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Characterizations in terms of endomorphisms and quasi-
endomorphisms are obtained for torsion free abelian groups
with the property that each pure subgroup of finite rank is
a quasi-summand. A group has this property if and only if
its ring of endomorphisms with finite rank is 2-fold ci-transi-
tive, and hence k-fold ct-transitive for every k. This property
is equivalent to complete decomposability for countable groups
the type set of which satisfies the maximum condition. A
stronger version of transitivity is required to describe
separable groups the type set of which satisfies the maximum
condition; to insure generality, it is shown that the maximum
condition does not imply countability of the type set, a result
of independent interest.

1. Introduction and preliminaries. All groups considered here
are subgroups of a fixed vector space V over the rational number
field @; we shall refer to these torsion free abelian groups simply
as “groups”. G will always denote a full subgroup of V,i.e., one
with torsion quotient V/G. V is thus the divisible hull of G and
(@) = r(V), where » denotes rank. IL(V) denotes the algebra of
linear transformations of V. FE(G) is the endomorphism ring of G
and F(G@) is the pure ideal of E(G) consisting of all endomorphisms
with finite rank. Similarly, QE(G) is the quasi-endomorphism algebra
of G and QF(G) is the ideal of elements having finite rank. Familiarity
with the concept of quasi-isomorphism is assumed; a complete back-
ground may be obtained from [2, 3, 9, 10]. ;, =, = denote quasi-
contained, quasi-equal, and quasi-isomorphic, respectively. We consider
QEG) ={f e L(V): fG < G}. Since each element of E(GF) induces a
unigue linear transformation on V, we regard E(G) & QF(G) and use
the same symbol to denote an endomorphism of G and also its induced
linear transformation. All sums of groups are direct; e.g., notation
such as G = A + B implies that A and B are disjoint groups.

We take the following perspective. For feQE(G), define the
final rank of f to be the minimum among the cardinal numbers
r»(f*G@),n=1,2,---. We assert the

ProPOSITION 1.1. Fach quasi-endomorphism of G with finite
positive final rank (especially any such endomorphism of G) induces
a quasi-decomposition of G.
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Proof. It suffices to consider f € E(G) with 0 < r(f"G) =r(f""'G) =
.«» < oo for some positive integer n. f™ f"G — f*G is thus a
quasi-automorphism of f"G [9, p. 553, Th. 4.2]; suppose mf"G =
f*"G for the positive integer m. Let beG; mf"d = f*a for some
acG. Write mb = (mb — f*a) + f"a; (mb — f*a)ecker f~ and frac
f"G; note ker f*N f*G =0. Thus G =ker f* + f"G. (We do not
exclude the possibility »(@G) = #(fG) < «, i.e., the case when f is a
quasi-automorphism of a group with finite rank.)

Thus a group with “many” quasi-endomorphisms of finite final
rank has “many” quasi-decompositions. Conversely, we exploit the
correspondence between quasi-decompositions of G and idempotents in
QE(G) [9, p. 551, Lemma 2.5]. Most proofs here involve the con-
struction of a function which induces some decomposition. We seek to
characterize summand properties of groups in terms of a “sufficiency”
of mappings. This paper is a continuation of the work begun in
[4], where groups in which each pure subgroup of finite rank is a
quasi-summand were first studied. There they were described as
quasi-separable groups with linearly ordered type sets.

REMARK 1.2. The following conditions on the group G are equi-
valent:

(1) Each pure subgroup of finite rank in G is a quasi-summand.

(2) Each pure subgroup of rank one in G is a quasi-summand.

(3) QE(G) contains a projection onto each one-dimensional
subspace of V.

(4) QE(G) contains a projection onto each finite-dimensional
subspace of V.

We frequently employ this equivalence, especially (8); cf. [5].
Each of these properties is inherited by quasi-summands and pure
subgroups.

Before pursuing the main results, we prove a lemma of general
utility. In order to accomplish this, additional notation is introduced.
For ac@, let t(a) or ty(a) denote the type of the element a; if G is
homogeneous, ¢(G@) also may denote the type of the (nonzero) elements
of G. Recall that type is invariant under quasi-isomorphism [3, p.
26, Lemma 7.1]. Let T(G) denote the type set of G. For the type
7, set G(z) ={acG:t(a) = 7} and let G*(r) be the subgroup of G
generated by {a € G: t(a) > 7}. G(zr) and G*(z) are thus fully invariant
subgroups of G. If H is a pure subgroup of G, then H(t) = H N G(7).
Finally, if G*(z) is pure in G, let G, = G(¢)/G*(7).

LEMMA 1.8. (1) If G= A + B, then G(c) = A(r) + B) and
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G*(t) = A*(z) + B*(7), for every type T.

(2) Suppose T(GF) is linearly ordered. If a and b are elements
of G such that t(a) < t(b), then tla + b) = t(a).

(8) If T(G) is limnearly ordered, then for every type T, G*(7) is
a pure subgroup of G and H*(t) = H N G*(z) for H pure in G.

