Pacific Journal of

Mathematics

ALMOST PERIODIC FUNCTIONS ON SEMIDIRECT
PRODUCTS OF TRANSFORMATION SEMIGROUPS

HUGO JUNGHENN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 79, No. 1, 1978

ALMOST PERIODIC FUNCTIONS ON SEMIDIRECT
PRODUCTS OF TRANSFORMATION
SEMIGROUPS

H. D. JUNGHENN

The notion of semidirect product of two transformation
semigroups is introduced, and its space of almost periodic
functions is expressed as a tensor product. The general
techniques developed are applied to the special case of a
semidirect product S © T of two semigroups. As a conse-
quence new results are obtained on the characterization of
the almost periodic compactification of S © T as a semi-
direct product of compact semigroups. A related result is
the splitting of the enveloping semigroup of a semidirect
product of certain flows into a semidirect product of envelop-
ing semigroups.

0. Introduction. Let S and 7T be semitopological semigroups
and S @ T a semidirect product of S and 7. In an earlier paper
[10] we showed that, under certain conditions, the almost periodic
(a.p.) compactification (S @ T) of S @ T is a semidirect product
of the a.p. compactification of 7 and a certain compact topological
semigroup containing a dense homomorphic image of S. A simple
corollary of this result is that the space of a.p. functionson S@ T
is a tensor product of the space of a.p. functions on T and a sub-
space of a.p. functions on S.

In this paper we introduce the notion of semidirect product of
transformation semigroups and determine exactly when its space of
a.p. functions may be expressed as a tensor product in analogy with
the semigroup case described above. Cast in this general setting
the problem of characterizing the space of a.p. functions on a semi-
direct product of semigroups becomes clear, and the techniques
developed lead to elegant necessary and sufficient conditions for
(S @ TY to be a semidirect product. As a consequence we are able
to show that (S @ T)' is a semidirect product for all semitopological
semigroups S with identity and all semitopological groups T, thus
generalizing results of [10, 11, 12]. The same conclusion holds
if T merely contains a dense subgroup. In a similar vein, but using
different techniques, we show that in a wide variety of cases the
enveloping semigroup of the semidirect product of two equicontinuous
flows is (canonically isomorphic to) a semi- direct product of the
original enveloping semigroups.
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1. Preliminaries. Let S and 7 be semitopological semigroups
[1] and let z: T'x S - S be a separately continuous map satisfying

7(t, ss’) = 7(t, s)z(t, s') , z(tt’, s) = (¢, ©(t, 8)) .

Thus £ — (¢, ) is a homomorphism from 7T into Hom (S), the semi-
group of all homomorphisms on S. We shall assume that the map
(s, t) — st(t, 8): S x T— S is continuous for each s'€S. The semi-
direct product S @© T of S and T is the topological space S x T
with the multiplication®

(s, 0)(s', ¢) = (sT(¢, 8"), t¢') .

The above conditions on 7 imply that S @ 7T is a semitopological
semigroup. If S (respectively T) has an identity 1, we shall require
that z(¢, 1) = 1 (respectively, z(1, -) is the identity mapping).

A transformation semigroup is a triple (S, X, ) where S is a
semitopological semigroup, X is a (Hausdorff) topological space, and
m: S x X -+ X is a separately continuous mapping (called an action)
which satisfies n(ss’, ) = n(s, n(s’, #)). Usually we suppress the
symbol # and write sx for =(s, ). The orbit of xc X is the set
Sx = {sx:s€S}. In case S has an identity 1 we require that lx =«
for all x € X. Note that every semitopological semigroup is a trans-
formation semigroup, where the action is left multiplication.

If X is compact, the transformation semigroup (S, X) is called
a flow. The enveloping semigroup of a flow (S, X) is the closure
in the product space X* of the set zn(S, -) = {n(s, -):s€ S} [8]; it is
denoted by E(S, X), or simply E,. If the flow (S, X) is equicontinu-
ous (i.e., (S, -) is an equicontinuous family of mappings) then E; is
a {(compact) topological semigroup with respect to the relativized
product topology and composition of mappings.

