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First, in a locally convex topological vector space, a
theorem is proved which extends fixed point theorems by
Lau and Fan-Glicksberg. In a strictly convex Banach space,
a similar result is obtained, which is a generalization of the
fixed point theorem by Bohnenblust-Karlin. In a Banach
space which satisfies Opial’s condition, a fixed point theorem
is given that generalizes both results by Holmes-Lau-Lim and
Lami Dozo. In a uniformly convex Banach space, a similar
theorem is considered which extends Lim’s fixed point
theorem. Finally, the existence of common fixed points of
a quasi-nonexpansive mapping and a multivalued nonexpan-
sive mapping is established by an elementary constructive
method in a Hilbert space. In many cases, preliminary re-
sults on nonexpansive or quasi-nonexpansive retractions are
obtained which play crucial roles in proving the above
theorems.

1. Introduction. De Marr [11] proved that if G is a commuta-
tive family of nonexpansive mappings on a compact convex subset
K of Banach space, then G has a common fixed point in K. Then
results for nonexpansive mappings on weakly compact convex subsets
appeared. Browder [5] proved a fixed point theorem for a single
nonexpansive mapping on a bounded closed convex subset of a Hilbert
space, while Browder [6] and Gohde [19] on a bounded closed convex
subset of a uniformly convex Banach space. Kirk [23] obtained a
general form of the similar result for a single nonexpansive mapping
on a weakly compact convex subset K of a Banach space in the case
that K has normal structure. Since then, various fixed point theorems
for nonexpansive mappings were given by Belluce and Kirk [2, 3],
Takahashi [33, 34], Mitchell [31], Kirk [24], Holmes and Lau [21],
Dotson [12], Lau [26], Bruck [9, 10] and Lim [27], etc. Among
them, Bruck obtained interesting characterizations of fixed point
sets of nonexpansive mappings. There were also Dotson’s results
[13] on fixed points of quasi-nonexpansive mappings. Lim [28]
proved that if K is a weakly compact convex subset of a Banach
space and K has normal structure, then K has complete normal
structure. Hence combining this with a theorem of Holmes and
Lau [21], it follows that if G is a left reversible semigroup of non-
expansive mappings on a weakly compact convex subset K of a
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Banach space and K has normal structure, then there is a common
fixed point of G in K.

On the other hand, fixed point theorems for multivalued upper
semicontinuous mappings were proved by Bohnenblust and Karlin [4],
Glicksberg [17], Fan [15], Browder [8], and Takahashi [35], ete.
And fixed point theorems for multivalued nonexpansive mappings
were given by Markin [32], Lami Dozo [25], Assad and Kirk [1]
and Lim [29], ete. Contrary to singlevalued cases, results for
multivalued nonexpansive mappings on weakly compact convex
subsets (which have normal structure) of general Banach spaces are
not yet obtained up to the present.

In [22] we examined the existence of common fixed points for
a singlevalued mapping and a multivalued mapping. In this paper
we give various common fixed point theorems for families of single-
valued nonexpansive or quasi-nonexpansive mappings and multivalued
upper semicontinuous or nonexpansive mappings. These generalize
both results in singlevalued and multivalued cases simultaneously.
We also obtain some theorems on nonexpansive or quasi-nonexpansive
retractions. At first, in §3 we prove theorems for semigroups of
nonexpansive mappings and multivalued upper semicontinuous map-
pings in loecally convex topological vector spaces, while in §4 those
for families of nonexpansive or quasi-nonexpansive mappings and
multivalued nonexpansive mappings in Banach spaces. Finally, in
§5 we give more precise results in Hilbert spaces.

The authors wish to express their gratitude to Professor H.
Umegaki for many suggestions and advices in preparing this paper.

2. Preliminaries. Let X be a topological space, 2% the family
of all subsets of X, T a mapping of X into 2% such that Tx is
nonempty for all xeX. T is called upper semicontinuous if for
each closed subset C of X, TYC) ={xecX: Tx N C = @} is closed.

