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We define two properties of noncompact locally compact
spaces called €-calmness at o and (%, Z)-smoothness at
co for arbitrary classes of topological spaces € and Z. A
number of theorems and examples concerning these proper-
ties are given. By considering complements of Z-sets in
the Hilbert cube from them we get three new shape invari-
ant conditions for compact metric spaces named calmness,
n-calmness, and n-smoothness. Calmness is a movability
type condition while n-smoothness implies that (and under
some additional assumptions is also implied by) the kth
shape pro-group of a compactum in question is trivial, for

all k>n.

1. Introduction. This paper continues the study of homotopy
properties of noncompact locally compact spaces at « from [6],
[7], and [8]. In [8] we introduced concepts of calm at o, m-calm
at o, and m-smooth at oo locally compact spaces. In the present
paper these notions are investigated in much the same way as
movability at oo and tameness at « were investigated in [6] and
[7], respectively. We prove analogous theorems and give a number
of examples illustrating those concepts. By a standard Z-set com-
plement device [10] (see also [6]) we get three new shape invariant
properties of compact metric spaces called calmness, n-calmness,
and n-smoothness. The usefulness of these properties in the future
development of shape theory remains to be seen. Our results
show that they are rather natural and that one can prove theorems
about them resembling some statements about movability and
fundamental dimension of compact metric spaces.

We assume the reader is familiar with shape theory of compact
metric spaces [2] and with the most elementary concepts and results
of infinite dimensional topology [11].

The paper is organized as follows. In §2 we collect definitions
(mostly from [6]) to be used in later sections. The § 3 investigates
& -calm at o noncompact locally compact spaces, for an arbitrary
class of topological spaces &. & -calmness at o is a “movability
at o type” condition for homotopies weaker than the condition
SANR (e0) (or strong movability at o) introduced in the author’s
thesis [9]. The short §4 lists properties of calm compact metric
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spaces that follow from results and examples presented in the
previous section applying Chapman’s Z-set complement trick [10].
In §5 (%, &)-smooth at oo spaces, where & and <& are any
classes of topological spaces, are considered in a way analoguous to
the treatment of & -calm at o spaces in §3. The final §6 trans-
lates these results into shape theory. The class of mn-smooth
compacta obtained in this way is related to the class of those X
for which the shape pro-groups z,(X) are trivial for all &k > =.

We completed this work during compulsory military service at
Military High School in Belgrade. We thank superior officers for
providing conditions stimulating research.

2. Notation and definitions, We shall mostly consider non-
compact locally compact spaces; two favorite notations for such
will be M and N. Compact subsets of M and N are denoted with
the first few capital Roman letters.

A proper map f: M -> N is a continuous funection such that the
preimage under f of every compact subset of N is compact. Proper
maps f, g: M — N are homotopic at o if for every compact BC N
there is a compact set Ac M with restrictions f|,_, and g|,-.
homotopic in N — B (notation, f|y.. = ¢gly—s in N — B). We shall
say that M homotopy dominates at oo a space N provided there are
proper maps f: M — N and g: N— M with fog homotopic at < to
idy, the identity on N.

In several situations we shall need to consider inclusions of
complements of compact subsets of a space M. We denote the
inclusion of M — B into M — A by 454, where A and B are compact
subsets of M and BD A.

Throughout the paper n = 0 will be a fixed integer and & and
7, if not stated otherwise, arbitrary nonempty classes of topo-
logical spaces. &%~ denotes the class of all CW-complexes, 7
the class of all finite CW-complexes and °" the subclass of .&#
consisting of all complexes of dimension <.

Let M be a space and U, V, W, with V, Wc U, its subsets.
We let (U, V, W) and &, (U, V, W) denote the following state-
ments.

Every mapf: X—V of Xe# is in U homo-
s (U, V, W : .
( ) topic to a map of X into W.

If mapsf, g: X —> W of Xe& are homotopic in
U, v, A
(U V, W) U, then they are already homotopic in V.

Let f,9: X— Y be two maps and & a class of spaces. We
call f and g &-homotopic if for every Z¢ < and a maph: Z — X,
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the compositions foh and goh are homotopic.

A noncompact locally compact space M is (1) & -trivial at oo,
(2) € -movable at «, (8) ¥ -calm at o, and (&, 2)-smooth at oo
provided

(2.1) for every compact set A C M there is a larger compact set
B such that every map f: X—> M — B of Xe¥ into a component
of M — B is null-homotopic in M — A,

(2.2) for every compact set A M there is a compact BD A
such that for any compact C D A the statement & (M — A, M — B,
M — C) holds,

(2.83) for every compact set A < M there is a larger compact set
B with the property that for any compact C> B there is D> C
making the statement &, (M — B, M — C, M — D) true, and

(2.4) for every compact set AC M there is a compact BD A
with the property that every two <-homotopic maps f, ¢g: X —
M — B of Xe% into M — B are homotopic in M — A,
is satisfied, respectively.

Spaces . F-calm at < are called calm at -, those .Z”"-calm at <
are called n-calm at -, and spaces (., Z")-smooth at o will be
called n-smooth at oo.

The simplest way of constructing (non compact) locally compact
spaces is to look into a complement M = N — A of a closed subset
A in a compact space N. In handling problems of deciding when
M will have a certain homotopy property at o it turned out in
[6] and [7] that it is useful to assume A satisfies conditions resem-
bling (and implied by) key properties A would have if A were
hazy in N. This last concept is due to Kozlowski [14] and in case
N is an ANR it is equivalent with Anderson’s notion of Z-sets
(see [11]). Our next definition states these conditions.

A closed subset A of a space X is said to be globally right
(left) unstable in X if for every open neighborhood U of A in X
the inclusion U — A <> U has a right (a left) homotopy inverse.

Finally, in (8.7), (4.8), (5.4), (56.5), and (6.5) we shall use the
shape theory of arbitrary topological spaces in the form described
by Kozlowski [13].

A class of topological spaces & shape dominates a class &
provided for every Xe <2 there is Ye% such that Y shape
dominates X. In Kozlowski’s description this means that there are
natural transformations . : [X, —]— [Y, —]and &:[Y, —] - [X, —]
between functors [X, —], [Y, —]: && — Sets, where 5# is a homo-
topy category of spaces having the homotopy type of CW-complexes,
such that ..& = _7r.

3. @ -calmness at o. In this section we shall prove several
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theorems about % -calm at o spaces, defined in §2, and present
examples illustrating this concept. Together with examples in §4
they show that & -calmness at oo neither implies nor is implied
by movability at - but that for this rather strong homotopy con-
dition at -« for a noncompact locally compact space one can prove
results similar to those proved for movability at o in [6].