Let (S, X) be a transformation semigroup, B a Banach space,
and C(X; B) the Banach space (uniform norm) of continuous bounded
B-valued functions on X. A function feC(X; B) is almost periodic
with respect to the action of S on X if the set {f,: s €S} is relative-
ly compact in C(X; B), where f,(x) = f(sx). The (closed) subspace of
all a.p. functions in C(X; B) is denoted by AP(S, X; B). If Bis the
complex field then we shall suppress this symbol from the notation.
Thus the usual space of a.p. functions on S is denoted by AP(S).
(S, X) is called almost periodic if AP(S, X) = C(X). The reader is
referred to [1, 2, 4, 5] for the general theory of a.p. functions on
semigroups.

" T The definition of semidirect product given here agrees with the classical definition
for groups (see, for example, [9, p. 6]), but differs from the definition given in [10, 12].

By considering “reverse” multiplication is S, T and S @ T, however, the two definitions
may be shown to be equivalent.
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Let X and Y be topological spaces, F' and G closed linear sub-
spaces of C(X) and C(Y) respectively. For feF and ge G define
f®geCX xY) by (f R g)z, ¥y) = f(x)g(y). The closed linear span
in C(X x Y) of all such functions is denoted by F @ G and is called
the tensor product of F and G. Note that F'® G may be identified
with a subspace of C(X;G) via the isometric isomorphism 2 — h’,
where h'(x) = h(x, -). More generally, let B be any Banach space,
and define (f ® b)(x) = f(x)b(f € F, be B). The tensor product of F
and B, denoted F' X B, is defined as the closed linear span in C(X; B)
of all functions f & b.

2. Semidirect products of transformation semigroups. Let
(S, X), (T, Y) be transformation semigroups and S @ T a semidirect
product of S and 7. Let ¢: T x X — X be a separately continuous
mapping satisfying

o(tt’, x) = at, o(t’, x)) , o(t, sx) = (¢, s)o(t, x) .

(In particular, (T, X, o) is a transformation semigroup.) We shall
also require that the mapping (s, t) — so(t, x): S X T — X be continu-
ous for each xe X and that o(1, -) is the identity map if T has an
identity 1. The semidirect product (S@® T, X ¥X,Y) of (S, X) and
(T, Y) is the transformation semigroup (S@ T, X X Y), where the
action on X X Y is defined by

(s, )z, y) = (sa(t, x), ty) .

Note that (S@ T, X X, Y) reduces to the direct product (Sx T, X X Y)
if for each te T, ©(t, -) and (¢, -) are the identity funections.

Taking 0 = 7 one immediately sees that S @ 7T, when considered
as a transformation semigroup (with respect to the usual action of
left multiplication), is a semidirect product of the transformation
semigroups S and 7. We shall examine the a.p. properties of this
kind of semidirect product in §4.

Another interesting class of semidirect products can be gotten
as follows: Let G be a topological group, S and T closed subgroups
of G with S normal in G, G = ST, and SN T ={1}. Let X =G/S
and Y = G/T (left coset spaces), and consider the usual actions of
Son X and T on Y (e.g., if x = s'S then sxr = ss’S). Define an
action G on X X Y by st(x, y) = (stat™, ty). Then (G, X X Y) is a
semidirect product of (S, X) and (T, Y) (where z(¢, s) = tst™ and
o(t, ) = tat™).

As a third example, let (S, X) and (T, X) be transformation
semigroups, where S and T are subsemigroups of a topological semi-
group and st = ts for all s€ S, te T. Define an action of the direct
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product S x T on X X X by ((s, t), (%, ¥)) — (stx, ty). Then (S x T,
X x X) is a semidirect product. If the elements of S and 7 fail
to commute with one another, but if S and T are subgroups of a
topological group G with S normal in G, then the same mapping
defines a semidirect product action of S@® T on X X X, where
7(t, s) = tst™'. (In each case, o(t, x) = tx.)

Recall that a homomorvhism from a transformation semigroup
(T, Y) into a transformation semigroup (7, X) is a continuous map
#: Y — X such that 6(ty) = t0(y) for all te T, yeY.

THEOREM 1. Let (S, X) and (T, Y) be equicontinuous flows and
SOT, XX, Y) a semidirect product. Suppose that (T, X, 0) is a
homomorphic image of (T, Y). Then (S@® T, X X, Y) is equicontinu-
ous, and if T is a group then E=E(S®@ T, X X, Y)) is canoni-
cally isomorphic (as a topological semigroup) to a semidirect product
E. @ E, of E; and E,.