Let E be a locally convex topological vector space, @ a family
of continuous seminorms that generates the topology of E. Let X
be a nonempty subset of K, f a mapping of X into K. Denote by
F(f) (which may be empty) the set of fixed points of f in X. fis
called Q-nonexpansive with respect to M (a nonempty subset of X)
if for any pe@Q, »(fr — fu) < p(x — u) whenever zc€ X and uec M.
If M = X, then f is called Q-nonexpansive, and if M = F(f), then
f is called Q-quasi-nonexpansive respectively.

Let B be a Banach space, X a nonempty subset of B, f a mapping
of X into B. f is said to be k-contraction (where 0 <k < 1) if
for any z, ye X, ||fx — fyl| £ kllx — y|l. [ is said to be nonexpan-
sive with respect to M (a nonempty subset of X) if for each ze X,
weM, ||fx — full £l —ull. If M =X, f is said to be monexpan-
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stve, and if M = F(f), f is said to be quasi-nonexpansive. [ is
said to be generalized momexpansive if there exist nonnegative real
numbers a, b, ¢ with a + 2b + 2¢ < 1 such that for any z, y e X,

fe — fyll = alle — yll + bllle — fall + lly — fyll}
+ ellle — fyll + lly — fall} .

Note that if a generalized nonexpansive mapping has fixed points,
then it is quasi-nonexpansive. Let T be a mapping of X into 2%
such that for each x e X, Tx is nonempty bounded closed and let D
be the Hausdorff metric on nonempty bounded closed subsets of B
induced by the norm of B. If for any z, ye X, D(Tz, Ty) < ||z — v,
T is called nonexpansive.

Let G be a semitopological semigroup, that is, G is a semigroup
with a Hausdorff topology such that the semigroup operation
GXxG— @G by (s, t)— st (s,t @) is separately continuous. G is said
to be left reversible if any two nonempty closed right ideals of G
have nonvoid intersection. Let C(G) be the Banach algebra of all
continuous bounded realvalued functions on G with sup norm. For
each te(@, define the operators », [, on C(G@) by (r.h)(s) = h(st),
(I;h)(s) = h(ts) for all seG and heC(@). Let A be a subspace of
C(G) containing the constant function 1. An element m of the dual
space A* of A is called a mean if m(1) = ||m|| = 1. For any h e C(@),
denote r;h = {r,h:t € G}. Then AP(G) = {h € C(G): r¢;h is precompact
in C(@)} is a left and right translation invariant (i.e., [,(AP(G)) C
AP(@), r(APG))C AP(G) for all te@G) closed subalgebra of C(G)
containing 1. A mean m on AP(G) is called a left invariant mean
if m(l,h) = m(h) for all he AP(G) and t€G. If G is left reversible,
then AP(G) has a left invariant mean (cf. [21, 26]).

An action of a semitopological semigroup G on a topological
space X is a mapping G X X — X such that (st)x = s(tx) for all
s,teG and xe X, where tx denotes the image of (¢, ). The action
is called separately continuwous if the mapping G x X — X is
separately continuous. If X is a subset of a Banach space B (a
locally convex space FE), then the action of G on X is called
(@-)monexpansive if for each se G, the mapping of X into X defined
by x — sz (xe X) is (Q-)nonexpansive.

Let X be a nonempty subset of a locally convex topological
vector space K (or a Banach space B), f a mapping of X into X, G
a family of mappings of X into X, T a mapping of X into 2% such
that Tx is nonempty for every xc€X. We denote by Gx the set
{gx: g € G} for any € X, and by F(G) (which may be nonempty) the
set of common fixed points of G in X. Let Y be a empty subset
of X, then we denote by bd,Y the relative boundary of Y with
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respect to X, that is, bd;Y =cl(Y)Nel (X\Y), where cl(Z) is the
closure of Z. Y is said to be f-invariant if f(Y)C Y. Y is said
to be G-invariant if Y is g-invariant for all geG. f and T is said
to commute if for each ze X, f(Tx)< T(fx). f and T is said to
commute weakly if for any xe X, f(bd;Tx)C T(fx). G and T is said
to commute (weakly) if each g€ G and T commute (weakly). Let G
be a semitopological semigroup acting on X, then we also denote by
F(G@) the set of fixed points of the semigroup of mappings J =
{x—sx(xeX):seG}. Gand T is said to commute (weakly) if J and
T commute (weakly). Y is called G-invariant if Y is J-invariant.
A mapping 7 of X into X is called a retraction if 7 = r.
Now we give some results in Banach spaces.