(3.1) ExampLE. Let ¢ ={X, fi}i>o be a direct sequence of
compact spaces and let Map (¢) be the infinite mapping cylinder of
it obtained by glueing mapping cylinders of maps f; together. One
easily sees that Map (¢) is & -calm at -, for every class &

(3.2) ExaMPLE. The product X x [0,1) of a compact space X
with the half-open unit interval can be clearly considered as the
infinite mapping cylinder of a direct sequence ¢ = {X,, fi}ivo, Where
X, =X and f, = id for every 7 > 0. Hence, every such product is
& -calm at <, for any class & .

(3.3) PROPOSITION. If a moncompact locally compact, comnected,
and locally larcwise-connected space M is Z-calm at oo, then M
has finitely many ends.

Proof. We shall prove that a space M with infinitely many
ends can not be {X}-calm at o, for any space X. Let BC M be
an arbitrary compact set. If M — B has » components, select a
compact CO B so that M — C has (n + 1) components, and let DoC
be any compact set. Let K, and K, be two different components
of M — C contained in the same component of M — B. If f: X —
K.N(M—D) and g: X — K, N (M — D) are constant maps, then they
are homotopic in M — B (since each component of M — B is arcwise-
connected) but are not homotopic in M — C. Hence, {X},(M — B,
M — C, M — D) does not hold.

The above proposition shows that there are many spaces that
are not &-calm at o, regardless of how simple spaces in & might
be. For example, every tree (i.e., a connected, simply connected
1-complex) with infinitely many ends is such a space.

(3.4) EXAMPLE. A noncompact, locally compact, connected, and
locally arewise-connected Z -trivial at <« space with finitely many
ends is & -calm at o.

(3.5) ExamMPLE. Let X be a closed subset of a locally compact
Hausdorff space Y such that the pair (Y, X) satisfies Siebenmann’s
isotopy compression axiom I-Comp (X, Y) [16]. Then Y — X is &-
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calm at o, for any class & .

(3.6) THEOREM. Suppose M homotopy dominates at oo a space
N. If M is & -calm at <, then N is also & -calm at oo.

Proof. Take proper maps f: M - N and g: N— M such that
fog is homotopic at « to idy. Let A < N be any compact set. Its
preimage A’ = f'(A) is a compact subset of M. As M is & -calm
at oo, there is a compact B’ D A’ satisfying (2.3). Put B=AU
g Y(B"). Suppose CDO B is any compact set in N. Let C* > C have
the property that fog|y o ~ i in N—C. Let C'= B U f(C*
and let D’ be as in (2.8) with respeet to B’ and C’. Put D=CU
g7'(D"). Assume @,: X —> N — D are maps of Xe& into N— D
homotopic in N — B. Maps gep, goy: X — M — D’ are homotopic in
M — B'. The choice of B’ and D’ implies they are homotopic in
M — C'. Hence fogop and fogoyr are homotopic in N — C*. But
Segep =@ in N—C and fogoyp~q+ in N—C. So @ and + are
homotopic in N — C.

Our next theorem shows that the question of deciding when a
locally compact ANR is & -calm at o depends only on the shape
properties of spaces in #.

(3.7) THEOREM. Let an ANR M be % -calm at ~ and assume
a class &7 is shape dominated by a class . Then M is ZD-calm
at oo,

Proof. If ACM is any compact subset let B be chosen using
the fact that M is & -calm at -. Now, for any compact CDOB
take DD C such that the statement (M — B, M — C, M — D) is
true.

Consider an Xe < and maps ¢, y: X-— M — D homotopic in
M~ B. As <& is shape dominated by %°, there is Ye% and
natural transformations :[X, —] —{Y, —} and @:[Y, —]-|X, —]
such that % = .7d. Observe that representatives ¢’ and ' of
Fu-o(p]) and F,_,([+]), respectively, are maps of Y into M — D
that are homotopic in M — B because the equality [ip zo@]= [ip 9]
implies [iy,5°9"] = (ip,5)i0 7y o([P)=Fs—slin,5°P]) = F - s(lip,po¥]) =
(ip.8):°Z u-[¥]) = [ip.zo9']. By assumption, they are homotopic in
M — C. But, then (i5,0);°Cu-0°Fu—o(PD) = (15.0):°Fs-0°F u—p([¥])-
Hence, (ip.0):(Ip]) = (4p,0)«([¥]), which is another way of saying that
@ and + are homotopic in M — C.

(3.8) PROPOSITION. If M is (&, &)-smooth at o« and ZF-calm
at o, then M is & -calm at oo.



74 ZVONKO CERIN (ZAGREB)

Proof. Let A C M be a compact subset. Select a compact BD
A using <Z-calmness at « of M. If C is any compact set contain-
ing B, let C, be taken with respect to C applying (&, &)-smooth-
ness at o of M. Then pick a compact D>OC,>C so that every
two maps @', ¥v: Y —>M — D of an Ye & into M — D homotopic in
M — B are already homotopic in M — C,.

Let o, 4: X—>M — D be maps of an Xe% into M — D and
assume ¢ =~ in M — B. Clearly, for every space Ye <7 and a
mapa: Y — X we have poa ~ o in M — C, so that, by the choice
of C,, it follows @ ~ + in M — C.

(3.9) COROLLARY. If M is an m-smooth at < and m-calm at oo
space, then M is calm at oo.

The class of &-calm at < spaces behaves well only under the
formation of finite “complemented products” as the following theo-
rem and the example (3.12) below show. We first state a technical
definition.

(3.10) DEFINITION. A closed subset A of a space X is strongly
globally right (left) unstable in X if for each triple (U, V, W),
Wc Vc U, of neighborhoods of A in X there is a map f: (U, V,
WYy—(U—A,V—A W—A) such that iof|, =id, and 4of ~
idy(fotly_y = 1dy_, and for ~ id._,), where 1: U — A< U is the
inclusion.

Note that a Z-set A in the Hilbert cube @ is both right and
left strongly globally unstable in Q.

(3.11) THEOREM. Let N, ---, N, be compact spaces and X,CN,,
-+, X, C N, strongly globally right umnstable subsets. If X =
T12, X, is globally left unstable in N = [[2, N, and each M,= N, —
X(=1,--+,n) 18 E-calm at o, then M = N — X 1s also & -calm
at oo.