Proof. We omit the straightforward verification that (S®@ T,
X X,Y) is equicontinuous. Assume 7 is a group, let 6: Y - X
denote the given homomorphism onto X, and let 4: E, — E(T, X, o)
be the unique continuous semigroup homomorphism satisfying
) 0(w) = 6Cy) (CeEy,yeY) [8, p. 20]. Let tcEy, {cE, and
define (5, 0): X X Y= X X Y by (¢ O)(x, y) = E0O@), Ly). If (s)
and (¢;) are nets in S and T, respectively, such that s — &x(x ¢ X)
and ¢;y—Cy(y € Y), then for all y, ze Y, (s, £,)(0(2), ¥) = (8:0(¢;2), t;9)—
(E0(Cz), Cy) = W (¢, )(0(z), ¥), hence ¥(§, {)e E. A similar argument
shows that every member of K is of this form, hence ¥: F; X
E, - E is a surjection. Note that ¥ is also injective (by the
surjectivity of 0 and the members of E;) and continuous (since E,
is equicontinuous). Thus ¥ is a homeomorphism of E, x E, onto E.

Next, for £cEy and (e E, define o &): X— X by p( & =
0(0EA(™Y) (recalling that T, hence E,, is a group). Identifying
s ¢ S with the map it defines in E,, and doing the same for tec T,
we see that for all xe X,

(1) o(t, s)x = 8(t)sf(t )z = o(t, sot™, x)) = o(t, 8)x .

It follows from (1) and the equicontinuity of (S, X) and (T, Y) that
oK, &)z = lim, ; t(t;, s;)x (x € X) whenever & =lim,s, and { = lim;¢;
(pointwise limits). Therefore o(¢, ¢): Ex — Ey. It is readily verified
that £ — p(¢, -) is a homomorphism from E, into Hom (E,), that o
is continuous, and finally that ¥ is a homomorphism from E, @ E,
onto K.

REMARK. If seS and te T are considered also as members of
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E; and E, respectively, then
(2) W(S, t)(x, y) = (SO'(t, x)y ty) = (S; t)(x’ y) .

It is in this sense that the word canonical is used in the statement
of Theorem 1.

The following examples show that the requirement of equi-
continuity cannot in general be relaxed. In the first example, (S, X)
is equicontinuous, (7, Y) is not. In the second example, the reverse
is true.

ExAMPLE 1. Let X =Y ={2¢€C:|z2| =1} and S = {1, s} c X7,
where 1 is the identity mapping and s is conjugation. For each
positive integer n define f,: X — X by

2mir) erient, 0=r=1/2
I = e 1< <1

Since s commutes with each f, it commutes with every member of
the group T of homeomorphisms of X generated by the f,. There-
fore the mapping ((s, t), (z, ¥)) — (stx, ty) is an action of the direct
product S X T on X X Y such that (S x T, X x Y) is a semidirect
product. Let f denote the pointwise limit of {f,}). If 7:E, X
E,— FE is any continuous mapping satisfying (2), then ¥(s, f) =
¥, f). Therefore K cannot be canonically isomorphic to a semi-
direct product of E, and E,.

ExXAMPLE 2. Let X and Y be as in Example 1, and take S to
be the group of all homeomorphisms of X, and T the subgroup of
all rotations. Definez: T X S—Sby (¢, s) =tsttando: T x X —» X
by o(t, x) = tx. Then ((s, t), (x, ¥)) — (stz, ty) is the actionof SO T
on X X Y which defines (S@ T, X X,Y). Let f, be as in Example
1, and let g, denote counterclockwise rotation by = — 1/n. Then
Hm,, ,-c fu(9.(1)) does not exist, hence there can be no continuous
mapping ¥: B, x E, — E satisfying (2).

Recall that a flow (S, X) is distal if x + «’ implies the existence
of a net (s;) in S such that lim, s,z and lim, s,x’ exist and are un-
equal. Equivalently, (S, X) is distal if and only if E(S, X) is a
group [8]. The following result is immediate.

COROLLARY 1. Let (S, X) and (T, Y) satisfy all of the hypothe-
ses of the theorem. Then if (S, X) is distal, sois (S@O T, X X, Y).

The proximal relation in a flow (S, X) is the set PC X x X
defined as follows: (x, y)e P if and only if there exists a net (s,)
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in S such that lim; s,;x = lim, s,;#. In general P is only reflexive and
symmetric. It is transitive if and only if E(S, X) has a unique
minimal left ideal [8, p. 39].