PROPOSITION 1. Let K be a nonempty closed convex subset of a
Banach space B, f a mapping of K into B such that M = {y e K:
lfy — yl| = min {||fy — «||: x € K}} is nonempty and f is monexpan-
sive with respect to M. Then M 1is a closed set on which f s
continuous. Furthermore, if B is strictly convex and f is isometric
on M, then w =ku + A — k)v(u, ve M, 0 < k < 1) implies that fw =
kfu + Q1 — k)fo.

Proof. It is obvious that f is continuous at each point of M.
We show that M is closed. Let {y,} be a sequence of M which
converges to ze K. For any ¢ >0, take m = m(c) such that
1Y — 2|| < e, then

Iz — 2l £ f2 — fynll + | fUn — Yaull + |[¥a — 2]|
S Ym — 2l + | fYm — Ynll + 1Y — 2l|

< 26 + ”fym - ym” .
For each x e K,

1fYn — || = [|fYn — f2l| + ||fz — 2|
= Y — 2l + |lfz — ]
<c+|lfz—all,
hence
[ fYm — Yull = min {||fy, — 2||: x € K}
<c+inf{||fz —x|:x€ K}.
Therefore, it follows that

lfz — 2|| < 8¢ + inf {||fz — |: z€ K} .

Since ¢ is arbitrary, we have ||fz — z|| < inf {|[f2z — o|]: 2 € K} and
zeM. Thus M is closed.
Suppose B is strictly convex and f is isometric on M. Let
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u,veM, 0<k<1and w=Fku + 1 — k)v. By assumption

lw — | = ||fu —fol| and [[fw — fol| < |lw — o] .
Thus
llw — wll = llu — ol — llw — 2|
= [[fu — Sfoll — [|[fw — S|
= [[fu — fw|l < [lu — wl| .
Hence |/fu — fw| = |lu — w||. Similarly we have | fv — fw| =

[lv — w|l. Therefore, we obtain

fu — fwll + [[fw — foll = [lu — wll + [jw — vl
= [lu — ol = [[fu — fof| .

Since B is strictly convex, it follows that fw = kfu + (1 — k)fv.

For nonexpansive mappings a similar result to the second part
of Proposition 1 was given by Edelstein [14]. As a direct con-
sequence of Proposition 1, we have the following result which was
due to Dotson [13].

COROLLARY 1. Let K be a closed convex subset of a strictly
convex Banach space, [ a quasi-nonexpansive mapping of K into K.
Then F(f) is a monempty closed convex set on which f is continu-
ous.

Proof. Since f(K)C K, F(f) equals the set M as in Proposition
1. Thus, for any u,veF(f), 0 <k <1 with w =Fku + (1 — k)v,
we have fw =Fkfu + A —k)fv=ku + 1 — k)v = w. This implies
that F(f) is convex.

The following was given by Bruck [10].

PROPOSITION 2. Let X be a Hausdorff topological space, S a
semigroup of mappings of X into X. If S is compact in the
topology of pointwise convergence on X and for each xe X, there
exists a common fized point of S in Sk, then there is in S a
retraction of X onto F(S).

3. Fixed point theorems in topological vector spaces. Through-
out this section, let K be a nonempty compact convex subset of a
locally convex Hausdorff topological vector space E, Q@ a family of
continuous seminorms that generates the topology of E. The notion
of nonexpansiveness always means Q-nonexpansiveness and we omit
the term Q.
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THEOREM 1. Let G be a family of mappings of K into K such
that F(G) is nonempty and each g € G is nonexpansive with respect to
F(@). If any G-invariant closed convex subset of K has a common
fized point of G, then there exists a quasi-nonexpansive retraction
r of K onto F(G) for which every G-invariant closed convex subset
of K is r-invariant.