Proof. Let AC M be a compact subset of M. Pick an open
neighborhood U, of X, in N, (¢ =1, ---,n) such that Ac N —
7. U,. As M, is ¥ -calm at «, there is a compact set B,D A, =
N, — U, in M, satisfying (2.3). Put B= N — [[l.,(N;, — B,)). As-
sume C D B is an arbitrary compact subset of M. Let V,CN,— B,
be an open neighborhood of X, in N, such that Cc N — [[~, V..
For each C, = N, — V, select a compact D, in M; with respect to
B, using % -calmness at o of M,. The compact set D =N —
. (N, — D,) makes the statement &,(M — B, M — C, M — D) true.
Indeed, assume @, 4: K— M — D are maps of K% into M—
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D homotopic in M — B. Projections =w,op, w,oip: K— N, — D, are
homotopic in N, — Bi(i =1, ---,n). The assumption that X, is
strongly globally right unstable in N, implies there is a map f.:
(N;,—B,N,—-C,, N,— D))~ (M, - B;, M, — C;, M, — D,) such that
Jiofi = iy, 5, and kofilyi—c; = idy,—¢;, Where Jit M; — By= N; — B,
and k: M, — C,= N, — C, are inclusions. Thus, fiomw,op, fiomon:
K— M, — D, are homotopic in M, — B,. The choice of B, and D,
gives that they are homotopic in M, — C,. But, we know that
kiofily,—c;, = #y,_o, SO0 we get mop =~ meoqp in N, —C;. Hence, ¢
and + are homotopic in [, (IN; — C,). Now, use left global unsta-
bility of X in N to conclude p =+ in M — C = (N —-C) — X.

(3.12) ExaMPLE. The following example shows that (3.11) need
not be true for a product of infinitely many spaces.

Consider the Hilbert cube @ as the product B® x B®* X B x ...
of finite-dimensional cells and regard B* as a cone S**x [0, 1}/S" ' x
{1} over the (n — 1)-dimensional sphere S*'. Observe that Srt =
S* ' x {0} is a Z-set in B". Hence, X = Hk>1§k“1 is a Z-set in Q.
We claim that M =@ — X is not {S', 5% S? --.}-calm at o« even
though each B* — S* is & -calm at c, for any class & .

Indeed, given an arbitrary compact subset B of M we see that
there is an integer b and real numbers ¢, ---, {,¢(0, 1) such that B
is contained in the complement (with respect to Q) of the set U =
St x [0,¢) X +-- X 8" x[0,t,) X B x B*** x ..., Let C be the
complement of V =S"x [0,¢,) X -++ X S* X [0, ¢;) x S*** x [0, 1/2) %
B¥3 x B x ..., Assume DDOC is a compact set in M. Again,
we can find an index d >b and numbers & <t, ---, t; <t ty <1/2,
tyrsy =+, by In (0, 1) such that D is contained in the complement of
the set W =8* x [0, ¢]) X --+ X S% x [0, £;) X B*" x B4 x ...,

Let @, 4: S — W Dbe maps of S°**' onto the (2b + 1)th coordi-
nate factor of W that are not homotopic. These two maps are
homotopic in U since in the (2b + 1)th direction U has B%"? as a
factor. Clearly, @ and + are not homotopic in V.

(3.13) ExampLE. It follows from Example (4.3) and Theorem
(4.19) in [6] that the space M from the previous example is & -
movable at «, for all . Hence, a Z-movable at « noncompact
locally compact space is not necessarilly & -calm at «. Now we
shall present an example of an {S'}-calm at <o space that is not
{S*}-movable at o, where S' is the 1-sphere.

Let ¢ ={S,, fi};~, be the inverse sequence with each bonding
space S, a copy of S!' and with each bonding map f, a map of
degree k, > 1. Let M = Map (¢) be the infinite mapping cylinder of
o (see [12]). As liér_na is a Z-set in the ANR Map (o) Ulir_na [12]
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and is homeomorphic to some nontrivial solenoid, and the later is
not movable [2], it follows from Theorem (4.2) in [6] that M is
not {S'}-movable at .

We shall prove that M is {S'}-calm at «. In order to do this,
let us first introduce notation for certain subsets of M. For any
real number » = 2, let M, denote the compact subset of M composed
of the mapping cylinders (glued together) of the first j = [r] (the
greatest integer less than 7) spaces plus the portion of the mapping
cylinder of f;:S;,, — S; between the {0}th level and the {r — [r]}th
level (in this notation the base S; < Map (f;) is the {0}th level).

Assume Ac M is an arbitrary compact subset of M. Select an
integer @ = 2 so that AcC M, ., and let B=M,,,. If COB is
any compact set, pick an integer ¢ = a + 1 with the property that
M., ., contains C. Put D=M,_,.

Consider any two maps @, ¥: S* — M — D homotopic in M — B.
Since S! is compact, there is an integer & = ¢ + 1 such that (SHU
w(SYc M, — M,,,. By collapsing this last space in a natural way
onto S,,,, we see that ¢ and + are in M, — M,,, homotopic to some
maps ¢’ and ' of S' into S,,,, respectively. As ¢’ and ' are
homotopic in M — B, this time by collapsing onto S,,,, we see that

kc' M ‘ka—i—l'degg), = kc' e 'ka+1‘deg’lﬁ" M

Hence, deg ¢’ = deg + and, therefore, ¢’ =+ in S,,,. This clearly
implies @ ~ 4 in M — C.
The proof of the following proposition is left to the reader.

(3.14) PROPOSITION. If M is & -calm at <o, then each moncom-
pact component of M is E-calm at <. Conversely, if M has
finitely many moncompact components and each of them is & -calm
at oo, then M is & -calm at oo,

(3.15) DEFINITION ([6]). Let M be a noncompact locally compact
space and let M, C M be an open subset. We shall say that M is
isotopable into M, if for every compact BC M, and every compact
D> B in M, there is an invertible isotopy h .M —->M (0<t<1)
such that h(D)c M, and h,|; = id, for all ¢.

(3.16) THEOREM. Let & be a class of compact spaces. If a
locally compact space M is the union of an increasing sequence of
its & -calm at o open subsets M,, © = 0, such that M,,, is isotopa-
ble into M,;, for every i =0, then M is & -calm at oo.

Proof. Let Ac M be any compact subset. We can assume
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AcC M, Since M, is & -calm at -, there is a compact subset BDA
of M, with the property that for every compact C’' > B in M, there
is D'>C" in M, so that every two maps ¢, v: X-—-> M, — D of
X e %, homotopic in M, — B, are (already) homotopic in M, — C’.

Consider an arbitrary compact subset C of M containing B.
Take n = 0 with Cc M,. Let h,: M, — M, be an invertible isotopy
that throws C into M, and keeps B pointwise fixed. Pick D’ in
M, with respeet to B and h,(C). Put D = k7 (D").

