(19’) For all xen,, R'({x} x I) is an arc and A'({x} X [0,1)) is a
(noncompact) polyhedron.

Similar versions of (15’) through (19°) hold upon replacing
(h,’ {Jﬂ};bo:l’ zl’ {xﬂ}:=1) by (h"7 {J‘;}:‘o’-l’ z?’ {#%}:21).
Define a map 2 on A, x I by

Kz, t) if xed,;
h(x, t) = <h'"(z,t) if xzed;
¥{(x, t) otherwise .

By (31), h is well-defined and continuous. From (17) and (18),

(82) if xe B,\(M, U M,) then ({z} x I)C B,\(M, U M\{z,, 2,}).

By (15), (15"), and (32), h(A, x I) = A,. Clearly h(x,t) =« for
all (z,t)eC x I, and h,(A4,) = C. Thus h satisfies the analogue of (15).

For all =:

By (16), (16"), and (32), h satisfies the analogue of (16).

By 17), (17"), and (32), h satisfies the analogue of (17).

By (18) and (18'), h satisfies the analogue of (18).

By (19) and (19'), h satisfies the analogue of (19).

By (20) and our construction of E,, h satisfies the analogue of
(20). The proof of Theorem 2.5 is completed.

3, Arcs. Let X be a finite-dimensional compactum and let
{C,, C} = 2f. Under what circumstances is there an arc in 2f from
C, to C? In [1], it was found that a necessary but insufficient
condition is that C, and C, have the same homotopy type; and a
sufficient but unnecessary condition is that C, and C, be isotopic in
X. For X = M, we obtain a condition that is both necessary and
sufficient:

THEOREM 3.1. Let {C, C}c2i\{M}. By 2.5, there exist A;¢c
20(5 = 0, 1) such that each component of A; is a bounded surface,
C;cInt A;, and C; is a strong deformation retract of A;. Then
there is an arc in 2 from G, to C, if and only if there is an ambient
isotopy of M taking A, onto A,.

First we prove:

LemMMA 3.2. Suppose Ce2i\{M}, and let {A,}o-,, {ta}n=1, and h be
as in 2.5, Then there is an arec 7 in 2 from A, to C containing
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each A, such that if Ae .o7\{C}, each component of A is a bounded
surface.

Proof. Recall the notation in the statement of Theorem 2.5.
In the proof of 2.5, we saw:

(1) h|(BdA,) X [t,, t,..] is an isotopy of Bd 4, onto Bd 4,,,.

It follows from (16) and (18) of the proof of 2.5 that

(2) if xeBd A, then h({x} X [t,, t,..]) = 7, is an arc such that
v\, b, t,1)} < (Int A)\A, ..

If ¢, = sup {diam h({x} x I)|x € A,}, then lime, =0, and by 1.1,
A, ~p—h> C, so it follows that there is a sequence of positive numbers

0, such that
(3) limé, =0, and for all =, s(4,, 6¢,, 5,,).

Let P be a component of A4,\4,,,. By 2.5(a), 2.5(b), 2.5(d), and
1.5, P is an annulus. Let the boundary curves of P be a, “Bd 4,
and «,,,CBdA,,,. There is a set £ ={x, z, -+, 2,_}Ca, of k
distinet points numbered according to an orientation of «, (let z, = x,)
such that if B; is the arc of a, from z;_, to x; containing no other
member of E, then diam B; < ¢,. For each j, let y; = h(x;, t..0).
By (2), v; = h({z;} X [tss tai]) is an are from z; to y; such that
Y\x;, y;; cInt P. By (1), the v; are pairwise disjoint for je
0,1, -+, k — 1}(7, = 7,) and (also by )){; = h(B; X {t...}) is an are
of a,,, from y;_, to y; not containing vy, if v,¢{y;_, y;}. Clearly
diam v; < ¢,.

Let {y, ¥’} C{;. There exist z,2 €pB; such that y = h(z, t,.)
and y' = b, t,.). Then oy, ¥') < oy, x) + o(x, ') + o(@', ¥') < &, +
diam B; + ¢, < 3¢,. Therefore diam {; < 3¢,.