COROLLARY 2. Let (S, X) and (T, Y) satisfy all of the hypo-
theses of the theorem. If the proximal relation 1is tramsitive in
(S, X) then it is transitive in (S@ T, X X, Y).

Proof. Let J be the unique minimal left ideal in E;. We show
first that J x E, is a leftidealin £ = E; @ E,. Let (¢, {)eJ X E;
and (¢, {)e E. Since p(, -): Ex — E, is an isomorphism, o, J) =
Hence (&, O)(&, ') = (60, &), (L) e J X Hy.

Let K be any minimal left ideal contained in J x E,. If
(6,0 e kK, then (0™, 8),1) =(§ (") )€K, hence the set 4=
{¢eJ: (8 1)e K} is nonempty. Since A is a left ideal, A =J.
Therefore (&, 1) e K for every £cJ. Let écJ, {eE,, and let ¢ be
any idempotent in J. Then p({, ¢) is an idempotent in J and J =
Jo&, e), 50 (§,0) = (605, ), {) = (§ )¢, 1) € K. Therefore J x Ey is
a minimal left ideal.

Now let I be any minimal left ideal in E and set B = {£€ HE;:
(¢, 1)eI}. Then B is a nonempty left ideal in E,, hence JC B. It
follows that J x E, NI+ ¢, so J X E, = L.

3. Almost periodic functions on semidirect products. Let
(8, X), (T, Y) be transformation semigroups such that S has an
identity 1, let (S@® T, X X, Y) be a given semidirect product, and
let

F=AP(S@® T, XX, Y)).
Define an action of S@® T on X by
(s, )x = so(t, x) .

Clearly APS@® T, X) R AP(T, Y)C F. We shall determine necessary
and sufficient conditions for equality to hold.
To this end we define the following auxiliary actions on X x Y:
a:SOT) x(XXY)>X XY, as,t), (x, ) = (so(t, x), ¥)
B:T X (X xY)—>XXY,ABE (@ v) =(ty)
7T X (XXY)->X XY, 74 (x, ) = (6@, x), ¥).
Consider the following statements:
(A) FCAPS®T X xY,
B) FCAP(T, X xY,B)
(C) FCAP(T, X xXY,7).
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LemmA 1. If T contains a dense subgroup G, then (A), (B), and
(C) are equivalent.

Proof. That (A) implies (C) is clear, since APS@® T, X XY, a) C
AP(T, X X Y, 7).

To prove that (B) implies (A), let fe F and (s,), (t,) sequences
in S and T respectively. There exist subsequences (p,) of (s,) and
(¢.) of (t,), and ge F, such that f(p,0(q., ), ¢.¥) 3 9(x, y) (Where =3
means uniform convergence in the free wvariables). Since feFC
AP(T, X xY,B) and G = T, for each » we may choose 7, G such
that

(3) [[(0.0(70y @), 70Y) — [(0.0(qu, ©), ¢.9)] < 1/n
and
(4) |fx, r.9) — f2, ¢.9)] < 1/n

for all xe X, ye Y. Replacing y in (8) and (4) by 7»,7'%, and « in
(4) by 2,0(q., ®), we see that f(p,0(r,, x), y) — g(x, rz'y) 30 and
[f(Da0(74, ), Y) — F(Pa0(qa, ), ¥)| < 2/n. Since ge AP(T, X X Y, B) we
may assume without loss of generality that g(z, »;'y) = h(zx, y) for
some heC(X x Y). Then f(p,0(q., x), ¥y) = h(z, y), so feAP(S® T,
X x Y, a). The proof that (C) implies (B) is similar.

We omit the elementary proof (essentially a diagonalization
argument) of our next lemma.

LEMMA 2. Let K be a relatively compact subset of a Banach
space B, and A a uniformly bounded collection of limear operators
on B such that {ux: w € A} is relatively compact in B for each x¢€ K.
Then each sequence (u,) im A has a subsequence (v,) such that (v,x)
converges uniformly for x e K.

LeMMA 8. If (T, Y) has a dense orbit then F s isometric and
isomorphic to AP(T, Y; APS® T, X)) under the mapping f — f’,
where f'(y) = (-, ¥), ©f and only if conditions (A) and (B) hold.