Assume maps ¢, y: X - M — D of Xe% into M — D are homo-
topic in M — B (via a homotopy g, X — M — B). Select m such
that U.,zne9(X)M,. If m > n, then by applying an invertible
isotopy of M, onto itself that is fixed on D and its final stage
moves D U Uos:<:9:(X)) into M,, we see that ¢ and 4 can be
assumed homotopic in M, — D. Hence, without loss of generality
we can take m = n. Now, ho@, hooy: X — M, — D' are homotopic
in M, — B (by the same argument) so that %,0p and h, oy are homo-
topic in M, — h,(C). But then ¢ and + are homotopic in A7 (M, —
h(C) M — C.

The final result in this section shows that ends (see [1] for an
enjoyable introduction into Freudenthal’s theory of ends) of a & -
calm at - space satisfy a condition defined in (3.17). The Example
(38.19) rules out its converse in general.

(8.17) DEFINITION. An end ¢ of a locally compact space M is & -
calm if for every open neighborhood U of ¢ in FM, the Freudenthal
compactification of M, there is another V U such that for every
U'cV there is V' c U’ making (VNM, U NM, V' NM) a true
statement.

(3.18) THEOREM. If a locally compact space M is & -calm at
co, then every end e of M is & -calm.

Proof. Let ec EM, where KM denotes the end set of M.
Suppose U is a neighborhood of e¢ in FM. Select a neighborhood
U* of e inside U so that U* N EM is both an open and closed (in
the relative topology of EM) subset of EM. Cover EM with fini-
tely many open sets U, ---, U, such that U,=U* and U, N U,=Q
whenever j > 1. Put A = FM — U, U,. Pick a compact BD 4 in
M using Z-calmness at « of M. Put V = U*N(FM — B). Then
V is a neighborhood of ¢ in FM.

Consider any open neighborhood U’ of ¢ in F'M contained in V.
Take a neighborhood (U’)* analogously to the way U was chosen,
and take similarly open sets U, ---, U, and put C = FM — UL, U,.
Select a compact subset D of M such that #,(M—B, M—C, M — D)
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is true. Put V' = (FM — D) N (U")*.

Assume @,y X —V'N M are maps of Xe% into V'NM
homotopic in VN M. Since V'NMcM—-D and VNMcM — B,
we see that @ and + are homotopic in M — C. But, clearly, this
homotopy must be in (U’)* so that ¢ and + are homotopic in (M—
CONUHY*c U NM. In other words, the end e is & -calm.

(3.19) ExampLE. Let T be a tree whose end set ET is homeo-
morphic to the subset {0} U{l/n|n =1,2,8, ---} of the real line.
We already observed that T is not & -calm at oo, for any class
% . On the other hand, one can easily check that every end e of
T is % -calm, for each class Z.

4. @ -calm compacta. Results of the previous section are
here transfered into statements about compacta (=compact metric
spaces). This is accomplished using the natural equivalence of the
shape theory of compacta considered as Z-sets in the Hilbert cube
@ with the homotopy theory at o of complements of Z-sets in
Q [6] (see also [10]). Applying that equivalence, from & -calmness
at < we get a shape invariant property of compacta called = -
calmness. The class of calm compacta (i.e., & -calm compacta,
where % = .7, the class of all finite polyhedra) includes the class
of all FANR’s and many of their properties are the same as the
corresponding properties of FANR’s. There are some differences
though since calm compacta need not be movable (Example (4. 11)).

(4.1) DEFINITION. A compact metric space X is & -calm provided
there is a Z-set X’ in @ homeomorphic with X such that M = Q —
X’ is & -calm at . Compacta .ZP-calm will be called calm and
those “°"-calm will be called n-calm.

In order to make the statement of our first theorem shorter
we introduce the following notation. For a closed subset X of a
space N we write Xe %, (N) if for every open neighborhood U of
X there is Vc U such that for every open neighborhood U’ c V
we can find smaller V' making &,(V, U’, V') true.

(4.2) THEOREM. The following assertions about a compactum
X are equivalent.

(1) X is &-calm.

(ii) If X' is a Z-set copy of X in an ANR N, then N — X’
is % -calm at oo.

(iii) If X' is a Z-set copy of X in an ANR N, then X' ¢ &,(N).

(iv) If X is a closed subset of an ANR N, then X € &(N).

(v) If X=limo, where 0 ={X,, fi}iziso 18 an inverse sequence
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of ANR’s, then the infinite mapping cylinder Map (6) of o is &-
calm at oo.

(vi) Assume X =limo, where 0 = {X,, fi}isio 18 an inverse
sequence of ANR’s. Th:';z Jor every index i > 0 there is j =1 such
that for every v'=Jj we can find j =1 with the following property.
If @,v:K— X; are maps of Ke& into X; such that fiop and
Siodr are homotopic, then fiop and fioy are homotopic.

Proof. (i)=(il). In [6] we observed that N — X' is homo-
topy equivalent at o to a complement of a Z-set copy of X in Q.
Hence, (ii) follows from (i) by Theorem (3.6).

(ii )= (iii). This implication is immediate once we note that
if AcM=N-— X' is a compact subset, then U=N— A is an
open neighborhood of X’ in N and the inclusion M — A< U is a
homotopy equivalence.

(iii) = (iv). Consider N X Q as a Z-set in @, and let Y be a
Z-set copy of X in Q. Since X' =X x Q@ and Y have the same
shape, complements @ — Y and @ — X’ are homeomorphic [10].
Hence, (iii) holds for X’. But, N x @ is collared in' @, i.e., N x @
has a neighborhood of the form N x @ x [0,1) with the O0-level
corresponding to N x @ [11]. It is easily proved that this implies
X X Qe &N x @), and hence also Xe&(IN) because the projec-
tion of N x @ onto N is a homotopy equivalence over every subset
of N.

(iv)=(v). An easy proof is based on the observation that
Map (6) can be compactified to an ANR N = Map (o) Ulimo by
«—

adding lim ¢ such that limo is a Z-set in N[12].

(v) = (vi). A simple proof of that equivalence uses the facts
that N = Map (¢) Ulimo is homotopy equivalent to X, and that

lim ¢ has arbitrarily “small neighborhoods in N obtained by consider-
<
ing infinite mapping cylinders of cofinite subsequences of .

(v)=1(i). Suppose X =limo, where o ={X,, fi}isio 1S an
inverse sequence of finite polyhedra, and suppose Map (o) is & -calm
at «. Let X, be the one-point space and let f9: X, — X, be the
obvious map. The infinite mapping cylinder Map (¢') of ¢ = {X,,
Si}izize 18 homotopy equivalent at o with Map (¢) and lim ¢’ = lim 0.