Let S; be the simple closed curve in P defined by S; = v;_, U
B;Uv; Ul Then diam S; < diam v;_, + diam 8; + diam v; + diam {; <
&, + 6, +¢&, + 3¢, =6¢,. By (8) and 1.6, S; bounds a disk K;C 4,
such that

(4) diam K; < 9,.

Indeed K; C P, for if K; is the disk in P bounded by S; and K; = K,
then K; N K; = S;and K; U Kj is a 2-sphere in A4,, which is impossible.

It is easily seen that there is a map F: P x I — P that is a
strongly contracting strong deformation retraction and a pseudoisotopy
of P to a,,, such that F(K; x I)cC K; for all j. From (4) we have

(5) F,is a d,~embedding for 0 < ¢ < 1.

Apply the above construction to each component of 4,\4,,,. In
the above, F|a,,, = 1d,,,, for all tel, so we may extend each F,
via the identity to obtain a map F*: A, x I — A, that is a strongly
contracting strong deformation retraction and a pseudoisotopy of
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4, onto A,., moving no point by as much as §,. Let a,: I—2) be
defined by a,(t) = F*(4,x{t}). By 1.8, a, is continuous for 0 <t < 1.
By 1.1, a, is continuous for ¢ = 1.

Let L: I— 2 be defined by

Loh | St
L(t) —_ {anlitn+l—tn 1 n = = “a+1
C if ¢=1.

Since a,(1) = A,., = a,.,(0), L is well-defined; and L is continuous for
0=t<1. From (3), (5), and 1.2, L is continuous for ¢ = 1. Since
L0) = A, and L(1) = C, L(I) contains an arc in 2} from A, to C.
The second conclusion of the lemma follows from the fact that for
all n, F'* is a pseudoisotopy of A4, onto 4,.,.

We show the existence of a basis with useful properties.

LemMA 3.3. Let Ce2/\{M} and let ¢ > 0. By 1.1 and 2.5, there
exists A such that p,(A, C) < e, each component of A is a bounded
surface, CCInt A, and C is a strong deformation retract of A.
There is a neighborhood Z of C in 2¥ such that X e Z implies
oX,C)<e, XCInt A, and X is a strong deformation retract of
A. Further, if each component of X € Z 1is a bounded surface, then
there is an ambient isotopy of M that carries A onto X.

Proof. We may assume A is a polyhedron, and that ¢ is so small
that two maps f,, fi: C — A such that o(f,, f,) < ¢ are homotopic in
A. Recall [C], ={Xe2/|X and C have the same homotopy type}
is open. From 2.1 it follows that

% =[Cly N {Xe2| X Int A} 0 {Xe2|ouX, C) < ¢}

is an open set in 2 containing C.

We may assume C and A are connected (otherwise we apply the
following by components). Let X €% There is an e-map g: C — X.
Let i:C— A, j: X — A be inclusion maps. By choice of ¢, i, = J4°0,:
II,C — IILA. By choice of A4, i, is an isomorphism. Therefore
Jw: II.X — IILA is a surjective homomorphism. But {X, 4} C[C],, so
I1,.X and I1,A are isomorphic. Since 4 is a bounded surface, I, A
is a finitely generated free group. Therefore j, is an isomorphism
(see [10], p. 59).

Recall the definition of 4X given in §1. Since X and A have
the same homotopy type, 4X = 4A. But 4A <1, since if 4 is a
disk it has the homotopy of a point, while otherwise A has the
homotopy type of a wedge of finitely many simple closed curves.
With N = 44 <1, we apply Whitehead’s theorem ([12], 1, p. 1133)
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and conclude j: X — A is a homotopy equivalence.

By 1.1 and 2.5 there is a polyhedral bounded surface B¢ % such
that X < Int B and X is a strong deformation retract of B. Applying
the above to B, we conclude the inclusion of B into A is a homotopy
equivalence. Hence B is a strong deformation retract of A (see [6],
3.2, p. 6). Thus X is a strong deformation retract of A.