Proof. Suppose conditions (A) and (B) hold, and let feF and
B=APS® T, X). Clearly, then, f'(y)eB, (y€Y). Claim that
1Y — C(X) is continuous. For let y’€ Y and {¢} the directed set
of open neighborboods of %’. If f’ is not continuous at y’, then
there exist ¢ > 0 and nets (y,), (x,), with y, €4, such that for all <,
| Ay ¥:) — f2sy Y| > 2. For each 4 choose ¢,€T such that
| f(,, t:y0) — f®s, )] < e and ty,€4, where y,€ Y has dense orbit.
Then ¢y, — ¥’, and for all 1,
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(5) | flw, ¥') — flay, Ey0) > €.

Choose a subnet (¢;) of (¢,) and heC(X x Y) such that f(x, tiy,) =
h(x, y,). Then h(x, ¥,) = f(z, ¥'), hence f(x, t;y,) =3 f(x, ¥'), contradict-
ing (5). Therefore f'€C(Y, B).

To see that f'€ AP(T, Y; B), let (¢,) be a sequence in T and
choose a subsequence (q,) such that f(x, q,y) 3 h(x, y), where he
C(X xY). Then ||f'(g.y) — h'(%)|] — 0 uniformly in ye Y.

Since f — f' is clearly a linear isometry, it remains to show
that if ge AP(T, Y; B) and if f(x, y) = g(%)(x), then feF. Let (s,)
and (t,) be sequences in S and 7, respectively. For each se S, teT
define u(s,t): C(X) — C(X) by u(s, t)h(x) = h(so(t,xz)). Then {u(s,t)g9(¥):
se S, te T} is relatively compact in B for each y€ Y. Furthermore,
9(Y)c{g(ty,):t € T}, and the latter is compact in B. Therefore, by
Lemma 2 there exists a subsequence (p,, ¢.) of (s,, t,) and heC(X xY)
such that f(p,0(q., ), ¥) 3 h(x, y). Since h'e AP(T, Y; B) we may
assume without loss of generality that h(z, q,y) =3 k(x, y) for some
keC(X xY). Thus f(p,0(q ), ¢.¥) = k(z, y).

Conversely, if f — f’ maps F' onto AP(T, Y; B), then (B) obvi-
ously holds, and the argument of the previous paragraph up to the
last two sentences shows that (A) also holds.

The following lemma generalizes Corollary 1(iii) of [11].

LEMMA 4. Let B be a Banach space. If (T, Y) contains a dense
orbit them AP(T, Y; B) = AP(T, Y)® B.

Proof. Clearly AP(T, Y)X BC AP(T, Y; B). For each yecY
define e(y): AP(T, Y; B)— B by e(y)f=f(y). Let L=L(AP(T, Y; B), B)
denote the space of bounded linear operators from AP(T, Y; B) into
B, and give L the strong operator topology. Then e:Y — L is
obviously continuous. Let Z denote the closure of e(Y) in L. Since
eY)CIH{f(Y). fe AP(T, Y; B)} and each f(Y) is relatively compact
in B (because (T, Y) has a dense orbit), Z is compact in L. Define
u(t)e LAP(T, Y; B), AP(T, Y; B)) by (w(@®)f)(y) = fty) (teT,yeY),
and let U denote the strong operator closure of #(7T). Then an
argument similar to the one for Z shows that U is compact in that
topology [5, Theorem 3.2]. Now let geC(Z) and let (¢,) be any
sequence in 7. There exists a subnet (q;) of (¢,) and ve U such
that u(q,) — v in the strong operator topology. This implies that
goe(qy) = gle(y)ulq;)) converges uniformly to g(e(y)v) in yeY.
Therefore goec AP(T, Y) for every g C(Z).

Given ¢>0 and feAP(T, Y;B), let Z,---,Z, be an open
covering of Z such that ||2f — wf]| <e whenever z, we Z; (j =1,---,n).
Let ¢, ---, g,€C(Z) such that support (¢g;)c Z; and >, g; = 1.
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[7, p. 170.] Choose z;€Z; and set b; = 2;f, h; =q;oe. Then
1f — 2= h; @byl <e¢, hence fe AT, Y)® B.

The following theorem is now immediate:

THEOREM 2. Let (S, X)and (T, Y) be transformation semigroups
such that S has an identity and (T, Y) has a dense orbit. Then

AP(S@® T, XX, Y) =AP(T,Y)XRAPS® T, X)
if and only if conditions (A) and (B) hold.