<« —
Hence, Map(¢') x @ is & -calm at o (by Theorem (3.6)). But,
(Map (¢") Ulimo”) x @ is a contractible compact Q-manifold and
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(limeo') x @ is a Z-set in it. By [11] that manifold is in fact a

H(ﬁbert cube so that X x Q is % -calm. Applying Theorem (4.7)
below, it follows X is & -calm.

(4.3) COROLLARY. Let o ={X,, fi};>o be an inverse sequence of
ANR’s (of dimension =m). A compactum X =limao is calm (n-
<«

calm) if and only if X is {X,, X;, +-+}-calm.

As there are only countably many homotopy types among
compact ANR’s (of dimension <n) [3] in view of (4.3) and (3.7) we
immediately get.

(4.4) COROLLARY. (a) There is a sequence P, P, --- of finite
polyhedra (of dimension <n) such that a compactum X is calm
(n-calm) if and only if X is {P,, P,, -+« -}-calm.

(b) There is a compactum C (of dimension =n) such that a
compactum X is calm (n-calm) if and only if X is {C}-calm.

Proof. (b) The one-point compactification of the disjoint union
of P/s from (a) is one such compactum.

We now list theorems and examples concerning the classes of
& -calm and calm compacta that are consequences of results and
examples in §3. The proofs are mostly omitted. The numbers in
square brackets denote the result(s) from § 3 implying the statement
in question.

(4.5) ExaMPLE ([8.2] and [3.6]). Every FANR compactum X is
&« -calm, for every class % .

Proof. Let Y be an ANR that shape dominates X and assume
both X and Y are Z-sets in Q. By the Collaring Theorem [11],
(@ — Y) X @ has at infinity the form Y x @ x [0,1). Since (@ —
Y) x @ is homotopy equivalent at <« to @ — Y and @ — Y homo-
topy dominates at « @ — X, (3.6) and (3.2) apply.

For pointed FANR’s this also follows from (8.5) because a Z-
set X @ satisfies the isotopy compression axiom I-Comp (X, @) if
and only if X is a pointed FANR [17].

(4.6) THEOREM ([3.18] and [3.8]). A compactum X is & -calm
if and only if X has finitely many & -calm components.

(4.7) THEOREM ([3.6]). If a compactum X is & -calm and
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Si(X) = SMY ), then a compactum Y is also & -calm.

(4.8) THEOREM ([38.7]). If a compactum X is & -calm and a
class & is shave dominated by a class &, then X is also ZF-calm.

(4.9) THEOREM ([3.11]). Let X, --+, X, be @ -calm compacta.
Then their cartesian product X = [[i-, X, is & -calm.

(4.10) ExamMpPLE ([3.12]). The countable infinite product S~ =
Il:5o S* of all finite-dimensional spheres is not calm. Note that S
is movable [2].

(4.11) ExaMPLE ([3.13] and [4.3]). Every solenoid is calm.

Problem (8.2) on the page 266 of Borsuk’s book [2] can be
phrased in the following form: “If X = (s>, X; where X, X,, ---
are ANR’s and X,,, is a retract of X,, for every 1=1,2,8, ---,
then what shape properties has X?”. The last theorem in this
section shows that calmness is one of them.

(4.12) TuEoreM. If X,, X,, «+-- are ANR-sets and if X,., is a
retract of X, for every k=1,2, ---, then the set X = i X, s
& -calm for every class & . ,

Proof. We may assume X, C €, By using the equivalence of
(i) and (iv) of Theorem 4.2 we shall prove that X is calm. This
will clearly suffice. Let U be an open neighborhood of X in Q.
Select % so that X, U. Since X, is an ANR, there is an open
neighborhood V of X, in U and a retraction : V— X,. Let U'C
V be an arbitrary open neighborhood of X in Q. Pick =k so
that X; c U’. Let V* be a small open neighborhood of X; in U’
for which there is a retraction 7*: V* — X;. On a closed subset
T=V*x{0,1}UX; x [0,1] of V* x [0, 1] define a map into V* as
r* on V* x {0} and as the identity on V* x {1} U X; x [0, 1]. Since
V* is an ANR, there is a neighborhood N of T in V* x [0, 1] and
an extension of the above map to all of N. Hence, there is an
open neighborhood V' of X;> X such that V' x [0,1]c N. Thus
we can assume that id,. is in V*C U’ homotopic to a retraction
7. V'— X;. We claim that the statement FA(V, U’, V') is true.

Indeed, assume @, y: P— V'’ are maps of a finite complex P
into V'’ and let g:P— V be a homotopy in V between them.
Observe that 7’op ~¢@ in U’ and 7’oqp =+ in U’. Hence maps
1op and 7’04 are homotopic in V (compose the last two homotopies
and ¢,). Let R:X,— X; be a retraction. As 7r(+’op) =1r"o¢p and
(7' oqf) = 1’oqp are homotopic in (V) = X, we see that Roro(1’op)=
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1’0o and Roro(#'oqr) = 9’0oy are homotopic in X;. Therefore, » and
+r are homotopic in U’ and the proof is complete.

5. (&, Z)-smoothness at -, In §2 we defined, for arbitrary
classes & and < of topological spaces, the notion of a (¥, &)-
smooth at <o noncompact locally compact space, that by Example
(5.1) below can be considered as a generalization of a notion of a
trivial at o space. Here we shall prove a number of theorems
and present some examples aimed at giving better understanding
of the real meaning of that concept. The most interesting in this
direction are results (5.14) and (5.17) where we get a partial chara-
cterization of n-smooth at < spaces.

(5.1) EXAMPLE. A noncompact locally compact locally arcwise-
connected space M is (&, F°)-smooth at o if and only if M is
FP-trivial at oo.

(5.2) THEOREM. If a space M is (&, & )-smooth at «~ and M
homotopy dominates at - a space N, then N is also (&, Z)-smooth
at oo,

. Proof. Let f:M— N and g: N— M be proper maps such that
fog is homotopic at o« to idy and let AC N be a compact set.
Take a compact A’ D A with fog|y_, ~ 44, in N— A. Let A* be
a compact subset of M with the property that f(M — A*)c N — A'.
Select B* > A* using the fact that M is (&, &2)-smooth at «. Let
B=gB*UA'.

Consider X e % and any two <7-homotopic maps ¢ and « of X
into N — B. Then gop, goy: X — M — B* are <7-homotopic maps.
Hence, they are homotopic in M — A*. Composing that homotopy
with f we see that fogop and fogoqr are homotopic in N — A’. The
choice of A’ implies ¢ and + are homotopic in N — A.