If Xe% is a bounded surface, then by 1.5 each component of
A\X is an annulus. Let S be a component of Bd A. Let A’ be the
component of A\X containing S. Let S’ be the component of Bd A’
that lies in X. There are annuli A, and A, that collar S in M\4
and S’ in X respectively. Then A” = A, U A" U 4, is an annulus.
There is an isotopy h: A” x I — A" of A" onto itself such that
h(A'UA)=A,, h(4)=A"UA,,and h(z, t) =z forall(z, t) e (Bd A”) x L.
Apply this construction to each component of A\X and extend via
the identity on M\(A\X) to get an ambient isotopy of M that carries
A onto X.

Proof of Theorem 3.1. Suppose there is an ambient isotopy of
M taking A, onto A,. By 1.3, there is an arc in 2¥ from A4, to A,.
By 3.2, there are arcs in 2¥ from A, to C, and from A, to C,. Hence
there is an arc in 2¥ from C, to C,.

Conversely, suppose there is an embedding p: I — 2¥ such that
p(0) = C, and p(1) = C,. Since p(I) is compact, 3.3 implies that there
exist 0 ¢, <t, < ++r <t,=1; A, €2 such that each component of
A, is a bounded surface; and neighborhoods %/, of »(t,) in 2¥ such
that if X e %, and each component of X is a bounded surface then
there is an ambient isotopy of M taking A, onto X, and such that
U N U iy # ¢ and p(I) c Ur-, Z,. Further, 3.3 enables us to assume
that A, =A, and A, =4, .

By 1.1 and 2.5, for each n < m there exists B, € %, N %,., such
that each component of B, is a bounded surface. There are ambient
isotopies of M taking A,, and A,,, onto B,. Therefore there is an
ambient isotopy of M taking A, onto A4, . Hence there is an
ambient isotopy of M taking A, = A, onto A, = A,.

4. Global properties. The spaces D(N)and L(N) of deformation
retracts (respectively, compact AR subsets) of a compact 2-manifold
N were studied by Wagner in [11]. The topologies of these spaces

may be described thus: A4, —— " C(A C) if and only if there

are maps 7. N —N, r,.N— N that are deformation retractions
(that are retractions) of N onto C and A, respectively such that
r, — r, uniformly on N. We show these spaces are closely related
to 2.
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We will need the following lemma. In both its statement and
its proof, it is similar to ([2], 3.1, pp. 212-213).

LemMma 4.1, If Ce2\{M}, C is connected, and & > 0, there is
a 0 >0 and a meighborhood Zz of C in 2 such that if {A, B} C Z,
Bc A, and A is a bounded surface, then every pair of points in
Bd A that can be joined by a é-arc in M\B can be joined by an e-
arc in Bd A.

Proof. By 3.3, there is a neighborhood %, of C in 2 and a
bounded surface N c M such that for all Xc %, we have XCInt N
and X is a strong deformation retract of N.

Since M is an ANR, there exists » > 0 such that s(M, », ¢/4).
Also there is a 6 > 0 such that:

(1) If N has more than one boundary curve then

0 < min {o(S, T)|S and T are distinet boundary curves of N}.

(2) 0 <1/2min{n,e}.

(3) There is a neighborhood %, of C in 2y such that if X e %,
then s(X, o, 1/2).

Let ., ={X e 2 |o(X, C)<d/2}). Let# =% 0 %,N %, Clearly
Z is a neighborhood of C in 2¥.

Suppose {4, B} C Z such that BC A and A is a bounded surface.
From 1.4 (with R = B) it follows that B separates each pair of
boundary curves of N in N. Since each component of N\A is an
annulus, it follows that

(4) B separates each pair of distinct boundary curves of 4 in A.

Let p and ¢ be distinect points of Bd A such that there is a
d-arc 8 from p to ¢ in M\B.

Suppose B meets distinet boundary curves T, and T, of A. It
follows from (4) that 8 must contain a é-arc B’ from p'e T, toq' e T,
such that 8/ NA={p, ¢}. For n=1 2, let B, be the annular
component of N\A containing T, and let 7T, be the component of
Bd N that is contained in B,. By 1.4, T, = T,. By (4) and 1.4, there
are distinct components B, of N\B such that Int B, C B,. Then
T,c B,c B, so we must have 8 N Bd B, # ¢. Since Bd B, c T, U
BdB and  NBdBc R NB=¢, we have ' N T, = ¢ for n =1, 2.
The latter contradicts (1). We conclude that 8N Bd A is contained
in a single component J of Bd A.