Proof. Define S = {s: K— K: s is nonexpansive with respect to
F(G), F(s)DF(G) and any G-invariant closed convex subset of K is
s-invariant}. Then G < S. We show that S is compact in the topology
of pointwise convergence. Fix vec F(G). For each x¢c K, put

Wr ={yeK:ply —v) < px —v) for all peqQ},

then Wz is nonempty compact convex. In fact, for any seS,
p(sx — v) < p(x — v), hence sxe Wx. S can be regarded as a subset
of the product topological space W = [[,.x Wx. Since W is compact
and the topology on W is that of pointwise convergence, it suffices
to show that S is closed in W. Suppose that {s;} is a net in S
which converges to s in W. For any xe K, we F(G), p €@, we have

p(sx —w) = lim p(s,x — u) = p(x — w)

and
su =limsu =u .
k3

It is obvious that if C is a G-invariant closed convex subset of K,
then s(C)cC. Hence se€S and S is closed in W. It can be seen
that Sis a semigroup and for any s,t¢ S, k(0 <k 1), ks + (1 — k)t € S.
This implies that for each x € K, Sx is compact convex and G-invariant.
By assumption Sz has a common fixed point of G, that is, Sz has a
common fixed point of S. Therefore, by Proposition 2 there exists
in S a retraction r of K onto F(S) = F(G). Since F(r) = F(G), r is
quasi-nonexpansive.

COROLLARY 2. Let f be a continuous quasi-nonexpansive mapping
of K into K, then there exists a quasi-nonexpansive retraction r of
K onto F(f) such that each f-invariant closed convex subset of K
18 r-invariant.

Proof. Since f is continuous, any f-invariant closed convex
subset of K has a fixed point of f by Tychonoff’s fixed point
theorem.

For a nonexpansive action of a semitopological semigroup on K,
we obtain the following.
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THEOREM 2. Let G be a semitopological semigroup acting on K
such that AP(G) has a left imvariant mean. If the action of G on
K is separately continuous and nonexpansive, them there exists a
nonexpansive retraction » of K onto F(G) such that every G-invariant
closed convex subset of K is r-invariant.

Proof. F(G) is nonempty by Lau’s theorem [26]. Put S =
{f: K— K: f is nonexpansive with F(f) D F(G) and any G-invariant
closed convex subset of K is f-invariant}, then as in the proof of
Theorem 1, S is a semigroup and compact in the topology of point-
wise convergence. For each xze¢ K, Sx is a G-invariant compact
convex subset of K, so by [26] again there exists a common fixed
point of G in Sz which is also a fixed point of S. Thus, by
Proposition 2 there is in S a retraction » of K onto F(S) = F(G).

Now we give a common fixed point theorem for a semigroup of
nonexpansive mappings and a multivalued upper semicontinuous

mapping.

THEOREM 3. Let G be a semitopological semigroup acting on K
Jor which AP(G) has a left imvariant mean. Suppose the action
of G on K is separately continuwous and mnonexpansive. Let T be
an upper semicontinuous mapping of K into 2% such that for each
xe K, Tx is nonempty compact convex. If G and T commute, then
there exists an element ze K such that gz = z¢ Tz for all gc@G.

Proof. By Theorem 2 there exists a nonexpansive retraction #
of K onto F(G) for which every G-invariant closed convex subset
of K is r-invariant. Define a mapping S of K into 2¥ by Sx = T(rx)
(xe K), then S is upper semicontinuous. By Fan-Glicksberg’s fixed
point theorem [15], [17] there is a ve K such that »eSv. Since
for any g€ G, g(Sv) = g(T(rv)) C T(rv) = Swv, it follows that r(Sv) < Sv
and in particular rve Sv. Put z = rv, then we have gz = z¢ Tz for
all ge@.