(5.3) REMARK. In the above theorem the assumption that M
homotopy dominates at « N can be weakened by assuming that M
only quasi-dominates at « N [6].

All of the properties at - defined in §2 depend only on shapes
of spaces in the class & when the space under consideration is an
ANR. The following two propositions establish this for (&, &2)-
smoothness at - under the additional assumption that spaces in &
have homotopy types of ANR’s. Note that for these spaces a shape
domination is the same as a homotopy domination. )

(5.4) PROPOSITION. Let & be a class of spaces with homotopy
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types of ANR’s. Let a class & shape dominate a class <’. If
an ANR M s (&, &')-smooth at oo, then M is (&, <)-smooth
at oo,

Proof. Let A be a compact set in M. Pick a compact BDA
applying the assumption that M is (&°, &7')-smooth at <. Let o,
Y: X—M — B be maps of Xe% into M — B with the property
that for every space Y in 2 and a map f: Y — X compositions @of
and ¢of are homotopic. We claim that » and «+ are &’-homotopie,
and therefore homotopic in M — A.

Indeed, if Y'e 7' take Y e < that shape dominates Y’ and
natural transformations . :[Y’, —]— 1Y, —] and &:lY, —]1 1Y,
—] such that &% = ._7d (see §2). A homotopy class F([f']) e
[Y, X] by assumption satisfies @y Fx([f']) = ¥(Fx(f'])), where
f': Y —- X is an arbitrary map. Hence, since .5 is natural,
Fu-s([Pof') = Fus(¥ef']). But then &y 5o 7y s([pof]) = Ty 5o
Fa-s([¥rof’]) and, finally, [pof’] = [¢rof’] which is another way of
saying that @of’ and +-f’ are homotopic, i.e., that ¢ and + are
<r'-homotopic.

(5.5) PROPOSITION. Let & and &' be classes of spaces with
homotopy types of polyhedra and assume &' shape dominates = .
If an ANR space M is (%', &)-smooth at o, then M is also (&,
D)-smooth at oo.

Proof. Let A be a compact set in M. Pick a compact BD A
using the faet that M is (&', &)-smooth at . Let ¢, y: X —
M — B be <7-homotopic maps of Xc % into M — B. Take X' e &
such that X’ homotopy dominates X. ILet a: X — X’ and B8: X' —
X be maps with Boa =~ idy.

Consider an arbitrary mapf: Y - X' of Ye < into X'. By
assumption, @oBof and qfoBof are homotopic. The choice of B
implies @oB = 4o in M — A. Hence, gpofBoq = +pofocx in M — A4,
and finally @ = in M — A.

The product of two spaces (&, &)-smooth at <o need not be
(¢, Z)smooth at o (for example, the real line R is (&, -
smooth at <o, by (5.1), while the plane R* = R x R is not, again
by (5.1) since R? is not . -trivial at o), but a “complemented pro-
duct theorem” holds.

(5.6) THEOREM. Let X, be a closed subset of a compact contract-
ible space N,, for each i in a set of indices I. Put N = Il,.; N,,
X=1lie;X,, M=N—-X, and M,=N,— X,. If each M, is (&, 2)-
smooth at oo, each X, 1s globally right unstable in N,, and X is
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globally left unstable in N, then M is (&, 2)-smooth at .

Proof. Let A be an arbitrary compact subset of M. Its com-
plement N — A in N is an open neighborhood of X. Hence, there
is an integer n = 1, indices 4, ---, 7, in I, and compact sets A, C
M,, ---, A,CM;, such that (N, —A)x -+ XNy, —A) XILins,,ers, N: C
N — A. Select compact sets B, ---, B, using (%, &2)-smoothness
at o of the Mij.’s. Put B = U (B; X ITj#i-ni, Ni)-

Consider any space Xe€% and < -homotopic maps ¢, y: X —
M—B. Compositions @;;, =7;,°p and v, =7, ;o4 map X into N,,—B;,
j=1,+--,m, and are Z-homotopic there. Let r,:N,.—B; — M, —
B; be a right homotopy inverse to the inclusion M,, — B; = N, —
B;. Maps 7,,09;; and 709y, are Z-homotopic in M, — B; and,
therefore, they are homotopic in M;, — A; by the choice of sets B;.
It follows that o,; and 4, are homotopic in N,;; — A;. Since spaces
N, are contractible, ¢, = 4, for all indices ¢ # %, ---, 7,. Hence,
@ and +» are homotopic in N — A. As X is globally left unstable
in N it is easy to see that ¢ and +r are actually homotopic in M/ — A.

(5.7) THEOREM. Let N be a compact space and let X, DX, D---
be a decreasing sequence of its closed subsets. Suppose each X, is
globally right wunstable in N and X = )i X; s globally left
unstable in N. If complements M, = N — X, are (&, Z)-smooth
at oo, then M = N — X 1s (&, &)-smooth at co.

Proof. Let AcC M be a compact subset. The set N — A4 is an
open neighborhood of X in N. Since X is the intersection of Xs,
we can find an integer » = 1 such that N — A is an open neighbor-
hood of X,. But M, =N — X, is (&, &)-smooth at <, so there
is a compact Bc M, with the property that every two <=-homo-
topic maps ¢, y: K— M, — B of K€% into M, — B are homotopic
in M, — A.

In the commutative diagram of inclusions

(N—B)— X,<*> (N— 4) — X,
B 1.
N B. 1k I
J1 .
(N-B) — X<l (N—4) - X

by assumption 4, has a right homotopy inverse 77 and j, has a left
homotopy inverse ji. Then k ~ jloi, has a right homotopy inverse
kE® = 4Fog,.
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Assume @, y: K — M — B are Z-homotopic maps of Ke & into
M — B. Compositions k%op and kFoqp are <Z-homotopic in M, — B.
Hence, iok®op and tok®oyr are homotopic. Consequently, moiok®op=~
motokBoqpr. But, moiok®™ =~ j so that jop =~ jo4r, proving M is (&,
Z)-smooth at co.

(6.8) THEOREM. Let & and < be classes of compact spaces.
If a locally compact space M 1is the umnion of an increasing sequence
of its (&, Z)-smooth at o open swbsets M;, i =0, such that M,
i8 isotopable into M,, for every ¢ =0, then M is (&, &)-smooth
at co.

Proof. Let A be a compact subset of M. Without loss of
generality, we can assume AcC M,. As M, is (%, &)-smooth at o,
there is a compact BD A in M, such that any two maps ¢’, v': X—
M, — B of Xe% that are <-homotopic in M, — B are homotopic
in M, — A.