By N,(8) we will mean the set of all points in M whose
distance from B is less than s. Since diam B8 < &, there is ans > 0
such that diam N,(8) < 6. By the proof of 2.4, we may assume
B N J has finitely many components. If v is a component of SN J
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that is not a single point, then 7 is an are with endpoints b, ¢. There
is an are Y C N,(B)\B from b to ¢ such that ¥ NJ ={b, ¢}. If
Yy ***, Y. are the components of 8N J that are arcs, then g, =
(B\Ur-,7,) UUr, v, meets J in but finitely many points and (by
choice of s) contains a d-arc B, from p to ¢. Thus (by replacing B
by B, if necessary) we may assume B J is a finite set.

Suppose BN J = {p, q}. We consider two cases:

(1) Suppose B\{p, ¢} € M\A. Since diam g8 < 4, (3) implies there
is an n/2-arc & in A from p to q. We assume &\{p, ¢} CInt A. Then
K = g U ¢ is a simple closed curve and diam K < é + 5/2 < 7 (by (2)).
By 1.6 and our choice of %, K bounds a disk L ¢ M with diam L < ¢/4.

Let x € B\{p, ¢}, vy € &\{p, q¢}. For any fixed » >0, Bz, r) N (M\A4) =
6#B(y, ryNInt A. Suppose L fails to contain an arc of J from p to
q. Our choices of 8 and & imply J N K = J N Bd L = {p, ¢}, so the as-
sumption implies JNL = {p, ¢}. Thus ¢ = JNIntL = (Bd 4)NInt L.
Since ¢ = B(y, r) N Int A meets Int L N Int A and ¢ # Bz, ) N (M\A)
meets Int L N (M\A), it follows that Int L = (IntL N Int A)U
(Int L N (M\A)) is disconnected. This is impossible, so L contains
an arc of J from p to ¢ that lies in N, (B) (since S L and
diam L < ¢/4).

(II) Suppose B\{p,q} cInt A. Then A = A, U A,, where A, is
a bounded surface containing B, 4, is (by (4) and the fact that
G < M\B) a bounded surface whose boundary is the union of 8 and
an arc of J from p to ¢, and 4, N A, = 8. By choice of %%, there
is a 6-map f: A— B. If zc€ A, then f(z)e BC A,, so by (38) there is
an n/2-arc {C A from 2z to f(2). Clearly { meets 8. Hence A,C
N,;(B). In particular, the arc of J from p to ¢ that lies in Bd 4,
must lie in N,,(8).

Our choice of » implies /2 < ¢/4. In both (I) and (II), J contains
an arc from p to ¢ that lies in N,,(B).

More generally, if 8nJ ={p =p, *-+, P, = q} where the p, are
numbered in order from p to ¢ along B, then each subarc p,p,., of
3 satisfies the condition of (I) or (II). For each n<k there is an arc
¢, of J from p, to p,,, in N,,(B8). There is an arc {,c UiZ1 {,C N..(B)
of J from p to gq. Observe diam {, < diam N,,(8) < ¢/2 + diam 8 <
e/2 + 0 < e (by (2)).

We now strengthen 3.3.

LeEMMA 4.2. Let Ce2)\{M},e > 0. Then there exist Ne2i and
a neighborhood 7z of C in 2 such that each component of N is a
bounded surface and such that for all X e 7, p,(X, C) < ¢, X Int N,
and there is a strong deformation retraction h: N x I — N of N onto
X such that for each tel, h, is an e-map.
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Proof. It follows from ([2], 2.1, p. 210) that there is no loss
of generality in assuming C is connected.

There is a neighborhood %, of C in 2} and a ¢ > 0 such that

(1) if Xe 2z, then s(X, 9, ¢/2).

There are positive numbers 4, and 4, such that

(2) 176, +0,<9d
and (by 4.1) such that

(8) there is a neighborhood %, of C in 2¥ such that if
(X, Y)c%, XCY, and Y is a bounded surface, then each pair of
points in BdY joined by a 7d,-arc in M\X can be joined by a d,-arc
in BdY.