COROLLARY 1. Let (S, X) and (T, Y) be as in Theorem 2. Then
APS X T, X x Y)=APS, X)R AP(T, Y) .

COROLLARY 2. Let (S, X) and (T, Y) be as in Theorem 2, and
suppose that T contains a dense subgroup and (S, X) has a dense
orbit. If either (a) (T, Y) is almost periodic, or (b) X is compact
and (T, X, 0) 1s distal, then

AP(S@O T, XX, Y)=AP(T, Y)RAPS® T, X) .

Proof. By Lemma 1, it suffices to show that condition (B) holds.
Let feF and suppose that (a) holds. For each z ¢ X, then, f(x, -)e
AP(T, Y), and since f(X, -) is relatively compact in C(Y) (because
(S, X) has a dense orbit), Lemma 2 implies that f ¢ AP(T, X X Y, ).

Now suppose (b) holds. If (¢,) is a net in T, there exists a
subnet (gq;) and &€ E(T, X, o) such that o(q;, ) — &z for all xe X.
Fix #,€ X and let o' = &'x,, We may assume that f(o(q;, %), ¢;%) =3
g(x, ¥) for some geC(X x Y). Since (S, X) has a dense orbit, x —
Sflx, -): X — C(Y) is continuous, hence f(o(q;, ), q;4) — f(xs, q;4) = 0.
Therefore f(x,, q;¥) = g(x’, ¥), so f(x, -)€ AP(T, Y). Now proceed as
in first paragraph.

4. Almost periodic compactification of S@ 7. Let T be a
semitopological semigroup. An almost periodic compactification of
T is a pair (T",¥), where 1" is a compact topological semigroup,
and ¥: T — 1" is a continuous homomorphism with dense image such
that T*C(T") = AP(T) (where ¥*: C(T") — C(T) is the adjoint mapping
f— fo¥). Almost periodic compactifications always exist and are
unique up to isomorphism [1, 2, 5].

THEOREM 3. Let S, T be semitopological semigroups with
identities, and S@ T a semidirect product. The following are
equivalent:
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(a) There exist compact topological semigroups S', T'; con-
tinuous homomorphisms ¢:S— S, U:T— T with dense images;
and a jointly continuwous multiplication on the compact topological
space S’ X T such that (' x T, ¢ X ¥') is an a.p. compactification
of (S@ T) (where (p X ¥)(s, t) = (8(s), T ().

(by APS®T)=APS®T,S)X AP(T).

~ (e) Ewvery member of AP(S®@® T) is a.p. with respect to both
of the actions

(S @ T) X (S X T) - S x T ((S’ t); (.’X), y)) -_— (Sf(t, x)r y)
TXxSxT)— S X T: (&, (x, ) — (x, ty) .

If (a) holds then (1",%) is an a.p. compactification of T, and
S'x T is a semidirect product S' @ T', where o(¥(t), $(s)) = ¢(z(t, 8)).

Proof. Statements (b) and (¢) are equivalent by Theorem 2.

(b) implies (a): Let (S®@ T, ) denote an a.p. compactification
of S@® T, S’ the spectrum of the C*-algebra AP(S@® T, S), 9: S — S’
the evaluation mapping (¢(s): f— f(s)), and (1", ¥) an a.p. compactifica-
tion of T. By hypothesis there exists an isometric isomorphism
V:C(S)®C(T") - C(S@® T)) such that V(GRkK) =@g®h)", (ge
APS® T, S), he AP(T)), where ¢*@) =g, ¥*(h) =h and 0*(g ®
h)™) =g&®h. Since C(S")Q C(T") = C(S" X T") there exists a home-
omorphism 7: (S@® I') — S’ X T" such that »* =V. If seS, teT,
gcAPS® T, S) and he AP(T), then G&® R0, 1) = VR k)
(6(s, 1)) = (g ® k)" (6(s, 1)) = g(8)h(t) = (§ ® k)(4(s), ¥(t)). It {follows
that ¢ X ¥ =nof. Let S’ x T" have the unique multiplication which
makes 7 a semigroup isomorphism. If s,s'€S then (¢(s), T(1))(g(s"),
U(1)) =nob(ss’, 1) = (¢(ss”), ¥(1)), hence ¢(S) x (1), and therefore
also S’ X (1), is a subsemigroup of S’ x T'. Thus we may define
multiplication in S’ so that ¢ and S’ have the required properties.