Proof. (1) holds because type is a quasi-isomorphism invariant
and (A + B)(t) = A(r) + B(t), (A + B)*(r) = A*(r) + B*(¢) [1, p. 75, 3].
In (2), t(a + b) = t(a) and certainly ¢(d) > t(a + b). Hence

t(a) =t((a +b) —b) = tla + b) A t(b) =t(a +b) .

(3) now follows from (2).

2. ct-Transitivity, Our immediate goal is to characterize groups
with the summand property in terms of endomorphisms. Toward
this end, we introduce the concept of ci-transitivity.

DeFINITION 2.1. Let S be an independent set of elements in G
and suppose that for each type 7, the pure subgroup generated by
those elements in S of type 7 is homogeneous. We shall then call
S ct-independent.

PrPoPOSITION 2.2. Let G have finite rank n. Then G contains
a ct-independent set of n elements.

Proof. Set G, =G, let 7, be a maximal type of G, [6, p. 148,
Lemma 42.1], and let {a;;: J =1, ---, k,} be a maximal independent
subset of G.(zr,). Let G, be a subgroup of G, maximal with respect
to disjointness from G,(z,), take 7z, to be a maximal type of G,, and
let {a,;: 5 =1, ---, k,} be a maximal independent set in G,(z,). By
continuing in this fashion, we obtain a ci-independent set which is
also a maximal independent subset of G.

DeFINITION 2.3. A subring R of E(G) is k-fold ct-transitive if
for every j <k the following condition is satisfied: for each ct-

independent set of elements a,, --+, a@; in G and each set of elements
b, -+, b; in G which satisfy t(a) =tb)1=1,---,75, some feR
maps a, to n;b, n, a positive integer, 71 =1, ---, J.

Observe that if E(G) is k-fold ci-transitive, then so is E(H) for
H a quasi-summand or pure, fully invariant subgroup of G.

PropPOSITION 2.4. If E(G) 1s 2-fold ct-transitive, then any two
elements of G have comparable types.
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Proof. Suppose the nonzero elements a and b of G have distinct
types. If ¢(a — b) = t(b), then

t(a) = t((@ — b) + b) = t(a — b) A t(b) = t(b) .

If t(a — b) and #(b) are distinct, some f e E(G) maps a — b to 0 and
b to nb, n > 0. Then

ta) = t(fa) = t(fb) = t(nb) = ¢(b) .

For ae@G,a denotes the coset of a in some specified quotient
group.

LEMMA 2.5. Suppose T(G) is linearly ordered.

(1) A subset S of G is ct-independent 1f and only if for each
type T, those elements im S of type T have cosets independent in
G..

(2) If G has finite rank n, then every ct-independent set can
be extended to ome containing n elements.

(8) Let G be completely decomposable of finite rank n and let
Qg + -, @, be ct-independent in G. If A, denotes the pure subgroup
generated by a;, then G = A, + --- + A,.

Proof. By Lemma 1.3 (3), G*(z) is a pure subgroup of G, so (1)
holds.

For (2), let S be a ct-independent subset of G and suppose T(G) =
{zy, ++-, 7} [6, p. 148, Lemma 42.1]. Let S, ={a;:9 =1, ---, 1} be
those elements in S of type 7,7 =1, ---,1. By (1) above, {a;;: j =
1, --+,1;} is an independent set in G., which can be extended to a
maximal independent subset of &., {a;;:a,;€G(z), 5 =1, ---, m;}, v =
1,---,I. Now {a;:53=1,:--,m;4=1,---,1} is a ct-independent
set containing S, and it is also a maximal independent subset of G.

In (8), we may assume t(4,) < --- < t(4,). For nonzerobe 4 =
A+ ---+ A, write b=0b;+ -+ + b, bjecAd,i=173,--+, n, with
b; # 0. Then t,b) = t,(b;) = ta(b;) = te(b); the last equality holds by
Lemma 1.3 (2). The conclusion now follows from [1, p. 97, Lemma
7.1(a)].

DEFINITION 2.6. A subring R of E(G) is called k-fold transitive
if for every j < k independent elements a, ---, a; of G and j
arbitrary elements b, ---, b; in @, there exists f € R such that fa, =
nb;, n; a positive integer, 1 =1, ---, J.

REmaArRk 2.7. (1) Let R,a, ---,a;, and b, ---,b; be as in
Definition 2.3 or 2.6. Then there exists f € R such that fa, = nb,,
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©=1, .-+, 7, for a single positive integer n. For by definition, there
exists f;e R such that fia, = m;b, m; >0, and f.a;, =0 for [ #1,
1=1, -+, 3. Now f =\ II,.; mJf:€R satisfies fa, = (m, --- m;)b,,
i=1, .-, 7.

(2) Definition 2.6 is thus consistent with [4, p. 610, Def. 3.5].