Clearly ;

(4) there is a neighborhood %; of C in 2} and a ¢, > 0 such
that if X e %; then s(X, d,, 9,).

Let Z, = {X e2)f|0,(X, C)<(1/2)d;}. By 3.3 there exist a bounded
surface Ne .-, %, and a neighborhood %/, of C in 2¥ such that
X e %, implies X cInt N and X is a strong deformation retract of N.

Let % = N1 %.. Clearly % is a neighborhood of C in 2.
Fix X e %. By 1.1 and 2.5 there is a bounded surface B e % such that
X cInt B and there is a strong deformation retraction g: B x I — B
of Bonto X such that g, is an ¢/2-map for all t € I. Thus it suffices to
show the existence of a strong deformation retraction H: NxI— N
of N onto B such that H, is an ¢/2-map for all {e 1.

By choice of %, we have p,(IN, B) < §;,. It follows from (4) and
our choice of %/ that for all x € Bd N there is a d,-arc in N from g
to some y € Bd B. By 1.5, each component P of N\B is an annulus.
Let BdP =SUS, where S and S are boundary curves of N and
B respectively. It follows from 1.4 that B separates distinet boundary
curves of N in N, Thus

(5) for all x¢ S, there is a d,-arc 8 from z to some y € S’, and
we may assume S\{x, ¥y} C Int P.

Suppose diam S < 6. By (1) and 1.6, S bounds a disk of diameter
less that §/2 in N. Since N is connected, the disk must be N itself.
In this case it is clear that we have a strong deformation H: N x
I— N of N onto B such that H, is an ¢/2-map for all ¢tel. Thus
we assume

(6) diam S = o.

There is a set G = {x,, -+, ;) S of k distinct points numbered
according to an orientation of S (let z, = x,) such that if «, is the
arc of S from z,_, to xz, containing no other member of G, then

(7) 20, < p(xp—y, z,) and diam , < bJ,.

By (2) and (6), &> 1.

By (5), for each p there exists ¥, € S'(%, = ¥,) and a 6,-are B,(8, = B4)

in P from z, to y, such that g,\{x,, y,} cInt P. By (7), 8,-. N B, = 4.
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Since P is an annulus, it follows that the @, are pairwise disjoint.
By choice of B,B8,,Ua,UpB, is an arc in M\X from y,_,cS to
y¥,€ 8, and (7) implies

(8) diam (8,_,Ua, U B,) <9, + bd, + 4, = 70,.

By (3), there is a é6,-arc v, of S’ from y,_, to v,.

We claim v, does not contain y, if ¥, ¢ {y,_,, ¥,}. For it follows
from the disjointness of the B, that the points v,, - - -, ¥, are numbered
according to an orientation of S’. If some v, contains y, for y,¢
{Yp-0 Y5}, then {y,, .-+, y}C7,. Let xea, #a, Then o, 7,) =
o, ¥.) = o, x,) + O(®,, ¥,) = diam a, + diam 8, < 53, + 0, = 60,. It
follows that diam S =< diam «, + diam (S\e,) < 59, + diam N, (7,) =
50, + 120, + diam v, < 174, + 6, < d (by (3)), contrary to (6). The
claim is established.

Then L, = £,, Ua, UB, U7,(p =1, ---, k)is a simple closed curve
in N. By (8 and our choice of v,, diam L, < 7, + §,. By (1), (2),
and 1.6, L, bounds a disk D, in N with diam D, < ¢/2. As in the
proof of 8.2, D, is the disk of P bounded by L,.

As in 3.2, there is a strong deformation retraction K: P x I — P
of P onto S’ such that K(D, x I) = D, for all p. Thus K, is an
¢/2-map for all tel. As in 3.2, K can be extended to a strong
deformation retraction H: N X I — N of N onto B such that H, is
an ¢/2-map for all tel.

THEOREM 4.3. Let {A,}i-. and C be points of 2)\{M}. Then
A, —>C if and only if there exists N €2} such that each component

of N 18 a bounded surface and A, ) (N) —C,

Proof. By 3.3, there is a compact 2-manifold with boundary
Ne2¥ and a neighborhood % of C in 2) such that if Xe% then
X CInt N and X is a strong deformation retract of N.