If G is generated by a single mapping and 7 is a singlevalued
mapping, then the following holds.

COROLLARY 8. Let f be a continuous mapping of K into K, g
a nonexpansive mapping of K into K. If f and g commute, then
there exists a z¢ K such that fz = gz = z.

4. Fixed point theorems in Banach spaces., In this section
we consider various common fixed point theorems for singlevalued
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mappings and multivalued mappings in Banach spaces. At first, we
have the following theorem for a family of quasi-nonexpansive
mappings and an upper semicontinuous multivalued mapping on a
compact convex subset of a strictly convex Banach space.

THEOREM 4. Let K be a nonemply compvact convex subset of a
strictly convex Bamnach space, G a family of mappings of K into
K for which F(G) is nonempty and every geG 1s mnonexpansive
with respect to F(G), T ian upper semicontinuous mapping of K
wnto 2% such that for each xe K, Tx is nonempty closed convex. If
G and T commute weakly, then there exists a point z€ K such that
gz = ze€ Tz for all ge@G.

Proof. By Corollary 1 F(G) is closed convex. Choose any point
# e F(G). For each xe F(G), Tx is nonempty closed convex, hence
there exists a unique element v e bd,Tx nearest to w. Since for any
ge@, gbd.Tx)C T(gx) = Tx and ¢ is nonexpansive with respect to
F(G), it follows that |ljgv —u|| =< ||lv — u|| and gv =v. Thus we
have Tx N F(G) #= @ for all xe F(G). Now define a multivalued
mapping S of F(G) into 27% by Sx = Tx N F(G) (xe F(G)). Then
it is obvious that S is upper semicontinuous. By the fixed point
theorem of Bohnenblust and Karlin [4], we obtain a point ze F(G)
such that zeS2. Hence gz = 2¢ Tz for all g&G.

COROLLARY 4. Let K be a monempty compact convexr subset of
a strictly convex Banach space, f a continuous generalized mon-
expansive mapping of K into K, T an upper semicontinuous map-
ping of K into 2% such that for any xc K, Tx is nonempty closed
convex. If f and T commute weakly, then there exists an element
ze K for which fz = ze Tz.

Proof. By Schauder’s fixed point theorem, F(f) is nonempty,
thus f is quasi-nonexpansive.

On a weakly compact convex subset of a strictly convex Banach
space, an analogous result to Theorem 1 holds without any as-
sumption.

THEOREM 5. Let K be a nonempty weakly compact convex subset
of a strictly convex Banach space, G a family of mappings of K
into K for which F(G) is nonempty and any g <G s nonerpansive
with respect to F(G). Then there exists a Qquasi-nonexpansive
retraction r of K onto F(G) such that each G-invariant closed
convex subset of K is r-imvariant.
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Proof. We make use of methods employed by Bruck [9, 10].
Put 8 = {s: K— K: s is nonexpansive with respect to F(G), F(s) D
F(G) and every G-invariant closed convex subset of K is s-invariant}.
Then G S. It is obvious that S is a semigroup of mappings of
K into K. We show that S is compact in the topology of pointwise
weak convergence on K. Fix an element v ¢ F(G@). For each x¢€ K,
denote W ={ye K:|ly — v|| < ||z — v|]}. Then since for any seS,
llsz — v}] < |j& — v||, Se < We and Wz is closed convex. Since K is
weakly compact, Wx is weakly compact. S is a subset of the
product topological space W = [[,.x Wz (each Wx is endowed with
the weak topology). W is compact and the topology of W is that of
pointwise weak convergence, hence it is sufficient to prove that
S is closed in W. Let {s;} be a net in S which converges to s in
W, then for any xz € K, u € F(G),

llsw —ull = [lw — lim (s — w)]]
= liminf lls,@ — ull < {le — ]|,
and
su=w—limsu =« .

