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DERIVATIONS AND COMMUTATIVITY OF RINGS

LunG O. CHUNG, JIANG LUH AND ANTHONY N. RICHOUX

Let R be a ring with center C and Jacobson radical J.
Let -# be the additive group of all inner derivations of R
and < be an additive group of derivations of R satisfying:

(i) For any d€ 2 and de 7, [9,0]€ Z;

(ii) For any z< R, oxr =0 for all d¢ Z iff xe C;

(iii) For any prime ideal P in R and any xc R, oxecP
for all 0 Z iff oxe€ P for all 6 7.

Suppose, for each x € R and d € &, there is a p<€ R which
depends upon z and o such that 6x = (0x)*p. Then the nil-
potent elements in K are central and form an ideal N in
R, R/N is a subdirect sum of division rings and commuta-
tive rings, and R/J is a subdirect sum of division rings.
Suppose further that, for each x€ R and d¢ =, such a p is
a polynomial of dx with integral coefficients. Then R is
necessarily commutative.

1. Introduction. A well known theorem of Wedderburn states
that all finite division rings are fields. There are various generaliza-
tions of this theorem. Jacobson [4] proves that if, for each z in a
ring R, there is an integer n(x) > 1 such that z** = x then R is
commutative. Among others, Herstein [2] weakens Jacobson’s con-
dition by assuming 2" = x for only every commutator z in B. In
other directions of research, Putcha, Wilson and Yaqub [8] show
that if, for each commutator x in a ring R, there exists an integer
n(x) > 1 and a central element z(z)& R such that x = ¢"“2(x) then
R/J is a subdirect sum of division rings where J denotes the Jacob-
son radical of B. Suppose further that such n(z) = 2 for each com-
mutator ze B. Then R is commutative. Recently, Ligh [6] proves
that if, for each commutator  in a ring R, there exists p(x)e R
such that x = a*p(x) then R/N is a subdirect sum of commutative
rings and division rings where N denotes the lower nil radical of R.
In view of the fact that a commutator is simply in the image of an
inner derivation, we introduce in this paper the notion of primary
classes of derivations of a ring R. A primary class & of deriva-
tions of a ring R is very much like the group # of all inner
derivations of R but it could be much smaller than _~

In §2, we give some basic properties of primary classes of
derivations.

In §8, we consider a ring R having a primary class & of
derivations and satisfying the following conditions:
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(A) For each xe R and d0€ =, there is a p = p(x, d) € R such
that 0x = (0x)*p.

It is shown that the nilpotent elements in R are central and hence
form an ideal N in R. Moreover, R/N is a subdirect sum of division
rings and commutative rings and R/J is a subdirect sum of division
rings. Thus Putcha, Wilson and Yaqub’s and Ligh’s results follow
immediately.

In §4, we study a ring R having a primary class & of deriva-
tions and satisfying the following condition:

(B) For each xe€ R and 0¢c <2, there i1s a polynomial p(t) of t
with integral coefficients such that dx = (0x)*p(0x).

We prove that R is necessarily commutative. This generalizes the
celebrated result of Herstein cited in the first paragraph.

In §5, some remarks are given and open problems are proposed.

Throughout this paper, R denotes an associative ring, 2~ the
ring of integers, and & the rational field. For =z,yeR, [z, ¥y] =
2y — yx, and 0, denotes the inner derivation: » — [z, ] for all re R.
We recall that a mapping 6: R — R is called a derivation of R if
o(xy) = oxy + 20y and 0(x + y) = ox + oy for all z, ye R.

2. Basic properties. Let R be a ring, C be its center and .#
be the additive group of all inner derivations of R. An additive
group 7 of derivations of R is said to be a primary class of deriva-
tions of R if

(i) For any de &7 and d€..7 [9,0)e =;

(ii) For any ze R, ox = 0 for all 0 & if and only if x€C;

(iii) For any prime ideal P in R and any € R, dxc P for all
oe =7 if and only if ox e P for all 6 .~

It is clear that .# itself is a primary class of derivations of R,
(iii) = (i) for any prime ring R, and (i) is equivalent to that, for
and 0¢ &7 and x< R, 0,, € .

It is also easy to see that dx e N, the lower nil radical of R,
for all 0e & if and only if éxe N for all 6.~

For convenience, we denote by < (R) the set of all elements ox
where 0e &2 and z € R.

ExampPLE 1. Let F = GF(2") where n = 2 and w be a generator
of the multiplicative group of F. Let R be the ring of 2 by 2
matrices over F' and <& be the set of inner derivations é, where z

20 %) + 5(2)2 1), a, BeF. It is easy to see that

[0, 0] =0 for all 3, 0’e & and & forms a primary class of deriva-

is of the form « (
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tions of R which is properly contained in _# the group of all inner
derivations of R.

ExamMPLE 2. Let F be a field and R = F[x,y] be the free
algebra generated by x and y over F. Let <& be the Lie ideal of
7 generated by 0, and 0,. Then & is a primary class of deriva-
tions of R. <2 # .7 since 0,2, 0,,, 0,2, 0,3, -+, are not in 2.

The authors, however, do not know whether a primary class of
derivations of a ring R is necessarily contained in the group of all
inner derivations of R.

PROPOSITION 2.1. Let R be a ring and R* be a prime ring
which 18 a homomorphic image of R under a homomorphism ¢.
Suppose = is a primary class of derivations of B. For each 0 <€ =,
define 0*: R* — R* by 0*(¢(x)) = ¢(0x) for all xe R. Then the set
F* of all 0*, where 0€ 2, forms a primary class of derivations
of R*.