(8) We retain the terminology in Definition 2.6 for two reasons.
First, it is the correct interpretation in terms of group endomorphisms
of k-fold transitivity in L(V) [4, p. 610, Prop. 3.6]; our definition
of transitivity in L(V) is standard [8, p. 32]. Secondly, we want
all properties of G, such as homogeneity, to be consequences of
properties of E(G). This latter desire motivates our definition of
ct-transitivity in terms of ci-independent sets.

(4) It might seem more natural to define ct-transitivity in terms
of “quasi-pure independent” sets, i.e., independent sets a,, ---, a;
such that the pure subgroup generated by all the a,’s is quasi-equal
to the direct sum of the pure subgroups generated by the individual
elements. By Lemma 2.5 (3), if T(G) is linearly ordered, then a ct-
independent set is in fact “quasi-pure independent”, and comparability
of types is a consequence of 2-fold ct-transitivity, by Proposition
2.4. However, there exists an abundance of groups in which the
only “quasi-pure independent” sets consist of single elements, e.g.,
pure subgroups of the p-adic integers. For pathological examples
even among groups of rank two, consult [3, pp. 28-30]. Proposition
2.2 guarantees the existence of nontrivial ct-independent sets.

LEMMA 2.8. If R is a 2-fold ct-transitive subring of E(G), then
R induces a 2-fold transitive subring R in E(G.), for all relevant
types . G. is thus homogeneous and R s k-fold tranmsitive for
every k.

Proof. That R induces a subring in E(G.) follows from Proposi-
tion 2.4, Lemma 1.3(3), and the full invariance of G(r) and G*(7).
To see that R is 2-fold transitive, let a,, a, be independent in G, and
let b,, b, be arbitrary, a, a,, b, b, all in G(r). By Lemma 2.5 (1), a,
and a, are ct-independent (of type z) and ¢(a;) < (b)), 7 =1,2. By
hypothesis, some f € R maps a,; to n;b, n; > 0,1 =1, 2, so the induced
map sends a; to n;b;,, 7 =1,2. R is thus 2-fold transitive. By [4,
p. 610, Prop. 3.6] and [4, p. 607, Remark 2.1], R is k-fold transitive
for every k.

We proceed to show that 2-fold ci-transitivity implies k-fold ct-
transitivity for every k.

LEMMA 2.9. Let R be a 2-fold ct-transitive ring of endomor-
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phisms of G and let a, -+, a, be ct-independent elements of G with
ta) < ++» <tlar). Then there exists f &R such that fa, = na, n a
positive integer, and fa, =0,7 =2, -+, k.

Proof. Suppose we have established this for & — 1 ¢t-independent
elements, ¥ — 1= 2, and let q,, ---, a, be bk ct-independent elements
arranged so that #(a,) < --- < t(a;). We distinguish two cases; first,
t(a,) > t(a,). By our induction hypothesis, there exists f ¢ R sending
a, to na, and a, to 0,2 =2,---,k — 1. If fa, =0, f suffices. If
fa, # 0, then t(a,) < t(a,) < t(fa,), so by the 2-fold ct-transitivity
of R, some g< R maps a, to ma,, m > 0, and fa, to 0. Now gf has
the desired property. Secondly, if ¢(a,) = t(a,) = 7, we consider the
ring R induced by R in E(G.). By Lemma 2.5 (1), the cosets a,,
.-+, a, are independent in &,. By Lemma 2.8, some fec R maps a,
to na, and a; to 0,7 =2, ---, k. If fe R induces f, we have fa, =
na, + b, b,e G*(z), and fa, =b,b,€G*(1),1 =2, ---, k. Let B be the
pure subgroup of G generated by b, ---,b,; if B = {0}, f suffices.
Otherwise, by Proposition 2.2, there exist ¢, ---, ¢, ct-independent
elements of B with m = »(B). We now apply the previous case to
@y, Gy, **°, C, (even if m = k). There exists g€ R such that ga, = la,
and g¢, = 0,1 =1, ---, m; gf has the desired property.

THEOREM 2.10. If R is a 2-fold ct-transitive subring of E(G),
then R 1s k-fold ct-transitive for every k.

Proof. Assume R is (k — 1)-fold ct-transitive for &k — 1 = 2, let
@, *--, a, be ct-independent in G, and let b, ---, b, be elements of G
satisfying t(a,) <t(®,), 1 =1, ---, k. By Proposition 2.4, we may
assume t(a,) < -+ < t(a,). By the induction hypothesis, some feR
satisfies fa, = nb;, n, > 0,1 =2, ---, k. Lemma 2.9 shows that there
exists ge R such that ga, = na, ga, =0,7 =2, ---, k. Finally, if
he R maps a, to m(b, — fa,), then hg + mnf e R sends a, to (mmn)b,
and a, to (mnn)b, 1 =2, ---, k.

ProposiTiON 2.11. If E(G) is 2-fold ct-transitive, them every
pure subgroup of finite rank in G is completely decomposable.