Now, assume @, y: X - M — B are maps of Xe¢% into M — B
and suppose they are <-homotopic in M — B. Let # =0 be an
integer such that p(X)UWX)c M, and let h:M,—> M, be an
invertible isotopy keeping B fixed with A,(p(X) U (X)) c M, — B.
If Ye<= and a: Y — X is an arbitrary map, there is a homotopy
G: Y x I — M — B joining gpoa and +oa. Since Y is compact, there
is an integer m = » such that G(Y x I)c M,. Let h*: M, — M,
be an invertible isotopy of M, which keeps g@oa(Y) U roa(Y)U B
fixed and whose final stage throws G(Y x I) into M,. It follows
that h,op and h,oyr are <Z-homotopic maps into M, — B. By the
way B was chosen, they are homotopic in M, — A. Composing that
homotopy with the isotopy h;' we see that ¢ and + are homotopic
in M — A.

(5.9) PROPOSITION. Let N be the union of compacta N, and N,
intersecting in o compact ANR space N,. Let X C N be a closed
connected subset and put X, = XN N; and M, = N, — X,, for ¢ =0,
1,2. Suppose M, is contractible and & 7 -trivial at -« and M,
M, and M, are one ended. If M = N — X s (&, =)-smooth at oo,
then both M, and M, are (&, Z)-smooth at co.

Proof. Consider an arbitrary compact subset A4, of M,. One
easily construects a proper retraction of M, onto M, (see [15, Theo-
rem (4.5)] and, therefore, also a proper retraction »: M — M,. Hence,
there is a compact subset 4 of M such that »(M — A)c M, — A,.
Since M is (&, &)-smooth at co, there is a compact B M with
the property that every two <7-homotopic maps ¢, v: X—M — B
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of Xe% into M — B are homotopic in M — A. Put B, = M, N B.

Let @,v: X — M, — B, be <-homotopic maps of Xe% into
M, — B,. As M, — B,c M — B, the maps @ and + are <2-homotopic
in M — B and, therefore, homotopic in M — A. Let a homotopy
h:X—M— A join ¢ and . Clearly, roh,;: X — M, — A, is a homo-
topy in M, — A, between o and .

(5.10) DEFINITION. An end ¢ of a locally compact space M is
(&, 2)-smooth if for every open neighborhood U of ¢ in FM, the
Freudenthal compactification of M, there is smaller V such that
every two <7-homotopic maps @,y X —MNV of Xe& are ho-
motopic in U N M.

(5.11) THEOREM. Let & be a component hereditary class of
compact spaces. If each end ¢ of a space M is (&, & )-smooth,
then M is (&, & )-smooth at . The converse is also true without
any assumptions about = .

Proof. Let AC M be any compact subset. Its complement
U=FM — A is an open neighborhood of each end ec EM. Let V,
be an open neighborhood of ¢ selected with respeet to U using
(&, 2)-smoothness of e. Let % be a cover of EM with disjoint
open sets inseribed into {V. },cxy. Put B=M — U{W|We #}.

Suppose @, ¥: X — M — B are ZZ-homotopic maps of X e % into
M — B. Observe that, for each component C of X, restrictions @],
and |, are <-homotopic maps of C into some V,. Since Ce &,
these restrictions are homotopic in M — A. This clearly implies
that @ and + are homotopic in M — A.

Conversely, let U be an open neighborhood of an end ec EM.
Let U'c U be a smaller neighborhood with EM N U’ both closed
and open in EM. Cover EM — U’ with disjoint open sets U}, ---, U,
in FM. Put A=M—-(U'UU,U---UU,). Pick a compact BD A
applying (&, &)-smoothness at - of M. A required open neigh-
borhood of ¢ is the set V=(FM — B)n U".

We now turn our attention to n-smooth at -« spaces, i.e., (Z7,
Z*)-smooth at oo spaces, and their ends. At first one is tempted
to claim that an end [a] (as defined in [4]) of an ANR space M is
n-smooth if and only if Brown’s group [4] z.(M;a) is trivial for
all £ > n. This statement is not true in general as the following
examples show.

(5.12) ExAMPLE. Let X be a celebrated compactum constructed
by J. Taylor in [18]. Embed X as a Z-set in the Hilbert cube @
and let M =Q — X. By [8, (3.9)(b)] M can not be n-smooth at oo
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for any » = 0. It is well known (see [5]) that Brown’s groups
z(M; a) of a unique end [a] of M are all trivial.

(5.13) ExAMPLE. The same properties as the previous example
are also hold by the space M obtained by glueing finite-dimensional
spheres S, 8%, --- in such a way that two adjacent spheres meet
in a single point.

The notation used in the statement and in the proof of (5.14)
is taken from [4].

(5.14) PROPOSITION. Let M be an ANR and let a be a germ of
a representative of an end [a] of M. If M is n-smooth at o and
the group w(M; a) is trivial, then the groups m,(M;a) are trivial,
for all k> n.

Proof. Let @ = A, C A, CA,C--- be an increasing sequence of
compact subsets of M such that M = {J;., 4, and any two Z"-homo-
topic maps @, y: P— M — A,,, of a finite complex P into M — A,,,
are homotopic in M — A,, © > 0. Let [f]exi.(M;a) be represented
by a proper map f:(S% x) — (M, a). We can assume f(S* X {m})C
M — A,., for every m = 0. Observe that, for every integer m,
fn = Sflstxim is null-homotopic in M — A4,,,, since f, and a constant
map of S* x {m} into M — A,,,, are F°*-homotopic. The point (x, m)
will under that null-homotopy, denoted #,, ., be carried along an arc
in M—A,,,, from the point f(x, m)=h,, (*, m) to the point &, ,(x, m).
Define 2 mapi, on the boundary of a 2-cell {(x, m)} x I x I into
M- A, as h,, on {(x, m)} X I x {0}, as h,,,. on {(x, m)} x {1} x I,
and as A,, on {(x, m)} X {0} x TUI x {1}). Maps \,, in an obvious
way give us an element of z,(M;a). Since we assumed that this
group is trivial, we conclude that each map », can be, without loss
of generality, extended to a mapL,:{(x, m)} x IX [—->M — A,,,.
With that observation, applying homotopy extension theorem, one
easily proves that f, is in M — A, ., null-homotopic relative to the
point (x, m). Hence, [f] is the trivial element of z,(M; a).

(5.15) COROLLARY. Let M be an {S'}-trivial at - ANR space.
If M is n-smooth at oo, then for each a representing an arbitrary
end [a], the groups m,(M; a) are trivial, k > n.