For any G-invariant closed convex subset C of K, C is also weakly
closed, hence s(C) c C. These imply that s€ S and S is closed in W.
Now, for any xz ¢ K, consider Sx. Then since for each s,teS and
0=k=<1, ks+ (@1 —k)teS and S is a semigroup, Sx is a G-invariant
closed convex subset of K. Since B is strictly convex, there is a
unique point w € Sz such that ||w — »|| = min {||]w — y||: y € Sx}. For
any s€8S, sweSx and |lsw — || =|lw — v||, hence sw =w. By
Proposition 2 there exists a retraction €S of K onto F(S) = F(G).
Since F(r) = F(G), r is quasi-nonexpansive.

COROLLARY 5. Let K be a nonempty bounded closed convex sub-
set of a uniformly convex Banach space, f a continuous generalized
nonexpansive mapping of K into K. Then there exists a quasi-
nonexpansive retraction r of K onto F(f) such that any f-invariant
closed convex subset of K is r-invariant.

Proof. By the fixed point theorem of Goebel, Kirk, and Shimi
[18] F(f) is nonempty, hence f is quasi-nonexpansive.

REMARK 1. Let 7 be a quasi-nonexpansive retraction of a sub-
set K of a Banach space into itself, then for any z, y € K, it follows
that ||rz — ry|| < 1/2{||x — ry|| + |ly — r=[]}. This is a special form
of generalized nonexpansive mapping.
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If K is a subset of a Banach space and K has normal structure,
then the following holds. For the definition of normal structure
and related results, see for example Lim [28].

THEOREM 6. Let K be a nonempty weakly compact convex sub-
set of a Banach space, G a left reversible semitopological semigroup
acting on K. If the action of G on K is separately continuous,
nonexpansive and K has normal structure, then there exists a non-
expansive retraction r of K onto F(G) such that every G-invariant
closed convex subset of K 1s r-imvariant.

Proof. By theorems of Holmes and Lau [21], Lim [28], F(G)
is nonempty. Define S = {f: K — K: f is nonexpansive with F(f) D
F(G) and every G-invariant closed convex subset of K is f-invariant}.
Then S is a semigroup and compact in the topology of pointwise
weak convergence as in the proof of Theorem 5. Moreover, for any
xe K, Sz is G-invariant and weakly compact, hence there is a
common fixed point of G in Sx. This point is also a fixed point of
S. Therefore Proposition 2 implies that there exists in S a retrac-
tion » of K onto F(S) = F(G).

The following theorem is a common fixed point theorem for a
left reversible semigroup of nonexpansive mappings and a multivalued
nonexpansive mapping in a Banach space which satisfies Opial’s
condition. Concerning results related to Opial’s condition, we refer
the reader to {20, 25].

THEOREM 7. Let K be a nonempty weakly compact convexr sub-
set of a Banach space which satisfies Opial’s condition, G a left
reversible semitopological semigroup acting on K, T a nonexpansive
mapping of K into 25 such that for each xc K, Tx is nonempty
compact convexr. Suppose the action of G on K is separately con-
tinuous and nonexpansive. If G and T commute, then there exists
an element z¢ K such that gz = z¢ Tz for all geG.

Proof. K has normal structure by a theorem of Gossez and
Lami Dozo [20]. Hence, by Theorem 6 there is a nonexpansive
retraction r of K onto F(G) for which every G-invariant closed
convex subset of K is r-invariant. Define a mapping S of K into
2% by Sx = T(rx) (xe K), then S is nonexpansive. Thus, there
exists a fixed point v of S in K by Lami Dozo’s fixed point theorem
[25]. Since G and T commute, Sv is G-invariant, hence 7ve Sw.
Let z = »v. Then it follows that gz = z¢ Tz for all geG.
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In a uniformly convex Banach space we can prove the following
common fixed point theorem for a family of quasi-nonexpansive
mappings and a multivalued nonexpansive mapping.