(a) implies (b): If (a) holds then in particular APS® T) =
(@ X TY*C(S' x T = (¢ x T)*C(S") ® C(T"). We shall show that
¢*C(S") = AP(S@® T, S). Let geg¢*C(S") and ((s;, t;)) be any net in
S @ T. Choose a subnet (s}, t)) such that (4(s}), ¥(t;)) converges to
some (x,y)eS X T'. Then since S’ x T" is a compact topological
semigroup, the first coordinate of (¢(sjz(t}, 8)), T(t})) = (#(sh), T(t})) X
(¢(s), T(A)) converges uniformly in seS to the first coordinate of
(x, ¥)(#(s), TA)), and it follows that ge AP(S® T, S). Conversely,
let gce AP(S® T, S). Then g X®1c AP(S® T) so there exists he
C(S' x T") such that g @1 =ho(¢p x¥). If kix) = h(x, ¥(1)) then
keC(S)and g = kog. Therefore ¢*C(S’) = AP(S® T, S). A similar
argument shows that ¥*C(T") = AP(T). Thus APS® T) =
APS@® T, S) ® AP(T), and (T, ¥') is an a.p. compactification of T.
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It remains to prove that if (a) holds, then S’ x T is a semi-
direct product. We may take S’ to be the spectrum of AP(S® T, S)
and ¢: S— S’ the evaluation map. For each g AP(S® T, S) and
teT define v(t)ge AP(S® T, S) by (w®)9)s) = g(@, t)s) = g(z(t, s)).
Then 6(, 2) = v(t)*x defines an action ¢ of on S’ such that

(6) 0@, ¢(s)) = ¢(z(¢, 9)) -

Since this action is equicontinuous, E = E(T, S’,d) is a compact
topological semigroup, and (6) shows that K c Hom (S). Since
t— 0@, -): T— E is a continuous homomorphism there exists a
continuous homomorphism y — o(y, +): T" — E such that o(¥(¢), ) =
0(t, +) [5]. In particular, (%), ¢(s))=¢(z(t, s)). Since ¢, ¥, and ¢ X ¥
are homomorphisms, (¢(s), ¥(£))(4(s"), ¥(t) = (4(sT(¢, 8"), FOT (X)) =
(B(8)o(T @), 9(s")), TH)T (X)) (s,8'€S;t,t'eT), and taking nets we see
that (x, ¥)@', ¥') = @y, 2), yy') (x, 'Sy, ¥y €T). Therefore
SxTI'=8 @ T.

The following corollary is an extension of the main results of
[10].

COROLLARY 1. Let S and T be semitopological semigroups with
identities, S@ T a semidirect product, and suppose that T contains
a dense subgroup G. Then in the notation of Theorem 3, (8" @ T,
$ X ) exists and 18 an a.p. compactification of S@ T, and
APS@® T)=APS® T, S) QK AP(T).

Proof. For each teT define UR):APS@® T)—-CS@® T) by
U, t') = flz@, s, t'). By Lemma 1 of §3, it suffices to show
that U(T)f is relatively norm compact for each feAPS® T).
Sinee ¢t — U(t)f is continuous in the topology of pointwise convergence
on C(S x T), it is enough to show that U(G)f is relatively norm
compact. For xeS®@® T let L(x) and R(x) denote respectively the-
left and right translation operators on AP(S®@ T). If teG then

Umfis', ¢) = L, HR(A, t)RA, ¢)f(s', 1)

(8'eS,t' eT), hence by Lemma 2 applied to K = R1, T)f and A =
{LQA, )R, t™):t G}, any sequence (t,) of G has a subsequence (r,)
such that U(r,)f converges in norm.

COROLLARY 2. [6, 11]. Let S, T be semitopological semigroups
with identities and a.p. compactifications (S',9), (T, ). Then
(8'x T, ¢X4) is an a.p. compactification of the direct product Sx T.

REMARKS. J. Berglund and P. Milnes have given an example
of two left zero semigroups S and 7T for which the conclusion of
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Corollary 2 is false [3]. Also, the corresponding result for the
weakly almost periodic compactification can fail even if S and T
are locally compact abelian topological groups. (See, for example,
[11], p. 663.)
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