Proof. Follows from (5.14) because an ANR space M is {S'}-
trivial at o if and only if groups z,(M; a) are all trivial. The last
statement is proved by a method used in the proof of (5.14).

Related to (5.14) and (5.15) is also the following observation.
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(56.16) PROPOSITION. If M 1is an n-trivial at -~ and m-smooth
at oo locally compact space, then M is trivial at .

Proof. Let A be a compact subset of M. Select a compact
set B’ with respect to A using n-smoothness at o« of M. Then
take a compact B with respeet to B’ applying n-triviality at o
of M.

Let ¢: P—> M — B be a map of a finite complex P into a com-
ponent of M — B. The restriction @|p: P* — M — B of » onto the
n-skeleton of P is null-homotopic in M — B’. Hence, there is a
constant map+: P— M — B’ such that ¢ and  are .Z°"-homotopic
in M — B’. The choice of B’ implies ¢ =+ in M — A. Thus ¢ is
null-homotopic in M — A.

At present we can prove only the following partial converse of
(5.15) under rather strong movability fype conditions on the
space M.

(5.17) THEOREM. Suppose M is calm at oo, movable at «~, and
{S¥)-trivial at oo, for every k> mn =0. Then M is n-smooth at oo.

Proof. Let A be a compact subset of M. Pick a compact set
C containing A4 using calmness at «~ of M and a compact BOC
using movability at « of M. We claim that B is a compact set
satisfying (2.4) for & = & and 2 = F".

Indeed, let ¢, y: P— M — B be any maps of a finite polyhedron
P into M — B and assume that their restrictions ¢*, +* on the =n-
skeleton of P are homotopic. Let k = dim P. Without loss of
generality we can assume k > n. Let compactsets D,,, DD, ,,D---
>D,,2D,oD,, = Bbe chosen in such a way that every singular
i-sphere in M — D, is null-homotopic in M — D,,,, i =n + 1, n + 2,
eee, k. Let D}, be picked with respect to C and D,,, using calm-
ness at « of M.

By the choice of B we see that maps ¢ and « are in M — C
homotopic to maps ¢’ and ', respectively, mapping P into M —
D}.,. Note that (¢')* and ()" are homotopic in M — C. The way
D}, and C were chosen gives (¢")* = (4)* in M — D,.,. Now, the
property of D,,, implies (p")*** = (v')*** in M — D,,,. Hence, (¢')*"*
and [()"** are homotopic in M — D,,,. Continuing in this way we
see that ¢’ = (¢')* and ' = (¢¥')* are homotopic in M - D,,, = M — B.
Finally, it follows that ¢ is homotopic to v+ in M —Cc M — A.

(5.18) KEMARK. The assumption that M is movable at - can
not be dropped out in (5.17) since the space M from (5.13) is calm
at co, {S*}-trivial at o, for every k = 0, nonmovable at - and
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not n-smooth at < for any n = 0.

6. (&, Z)-smooth compacta. In this section, by looking at
complements of Z-sets in the Hilbert cube, we define a class of
(&, &)-smooth compacta in much the same way as we defined
& -calm compacta starting from the notion of a & -calm at «~ space.
Then we state a few results concerning this class and give some
examples. The proofs are omitted because in method they are the
same as the proofs given in §4 or they can be proved rather easily
from the corresponding results in §5.

(6.1) DEFINITION. A compact metric space X is (&, &2)-smooth
provided there is a Z-set copy X’ of X in @ such that M=Q— X’
is (¥, &)-smooth at <. Compacta (&, .Z°")-smooth are called n-
smooth.

(6.2) EXxAMPLE. A compactum X is O-smooth if and only if
every component of X has trivial shape.

(6.3) THEOREM. The following statements about a compactum
X are equivalent.

(i) X 1s (¥, &)-smooth.

(ii) If X' is a Z-set in an ANR space N and is homeomor-
phic to X, then N — X' is (&, &7)-smooth at <o.

(iii) If X' is a Z-set copy of X in an ANR N, then X'e (%,
D)N), t.e., for every open neighborhood U of X' in N there is a
smaller V such that every two <Z-homotopic maps @, K— V of
Ke& into V are homotopic U.

(iv) If X s a closed subset of an ANR N, then Xe (%, &)
(N).

(v) If X =limo, where 0 = {X,, fi}yzio 18 AW iMVErse sequence
of ANR’s, then t(_h—e mfinite mapping cylinder Map (¢) of ¢ s (%7,
D)-calm at .

(vi) Assume X = limo, where ¢ = {X,, filizise 18 an inverse
sequence of ANR’s. Th;m Jor every index 1 > 0 there 18 § = 1 such
that, for every two Z-homotopic maps @, r: K — X; of K€ & into
X;, compositions fiop and fioy are homotopic.

(6.4) THEOREM. Let a compactum X be (&, Z)-smooth and
assume X quasi-dominates a compactum Y [2]. Then Y is also
(%, Z)-smooth.

(6.5) PROPOSITION. Assume % and %' are classes of spaces
with homotopy types of ANR’s.
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(@) If a compactum X is (&, Z)-smooth and a class Z 1is
shape dominated by a class ', then X is (¥, Z')-smooth.

(b) If a compactum X 1is (&, Z)-smooth and &' is homotopy
dominated by %, then X is also (€', & )-smooth.

(6.6) THEOREM. The product X = [[.», X; of countably many
compacta X, is (&, Z)-smooth if and only if each X, is (&, Z)-
smooth.

(6.7) THEOREM. The intersection X of any decreasing sequence
X, oX,D.-- of (&, Z)-smooth compacta is (&, Z)-smooth.

(6.8) PROPOSITION. Let X be the union of compacta X, and X,
intersecting in o compactum of trivial shape X,. If X 158 (¥, 2)-
smooth, then both X, and X, are (&, Z)-smooth.

(6.9) THEOREM. A compactum X is (&, Z)-smooth if and only
if each component of X 1is (&, Z)-smooth.

(6.10) ExampPLE. Taylor’s space X [18] is mnot m-smooth for
any n = 0.

(6.11) PROPOSITION. Let X be an approximatively l-connected
continum. If X 18 m-smooth, then pro-groups 7w (X) are trivial for
all k> n.

(6.12) PROPOSITION. A compactum X has trivial shape if and
only if X 1s approximatively n-connected and n-smooth.

(6.13) THEOREM. Suppose X is a movable, calm, and approxi-
matively k-conmected, for all k> m, compactum. Then X is n-
smooth.

(6.14) ExaMPLE. The 1-sphere S* is l-smooth.
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