Suppose An;;»C. Let ¢ >0. By 4.2 there is a compact 2-

)

manifold with boundary Be % and a neighborhood 7 of C in 2
with 7 C % such that if Xe? then X cInt B and there is an
¢/2-map r: B— B that is a strong deformation retraction of B onto
X. Choose an m such that » > m implies 4,¢ 77

Let f: N— N be a deformation retraction of N onto B. Let
fs: B— B be an ¢/2-map that is a deformation retraction of B onto
A, for n > m. Let f;: B— B be an ¢/2-map that is a deformation
retraction of B onto C. Define r,: N— N for n = 0, n > m by r,(x) =

fu(f(x)). For all x e N and n > m, o(r,(x), r(x)) < e. Hence 4, T») C

Conversely, suppose 4, 5—»0 There exist deformation retrac-

tions 7,: N— N of N onto A,,7,; N— N of N onto C such that », —7,
uniformly on N.
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If zeC, p(x, r,(x)) — p(zx, rox)) = 0. Hence oz, A,) — 0.

If T, € An! (o(xm "'O(xn)) = lo(qmn(wn), ’ro(xn)) — 0. Hence (O(x'm C) — 0.
We conclude 4, ? C.

Let ¢ > 0. Let 6> 0 be such that if {z, y} C N and po(x,y) <o
then o(ry(x), r,(y)) < e/6. Let o' >0 be such that s(N,d’,d). Let
m > 0 be such that n» > m implies that for all x e N, p(r.(z), r,(x)) <
/6.

If {z, y) C N, o(z, y) < 3, and n > m, then p(r,@), 7,®)) < P(r.(@),
7o(@)) + (1), 76(¥)) + P(ro(Y), 7.(¥)) < /6 + &/6 + /6 = ¢/2.

Let Kc A, C N, diam K < ¢’. There is a contraction h: K x I — N
of K to a point such that diam A(K x I) < d. Therefore, for n > m,
r,oh: Kx I — N is a contraction of K to a point such that
r,oh(K x I)c A, and diam (r,oh(K x I)) < ¢/2 +¢/2 =¢. Hence
s(4,,0d,¢) for » > m, so A, > C.

THEOREM 4.4. 2 is an ANR (7).

Proof. If N and % are as above, the previous theorem implies
the inclusion of the set % into D(N) is an open embedding. Since
D(N) is an ANR (_#) ([11], 5.5, p. 389), it follows ([9], 3.1, p. 391)
that % is an ANR(_#). Since M is an isolated point of 2; (because
[M], = {M}) the assertion follows from the fact that a local ANR (_#")
is an ANR(_#) ([9], 3.3, p. 392).

THEOREM 4.5. Let ARy ={Xe2)|X is an AR}. Then AR} 1is
a component of 2.

Proof. Since AR) is the set of all members of 27 with the
homotopy type of a point, AR} is open and closed in 2, and thus
is a union of components of 2. We must show AR} is connected.

Let C,c AR)(n = 0,1). By 3.2 there is an arc in ARY from C,
to N,, where N, is a disk. Let p,e N and let h*: N, x I— N, be a
pseudoisotopy of N, onto p,. Then (using 1.83) {A*(N, X {t})|te I}
contains an arc in AR} from N, to {p,}. Let h:I— M be a map
such that A(0) = p, and 2(1) = p,. By 1.3, {{h(t)}|t e I} contains an
arc in ARY from {p,} to {p,}. Thus there is an arc in ARY from C,
to C,.

THEOREM 4.6. AR} = L(M) as topological spaces.

Proof. Clearly they are equal as sets. Let Cc AR}Y. As above,
there is a disk Nc M such that CcInt N and C is a strong defor-

mation retract of N. We know A, — C if and only if 4,—— C.
on D(N)
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But A”Wc if and only if Anmc ([11], 5.4, p. 388).
Clearly the map j: M — AR;! defined by j(x) = {x} is an embedding.
We have the following:

COROLLARY 4.7. j(M) s a deformation retract of AR)Y. Thus
AR} has the same homotopy type as M.

Proof. This follows from Theorem 4.6 and ([11], 5.5, p. 389).
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