THEOREM 8. Let K be a nonempty bounded closed convex subset
of a uniformly convex Bamach space, G a family of mappings of
K into K for which F(G) is nonemdty and each g € G is nonexpansive
with respect to F(G), T a nonexpansive mapping of K into 2%, where
for any x € K, Tx is nonempty compact convex. If G and T commute
weakly, then there exists a point z€ K such that gz =z Tz for all
geqG.

Proof. Let x€ F(G). Then for any g€ G, gbd;Tx) C T(gx) = Tx
and ¢ is nonexpansive with respect to F(G), hence it follows that
Tx N F(G) + @, since a unique point w €bd,Tx nearest to = is a
common fixed point of G. Define a multivalued mapping S of F(G)
into 279 by Sx = TeNF(G) (x € F(G)). Then S is nonexpansive. In
fact, for any =z, y € F(G),

D(Sxz, Sy) = max {sup d(u, Sy), sup d(v, Sx)}
ueSx veSy

= max {sup d(u, Ty), sup d(v, Tx)}
veSy

ueSz

< max {sup d(u, Ty), sup d(v, Tx)}
veTy

ueTx

= D(Tx, Ty) < ||l — vl ,

where d(b, A) =inf{||b —al|l:a€A}. Now by Lim’s fixed point
theorem [29], there exists an element ze F(G) for which ze€S-z.
Thus we obtain gz = z€ Tz for all ge@G.

As direct consequences of Theorem 8, we have the following
corollaries.

COROLLARY 6. Let K be a nonempty bounded closed convexr sub-
set of a uniformly convexr Banach space, G a left reversible semi-
topological semigroup acting on K, T a monexpansive mapping of
K into 2% such that for each x € K, Tx is nonempty compact convex.
Suppose the action of G on K 1is separately continuous and non-
expansive. If G and T commute weakly, then there is a z € K such
that gz = z€ Tz for all ge@.

Proof. Browder [6] showed that K has normal structure, hence
F(G) is nonempty by theorems of Holmes and Lau [21] and Lim [28].

COROLLARY 7. Let K be a monempty bounded closed convex sub-
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set of a uniformly convexr Banach space, f a continuous generalized
nonexpansive mapping of K into K, T a monexpansive mapping of
K into 2%, where for any x € K, Tx is nonempty compact convex. ILf
f and T commute weakly, then there exists an element ze K such
that fz = ze Tz.

Proof. f is quasi-nonexpansive, since F(f) is nonempty by the
theorem of Goebel, Kirk, and Shimi [18].

5. Fixed point theorems in Hilbert spaces. Throughout this
section let H be a Hilbert space. For the sake of simplicity we
assume that H is real. For each nonempty closed convex subset M
of H, we denote by P, the projection of H onto M, and recall that
P, is nonexpansive (cf. Phelps [32]).

THEOREM 9. Let K be a nonempty closed convex subset of H, f
a continuous quasi-nonexpansive mapping of K into K and M = F(f).
Then for each compact convex subset C of K such that f(bd.C)c C,
we have P,(C)cC.

Proof. Suppose C is a compact convex subset of K such that
JdC)cC. Take a sequence {k,}] of real numbers for which
0<k,<1land k,—0 as n—c. Fix an element weC and for each
n, define a mapping f, of C into K by

S =kw+ QA —-k)e @®eC),

then since f, is continuous and C is compact, by a theorem of Fan
[16] there exists a point ¥, € C such that

1fa¥a — ¥all = min {|[f,y, — @ll: x€C}.

Since f(bdC) < C implies f,(bdC) C C, we obtain f,y, =y,. We may
assume that {y,} converges to some veC, This v is a fixed point of
f. In faet, choose any u € F(f), then by quasi-nonexpansiveness of

S we have ||fy, — u|| < ||y, — u||. Hence {fy,} is bounded since C
is bounded (compact). This implies that ||y, — [yl = k.||w — fy.]|— 0
as n — oo, Thus the right hand side of the inequality

v —oll S I/ = Fuall + 1Fyn — vall + {lyn — 2]l

tends to 0 as » — « and we obtain fv =v. Now we show that
Pyw = v by methods employed by Browder [7]. We have

11—k,

n

Y, — Pyw = (Yo — ¥2) +w — Pyw,

hence
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1._
k,
+ (w — Pyw, y, — Pyw) .