Proof. Let A be a pure subgroup of finite rank in G; we show
that each pure subgroup B of rank one in A is a quasi-summand of
A. Let b, be a nonzero element of B. According to Proposition 2.4
and Lemma 2.5 (2), T(G) is linearly ordered so b, may be extended
to a ct-independent set b, ---, b, which is a maximal independent
set in A. By Theorem 2.10, there exists an endomorphism f of G
such that fb, = mb, m >0, and fb, =0,72 =2, ---, n. Observe that
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that the restriction of f to 4 is an endomorphism of A and thus
f/m is a quasi-endomorphism making B a quasi-summand of A [4,
p. 607, Lemma 2.2]. The complete decomposability of 4 now follows
from [4, p. 605, Lemma 1.5] and [4, p. 605, Th. 1.6].

COROLLARY 2.12. If E(G) is 2-fold ct-tramsitive, then every
countable, homogeneous, pure subgroup H of G is completely decom-
posable.

Proof. By Proposition 2.11, every pure subgroup of finite rank
in H is completely decomposable. The conclusion follows from the
homogeneity of H and [4, p. 609, Lemma 3.1].

We now relate ct-transitivity in E(G) to density in the finite
topology of QE(G).

REMARK 2.13. Let R be a subring of L(V) and equip R with
the finite topology [8, p. 28, Ch. II §3]. Since G is full in V, a
basis for the neighborhood system of f e R consists of all sets of
the form {ge R: ga = fa for all a € H}, where H is a pure subgroup
of finite rank in G. Obviously, if f and ¢ agree on a maximal
independent set in H, then they are equal on all of H.

Throughout this paper, topological terms refer to the finite
topology of some specified ring of endomorphisms. For a subring
R of E(G), QR denotes the subalgebra of QE(G) generated by R.
Recall [4, p. 604, Def. 1.1] that G is quasi-separable if every finite
subset of G is contained in a completely decomposable quasi-summand;
recently it has been shown sufficient for each single element to be
so contained [5].

LEmMMA 2.14. (1) If R is a dense subring of E(G), then QR is
dense in the finite topology of QE(G).

(2) Let R be a subring of E(G) and suppose that E(G) is 2-fold
ct-transitive. Then R 1s 2-fold ct-transitive 1f and only if QR 1is
dense 1n QE(G).

(8) QF(G) is demse in QE(G) if and only if each finite subset
of G 1s contained in a quasi-summand of finite rank.

Proof. For (1), let feQE(G) and let H be a pure subgroup of
finite rank in G. Suppose nf € E(G@) for n > 0. By hypothesis, there
exists g e R which agrees with nf on H. Then g/n € QR agrees with
f on H, and so QR is dense in QE(G).

In (2), the sufficiency is straightforward. For the converse, let
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f, H, and »n be as in the proof of (1). By Proposition 2.2, H contains
a ct-independent set a,, «--, a,, which is also a maximal independent
set in H, By hypothesis and Remark 2.7 (1), there exists g € R such
that ga;, = l((nf)a,), 1 =1, ---, m, for some positive integer I. Thus
g/(In) € QR agrees with f on H, and so QR is dense in QE(G).

In (3), the sufficiency is likewise clear. To establish the necessity,
it suffices to show that each pure subgroup H of finite rank in G is
contained in a quasi-summand of finite rank. By density, there exists
f e QF(G) which agrees on H with the identity mapping of G. As
in Proposition 1.1, f induces a quasi-decomposition of G with H
contained in a quasi-summand of finite rank.

COROLLARY 2.15. If QF(G) is dense in QE(G) and every pure
subgroup of finite rank in G is completely decomposable, then G is
quasi-separable.

Proof. By Lemma 2.14 (3), each finite subset of G is contained
in a quasi-summand of finite rank, which may be assumed to be a
pure subgroup of G [2, p. 95, Lemma 9.4], and so completely decom-
posable. G is thus quasi-separable.

REMARK 2.16. (1) The converse of Lemma 2.14 (1) is false.
Consider the group S [4, p. 607] in the light of [4, p. 611, Th. 3.10
(4)]. Obviously F(S) cannot be dense in E(S).

(2) The converse of Corollary 2.15 is also false, since there exist
completely decomposable groups of finite rank which contain inde-
composable pure subgroups [6, p. 166].

3. Main theorems. By using the machinery developed in §2,
we now prove the principal results.

THEOREM 3.1. The following conditions on the group G are
equivalent:

(1) Each pure subgroup of finite rank in G is a quasi-summand.

(2) G is quasi-separable with linearly ordered type set.

(3) F(G) is 2-fold ct-transitive, and hence k-fold ct-transitive
for every k.

(4) T(G) forms a chain, every pure subgroup of finite rank
in G is completely decomposable, and QF(G) is dense in the finite
topology of QE(G).

(5) T(G) forms a chain, every pure subgroup of finite rank
in G 18 completely decomposable, and F(G) is one-fold ct-transitive.

(6) For each pure subgroup H of finite rank in G, there exists
an endomorphism f of G such that fG = H and fH = {0}.
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Proof. As mentioned previously, the equivalence of (1) and (2)
is established in [4, p. 606, Cor. 1.7]; it is included here for the sake
of completeness.