1Y, — Pywl|] = k"(fyn — Yy Y — Pyw)

Since f is quasi-nonexpansive, we obtain
(L= Y — T = NPyw, ¥, — Pyw) 2 0,

where I is the identity mapping on H. Thus

(fYn = Yns Yo — Puw) <0 .
Also, since (w — Pyw, Pyw — v) = 0, we have

(w — Pyw, ¥y, — Pyw) £ (w — Pyw, y, — v) .
Therefore it follows that
1Y, — Pywl|]* = (w — Pyw, y, — ) .

Since {y,} converges to v, Pyw = veC.
Similarly we have the following

THEOREM 10. Let K be a nonempty closed conver subset of H,
f a nonexpansive mapping of K into K for which M = F(f) is
nonempty. Then for any bounded closed convex subset C of K such
that f(bdC)c C, P,(C)cC holds.

Proof. Take a sequence {k,} of real numbers such that 0 <k, <1
and k,—0 as n— . Fix weC and for any =, define a mapping
f. of C into K by

fox=kw+Q—~k)r (xeC),

then, since f, is (1 — k,)-contraction and P, is nonexpansive, P.f, is
a (1 — k,)-contraction mapping of C into C. Hence there exists a
unique fixed point y,€C of P.f,, that is,

[ fath — ¥/l = min {||fy, — all: 2 C}.

Since f(bdxC)c C implies f,(bdzC) < C, we have f,y, = ¥,. We may
assume that {y,} converges weakly to some v€(C. The rest of the
proof proceeds as in the proof of Theorem 9 by using methods
in Browder’s paper [7]. In conclusion, we obtain that fv = v by
demiclosedness of I — f (cf. [12, Remark 3)) and P,w = v.

PROPOSITION 3. Let K be a nonempty bounded closed convex subset
of H, f a nonexpansive mapping of K into H. Then there exists
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a point z€ K such that ||fz — z|| = min {||fz — z||: x € K}.

Proof. Since P,f is a nonexpansive mapping of K into K, by
Browder’s fixed point theorem [5] there exists a ze€ K such that
P.fz = z. For this z, we have the desired equality.

REMARK 2. We do not know whether Proposition 8 is true when
K is only required to be weakly compact convex and to have normal
structure in a Banach space.

Now we can prove a common fixed point theorem for a quasi-
nonexpansive mapping and a multivalued nonexpansive mapping in
a Hilbert space.

THEOREM 11. Let K be a monempty bounded closed convex subset
of H, f a continuous mapping of K into H, T a mnonexpansive
mapping of K into 2%, where for any xc K, Tx is nonempty com-
pact convex. Suppose M = {xeK:||fx — x|| = min {||fx — y||: y e K}}
18 nonempty and f is nonexpansive with respect to M. If for each
2 € K, P f(bdxTx)C T(Pyfx), then there exists an element zc K such
that ||fz — 2|| = min{||fz — z||: x € K} and z¢€ T=z.

Proof. It is obvious that M = F(Pxf). For any xec K, uec M,
we have

|Pxfo — ul| = ||[Pxfx — Prfull
= [[fe — full < [lo — ull .
Hence P.f is a quasi-nonexpansive mapping of K into K. Define a
mapping S of K into 2¥ by Sx = T(Pyx) (x€ K). Then S is non-
expansive and has a fixed point v in K. Since
P f(bdSv) = Prf(bdT(Pyv))
CT(Pf(Pyv)) = T(Pyv) = Sv,

by Theorem 9 it follows that P.(Sv)CSv. In particular P,v e Sv.
Denote 2 = Py,v. Then we have P.fz = ze Tk.

REMARK 3. Theorem 11 is also a corollary to Theorem 8, but
the proof given above is a constructive one. Compare this with the
proofs of Theorem 3 and Theorem 7.
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