To see that (1) implies (8), let a,, a, be ct-independent elements
of G and let b, b, be elements of G satisfying t(a,) < (), 7 =1, 2.
Let A, A,, B, B,, and A denote the pure subgroups of G generated
by e, a, b,b,, and A, + A,, respectively. By hypothesis, A is a
quasi-summand of G and 4 = A, + 4,, by Lemma 2.5 (3); suppose
G=A +A4,+C with nG S 4, + A, +C for n > 0. Let ¢ and e,
be the idempotents in E(A, + A, + C) projecting A, + A, + C onto
A, and A,, respectively. By [4, p. 611, Lemma 3.9], there are maps
fii A, — B, sending a; to m.,b; for some positive integer n,, ¢ =1, 2.
Now (fie, + fie.)n € F(G) maps a, to (nn)b, 1 =1, 2, so F(G) is 2-fold
ct-transitive, and hence k-fold ci-transitive for every & by Theorem
2.10.

That (38) implies (2) follows from Propositions 2.4, 2.11, Lemma
2.14 (2) and (3), and Corollary 2.15.

A proof that (8) and (4) are equivalent is implicit in the preceding
arguments.

The equivalence of (1)-(4) shows that (1) implies (5).

Conversely, assume (5). Let U be a one-dimensional subspace of
V and let a be a nonzero element of A =UNG. Let feF(G) send
a to a positive multiple of itself, na, and let B be the pure subgroup
of G generated by fG. By assumption, B is completely decomposable
with linearly ordered type set and so A is a quasi-summand [4, p.
605, Th. 1.6], B=A + C. Suppose mB < A + C for m > 0 and let
ec E(A + C) project A + C onto A. Then ef/ncQE(G) projects V
onto U. According to Remark 1.2 (8), (6) implies (1).

In turn, suppose (1) holds. Let H be a pure subgroup of finite
rank in G; by hypothesis H is a quasi-summand and in fact a com-
pletely decomposable one [4, p. 606, Cor. 1.7], say G = H + C. Suppose
nG < H + C for n > 0 and let ¢ denote the projection of H + C onto
H. Observe that e(nG) = H [2, p. 96, Cor. 9.6] via some map g; gen
is then an epimorphism of G upon H which is nonzero on H.

Finally, we show (6) implies (1). Let U be a one-dimensional
subspace of V. By assumption, there exists an endomorphism f of
G which sends G onto A = GNU with fA4 = {0}. Let a be a nonzero
element of A and suppose fa = M@, M a nonzero rational number.
Now f/A»e€QE(G) is a projection of V onto U, so (1) is true by Remark
1.2 (3).

COROLLARY 3.2. Suppose that G satisfies any (and hence all) of
the conditions of Theorem 8.1. Then G(7) is homogeneous (of type T)
and quasi-separable, for each ©e T(G).
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Proof. That G(r) is homogeneous and quasi-separable follows
from Theorem 3.1, Lemma 2.8, and [4, p. 610, Remark 3.7 (4)]. It
remains to show that each nonzero element has type z. Pick ae
G(7), a ¢ G*(r). Let A be the pure subgroup of G generated by «
and let H be that pure subgroup generated by a and G*(z). Since
the summand property is inherited by pure subgroups, H = A + G*(¢).
Thus H/G*(t) = A, so a has type 7 in G(r) because type is invariant
under quasi-isomorphism [3, p. 26, Lemma 7.1].

In [4, p. 610, Remark 3.7 (5)}, it is proved that a countable group
G is homogeneous and completely decomposable if and only if E(G)
is 2-fold transitive. This result can be extended to a class of countable
groups with 2-fold ct-transitive endomorphism rings.

LEMMA 8.3. Let E(G) be 2-fold cl-transitive and suppose that
for the type ©, G. is countable and homogeneous of type ©. Then
G*(t) is a direct summand of G(z).

Proof. By Lemma 2.8, E(G.) is 2-fold transitive and so completely
decomposable, by the aforementioned result on countable homogeneous
groups. The hypothesis that the nonzero elements of G, have type
7z and [1, p. 107, Cor. 8.7] yield the conclusion.

LEMMA 3.4. Let G be countable and let E(G) be 2-fold ct-transi-
tive. Suppose further that T(G) satisfies the ascending chain condition
and that G, is homogeneous of type z, for each relevant type t.
Then G is completely decomposable.

Proof. By Lemma 3.3, G(v) = G. + G*(r) with G, a countable,
completely decomposable group, for each relevant type z. By [1, p.
109, Th. 9.3], G = >\ G, (teT (@)).

THEOREM 3.5. Let G be a countable group such that T(G) satisfies
the ascending chain condition. Then G satisfies any (and hence all)
of the conditions of Theorem 3.1 if and only if G is completely
decomposable with linearly ordered type set.

Proof. Only the necessity need be proved. By Lemma 3.4, it
suffices to demonstrate that G. is homogeneous of type 7, for all
7€ T(@), and this has been done in Corollary 3.2.

COROLLARY 3.6. Let G satisfy any one of the conditions of
Theorem 3.1 and let H be a countable pure subgroup or quasi-
summand of G. If T(H) satisfies the ascending chain condition,
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then H 1s completely decomposable.

4. Applications to separable groups. Theorem 3.1 can be
extended along the lines of Theorem 3.5 to deseribe a class of
separable groups in which each pure subgroup of finite rank is a
quasi-summand. In order to utilize a theorem of R. Baer [1, p. 117,
Th. 11.3], we need a series of preliminary results. We continue to
construet functions which induce decompositions.

Recall [1, p. 80, Def. 5.1} that a e G is primitive of type 7 if
to(a) = v and hyla) = hgela + G*(7)). A finite subset of G is primi-
tive if its elements are primitive with different types.

LEMMA 4.1. Let F(G) be 2-fold ct-transitive and suppose that
Jor each pair a,b of primitive elements having equal height in G,
there exists an endomorphism of G which maps a to b. Then G(z)
18 homogeneous (of tyve ) and separable, for all Te T(G).

Proof. By [5, Cor.], it suffices to prove that each pure subgroup
H of rank one in G(7) is a direct summand. Now G(c) = H + C {4,
p. 606, Cor. 1.7] and in fact G(z) = H' + C [2, p. 96, Cor. 9.6] with
H = H’ via g, provided C is pure in G(r) (and we take it to be [2,
p. 95, Lemma 9.4]). Suppose H = H/G*(t) and H' = H'|/G*(r) with
H and H' pure subgroups of G. By [7, p. 114, Prop. 86.5], H =
A+ G*(t), H = A" + G*(r) for some subgroups 4, A" of G. Let a
and a’ be nonzero elements of A and A’, respectively, such that
he(a) = hg(a’); note that ¢ and @’ are primitive. We may thus assume
gla) = ga’) [4, p. 611, Lemma 3.9]. By hypothesis, there exists
f e E(G) such that fa = a’; denote by f the endomorphism of G(z)
induced by f. Let ee E(G(z)) project G(z) onto H'. Now gef pro-
jects G(z) onto H, so H is a direct summand.

LEMMA 4.2. Suppose G is quasi-separable with linearly ordered
tyve set and let H denote a subgroup of G such that (1) H is homo-
geneous of type v and (2) H is a direct summand of G(z). If each
subgroup of rank one in G which satisfies (1) and (2) is a direct
summand of G, then the same holds for each subgroup of finite rank.

Proof. Suppose we have shown that each subgroup of rank <u
which satisfies (1) and (2) is a direct summand of G, n =1, and let
H be a subgroup of rank n + 1 which satisfies (1) and (2). By [4,
p. 606, Cor. 1.7], H is completely decomposable so we may write
H=A + B with A of rank n. By hypothesis, G = 4 + C and so
G(t) =A +C(r) and H=A + HN C(r). Again, HN C(z) is a direct
summand of G,G=HNCE)+B, so C=HNC()+BNC. Upon
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combining results, we have G = H + BN C.

The following restrictions on a group and its endomorphisms are
sufficient for the group to be separable.

PROPOSITION 4.8. Assume T(G) satisfies the ascending chain
conidition. Let F(G) be 2-fold ct-transitive and suppose that for
each pair of primitive elements a, b which have equal height in G,
there exists f € F(G) such that fa =b. Then G is separable.

Proof. By Lemmas 4.1, 4.2, and [1, p. 117, Th. 11.3], it suffices
to show that for each 7e T(G), every subgroup A of rank one in
G which satisfies ¢(4) =7 and G(r) = A + C, is a direct summand
of G. Let a be any nonzero element of A; note that a is primitive.
By assumption, some f e F(G) maps a to a. Let H be the pure
subgroup of G generated by fG; H is completely decomposable [4,
p. 606, Cor. 1.7]. a is certainly primitive in H and so H=A + B
[1, p. 80, Lemma 5.2]. If ec E(H) projects H onto 4, then e¢f € E(G)
projects G onto A.

DEFINITION 4.4. Let R be a k-fold ct-transitive subring of E(G).
R is said to be fully k-fold ct-transitive if for each j<k the following
holds: for each primitive set a,, ---, a; of elements in G and each
set b, -+, b; of elements in G which satisfy h(a,) < h(,),i=1,---, 7,
there exists f e R such that fa, =0b,,71=1, ---, 7.

We now obtain

THEOREM 4.5. Suppose T(G) satisfies the ascending chain con-
dition. Then G is separable with linearly ordered type set if and
only if F(G@) 1s fully 2-fold ct-transitive, and hence fully k-fold
ct-transitive for every k.

Proof. The sufficiency is established in Proposition 4.3. Con-
versely, F(G) is 2-fold ect-transitive and hence k-fold ct-transitive
for every k, as was seen in Theorem 3.1. F(@) is fully so according
to [1, p. 80, Lemma 5.2] and [4, p. 611, Lemma 3.9].

We proceed to demonstrate that the hypotheses of Theorem 4.5
impose no countability restriction upon T(G). This resultis of interest
in its own right.

5. Chains of types with the maximum condition. Somewhat
surprisingly, an uncountable chain of types can satisfy the maximum
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condition, unlike chains of heights. For the sake of definiteness: by
a height we mean a function from the set of all primes to the set
of nonnegative integers union «; by a type we mean an equivalence
class of heights under the standard equivalence relation on heights
[7, §85]; by a representation of a type r we mean a choice of a
height her.

LEMMA 5.1. Ewvery countable chain of types can be represented
by a chain of heights.

Proof. Let 7,7, --+ be an enumeration of a chain of types and
let h, be a height in 7,. Suppose we have represented z,, ---, 7, by
a chain of heights A, ---, h,. Consider the three possibilities for
Cntte

(1) t,u<tyi=1, «-+,n.  Choose h,,, €7, so that h,,, < h;,
1=1, ¢, m.

(2) There exist 7, and 7; among 7,, -+, 7, such that 7, < 7,,, <7j;;
we take 7, to be the greatest such type and z; the least such. Choose
Ponis € Tyyy SO that b, < b,y < hj.

(8) Typu>75yt =1, -+, n. Choose h,,, €7,,, satisfying h,,, >
hy,i=1, -+, m.

We thus obtain a chain of heights h;ez,7=1,2, ---.

REMARK 5.2. In Lemma 5.1, the countability assumption is
essential. It is not difficult to prove that any chain of heights which
satisfies the maximum (or minimum) condition must be countable.
There do, of course, exist uncountable chains of heights which
represent distinct types.

To say that the types 7,, 7, differ at an infinite number of primes
means that h, €7, and h, €7, differ at infinitely many primes.

THEOREM 5.8. Let © < t” be two types which differ at an infi-
nite number of primes. Then there exists an uncountable chain
of types satisfying the maximum condition which contains T as its
least element and " as its greatest element.

Proof. Choose a type 7’ so that 7 < 7' < 7" and so that ' is
finite wherever it differs from 7. Let & denote the collection of
all sets C of types such that (1) C is a chain satisfying the maximum
condition; (2) 7'€C; (8) t < ¢ < 7' for all 0 € C; (4) if 0, 0, are distinet
elements of C, then o, and o, differ from each other and from 7 at
an infinite number of primes. Note that {z'}e &.

For C,, C,e %, define C, < G, if there exists ¢ € C, such that C, =
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{6’ €C,: 0 < 0'}. By standard arguments, under this partial ordering
of &, chains have upper bounds in %°. Zorn’s Lemma then implies
that & contains a maximal element M; observe that M contains no
least element. Suppose M is countable and enumerate its elements
Ty, Top »++. From Lemma 5.1, M can be represented by a chain of
heights h,, hy, -+-, with h,e7,1=1,2,---. For a fixed hez, we
may assume h, > h for all . We now define a height f which re-
presents a type o such that r <o <7,1=1,2,---, and such that
o differs from z and each 7, at an infinite number of primes.

Set m, =1, let p, be a prime such that h, (p,) > h(p,.,), and
define f(p) = h,,(p) for all primes p,2 < p < p,,. Suppose now that
S has been defined for all primes p, 2 < p < p,,. Choose m,,, greater
that m, so that h,,,, <h, for 1 <1 < my,,, and let p,,  be a prime
greater than p,, such that h,,, (D.,.)>"(D,, . ). Define f(p)=h,, (p)
for primes p satisfying p,, < 9 < D,,,.

It is straightforward to verify that f represents a type ¢ having
the properties claimed, so that {¢} U M contradicts the maximality
of M. Thus M is uncountable and the chain {z} U M U {z"} satisfies
the maximum condition and contains 7z, 7"’ as its least, respectively,
greatest element.

REMARK 5.4. (1) If 7 and 7" are distinct types which differ at
only finitely many primes, then any chain of types between z and

”n

7" is necessarily finite.
(2) The preceding arguments may be modified in an obvious
fashion to prove the existence of uncountable well ordered type sets.
(8) Under the continuum hypothesis, any uncountable chain of
types has the same cardinality, 2%, as the set of all types.

REFERENCES

1. Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J., 3
(1937), 68-122.

2. R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math., 5 (1961),
61-98.

3. , Torsion free groups of rank two, Memoirs Amer. Math. Soc., 38 (1961).
4. E. F. Cornelius, Jr., A generalization of separable groups, Pacific J. Math., 39 (1971),
603-613.

5. , A sufficient condition for separability, submitted for publication.

6. L. Fuchs, Abelian groups, reprint, Internat. Series of Monographs of Pure and Appl.
Math., Pergamon Press, New York, 1960.

1. , Infinite Abelian Groups, Vol. 2, Academic Press, New York, 1973.

8. Nathan Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Collog. Publ., vol.
37, Amer. Math. Soc., Providence, R. 1., 1964.

9. J. D. Reid, On quasi-decompositions of torsion free abelian groups, Proc. Amer.
Math. Soc., 13 (1962), 550-554.

10. , On the ring of quasi-endomorphisms of a torsion-free group, Topics in




CHARACTERIZATION OF A CLASS OF TORSION FREE GROUPS

abelian groups, Scott, Foresman, Chicago, 1964, 51-68.
Received June 7, 1978

WAYNE STATE UNIVERSITY
DeTROIT, MI 48202

Current Address: DYKEMA, GOSSETT, SPENCER, GOODNOW & TRIGG
35th Floor, 400 Renaissance Center
Detroit, MI 48243

355






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California

Los Angeles, CA 90007
CHARLES W. CURTIS 08 Angeles 0

University of Oregon R. FINN and J. MILGRAM

Eugene, OR 97403 Stanford University
Stanford, CA 94305

C.C. MOORE nior

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA
SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA

CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuscript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Items of the bibliography should not be cited there unless absolutely necessary, in which case
they must be identified by author and journal, rather than by item number. Manusecripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A.
Older back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1978 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 79, No. 2 June, 1978

David R. Adams, Quasi-additivity and sets of finite L?-capacity. . ......... 283
George M. Bergman and Warren Dicks, Universal derivations and universal

FING CONSITUCTIONS « .« e e e e e et e 293
Robert F. Brown, Addendum to: “Fixed points of automorphisms of compact

Lie Groups™ . ... ..o 339
Eugene Frank Cornelius, Jr., Characterization of a class of torsion free

groups in terms of endomorphisms . ......... ... ... . o .. 341
Andres del Junco, A simple measure-preserving transformation with trivial

CENITAlIZEr . . . . oo e 357
Allan Lee Edmonds, Extending a branched covering over a handle . . . .. ... 363
Sjur Flam, A characterizaton of R? by the concept of mild convexity . . .. ... 371
Claus Gerhardt, L?-estimates for solutions to the instationary Navier-Stokes

equations in dimension tWO . ... ..o e e eeiiieennnn 375
Kensaku Gomi, Finite groups with a standard subgroup isomorphic to

PSU(4, 2) . 399
E. E. Guerin, A convolution related to Golomb’s root function ............. 463

H. B. Hamilton, Modularity of the congruence lattice of a commutative
cancellative SEMIgroUD ... ..........uui i 469

Stephen J. Haris, Complete reducibility of admissible representations over
functionfields................c i,
Shigeru Itoh and Wataru Takahashi, The common fixed po
singlevalued mappings and multivalued mappings . . |
James E. Joseph, Multifunctions and graphs .............
Bruce Magurn, Images of SK1ZG.....................
Arnold Koster Pizer, A note on a conjecture of Hecke. . . .
Marlon C. Rayburn, Maps and h-normal spaces . ........
Barada K. Ray and Billy E. Rhoades, Corrections to: “Fi
for mappings with a contractive iterate” ...........
Charles Irvin Vinsonhaler, Corrections to: “Torsion free a
quasiprojective over their endomorphism rings. 11" .



http://dx.doi.org/10.2140/pjm.1978.79.283
http://dx.doi.org/10.2140/pjm.1978.79.293
http://dx.doi.org/10.2140/pjm.1978.79.293
http://dx.doi.org/10.2140/pjm.1978.79.339
http://dx.doi.org/10.2140/pjm.1978.79.339
http://dx.doi.org/10.2140/pjm.1978.79.357
http://dx.doi.org/10.2140/pjm.1978.79.357
http://dx.doi.org/10.2140/pjm.1978.79.363
http://dx.doi.org/10.2140/pjm.1978.79.371
http://dx.doi.org/10.2140/pjm.1978.79.375
http://dx.doi.org/10.2140/pjm.1978.79.375
http://dx.doi.org/10.2140/pjm.1978.79.399
http://dx.doi.org/10.2140/pjm.1978.79.399
http://dx.doi.org/10.2140/pjm.1978.79.463
http://dx.doi.org/10.2140/pjm.1978.79.469
http://dx.doi.org/10.2140/pjm.1978.79.469
http://dx.doi.org/10.2140/pjm.1978.79.487
http://dx.doi.org/10.2140/pjm.1978.79.487
http://dx.doi.org/10.2140/pjm.1978.79.493
http://dx.doi.org/10.2140/pjm.1978.79.493
http://dx.doi.org/10.2140/pjm.1978.79.509
http://dx.doi.org/10.2140/pjm.1978.79.531
http://dx.doi.org/10.2140/pjm.1978.79.541
http://dx.doi.org/10.2140/pjm.1978.79.549
http://dx.doi.org/10.2140/pjm.1978.79.563
http://dx.doi.org/10.2140/pjm.1978.79.563
http://dx.doi.org/10.2140/pjm.1978.79.564
http://dx.doi.org/10.2140/pjm.1978.79.564

	
	
	