Proof. For de =z, 0* is well defined since ¢(x) = ¢(y) =2 — y €
Kerg=0(x —y)eKerg for all 6.7 =0d(x — y)cKerg for all de
Z = ¢(0x) = ¢(dy). Here we use the fact that Ker¢ is a prime
ideal in R. It is readily to verify that <* forms an additive
group of derivations of R* and that &* satisfies the condition

@i).

We observe that for g(c) € R*, ¢(c) is central in R* < ¢(c)p(x) =
#(x)g(c) for all xe R = [¢, x] € Ker ¢ for all xe R« dce Ker ¢ for all
06 D = d%¢(e)) =0 for all 0*e =Z*. Thus the condition (ii) holds
for .

To see (iii), let P* be a prime ideal in R*. Set P =
{reR|g(x)e P*}. P is then a prime ideal in R. For zcR,
0*(p(x)) € P* for all 0* € * « ¢(0x) e P* for all 0e¢ & —=oxre P for
all 0e Z =dxec P for all 6 € I = ¢(dx) € P* for all 6 ¢ 7 = 8*(p(x)) € P*
for all inner derivations ¢* of R*. Thus (iii) holds for =Z*.

COROLLARY 2.2. Let Rbe a ring and P be a prime ideal in R.
Suppose Z is a primary class of derivations of R. For each
0 =z, define 0*: RIP— R/P by o*(x + P) =ox + P for all zeR.
Then the set Z* of all 3*, where 0 € 2, forms a primary class of
derivations of R/P.

COROLLARY 2.3. In Corollary 2.2, if P is replaced by the lower
nil radical N of R, the statement remains true.
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Proof. Use the fact that N is the intersection of all prime
ideals in R.

COROLLARY 2.4. In Corollary 2.2, i+f P is replaced by the
Jacobson radical J of R the statement remains true.

Proof. Using the fact that J is the intersection of all prime
ideals in R containing J, one can show that for each de€ &, o* is
well defined and that the conditions (i)-(iii) follow immediately for
*,

3. Primary class satisfying (A). Throughout this sections, we
assume that R is a ring having a primary class =2 of derivations
of R. Furthermore, we assume that < satisfies the condition (A)
stated in the introduction.

Under condition (A), it is clear that zero is the only nilpotent
element in =2’(R). We shall show first that all nilpotent elements
in R are central. We begin with

LEMMA 38.1. LetxeRandoe 2. Ifx* =0, then xox + dxx =0
and [ox, 2] = 0.

Proof. 0x* =0 implies xdx + oxx = 0, consequently, [oz, xz]® =
(Oxx — wox)* = oxxdxx — x(0x)*x + xoxxdxr = 0. Since [0z, x] € 2 (R) by
condition (i), in the definition of a primary class of derivations,
[0z, ] = 0.

LEMMA 3.2. Let x,2€ R and 0e 2. If «* =0 and [0z, 2] =0,
then [0z, xy] = 0 for all y <€ R.

Proof. Since [0z, xyx] = dzxyx — xyxoz = x[0z, y]Jx e 2 (R) and
its square is zero, we have [0z, ylx =0. Thus, [0z, xy] =
ozxy — xyoz = x[0z, y] is a nilpotent element in <=(R) and hence
[0z, zy] = O.

Let us recall that the characteristic of an element x € R, char x,
is the order of x in the additive group of R.

LeMMA 3.3. Letxc Rand de 2. If x*=0 and if char (xox) +2,
then ox = 0.

Proof. By Lemma 3.1, 2x0x = 0 and hence x0x = dxx = 0. By
expanding o(xdx) = 0, we obtain (0x)* + 20%x = 0. Pre-multiplying
by ox yields (0x)* = 0. Thus ox = 0.
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LEMMA 8.4. LetxecRand 0 2. If x* =0 and char (xox) = 2,
then 20x = 0 and ox e C.

Proof. Similar to the proof of Lemma 3.3, we obtain 20x = 0.
Since [0z, ] = 0, by Lemma 3.2, z[ox, y] = [0z, xy] = 0 for all y e R.
It follows that

0 = o(x[ox, y]) = ox[ox, y] + x[d, y] .

But 0 = 6([ox, x]) = (0x)* + xd*x + o*xx + (0x) = xd°x + O°xx = [0°x, x]
and hence by Lemma 3.2, =z[d%, y] = [0*x, xy] =0 for all yeR.
Therefore, ox[ox, y] = 0 and it follows that [dx, y]* = dxy[ox, ¥] =
oxy(dxy + yox) = (0x)*y* + (0x)*y* = 0. Thus, [0z, y] =0 for all ye R
and dreC.

LEMMA 38.5. Let x,yeR and de . If > =0 and [0y, x] =0,
then 0,20y € C for all 0,€ =.

Proof. By Lemma 3.2, z[dy, z] = [0y, xz] = 0 for all ze R and
hence 0 = g, (x[0y, z]) = 0.x[dy, z} + z[0.0y, 2]. Since 09,[dy, x] = 0,
[0,0y, 2] =0 by Lemmas 3.3 and 3.4 and [d,0y, xz] = x[0,0y, 2] = 0
for all ze R by Lemma 8.2. Thus, 0 = d,x2[dy, 2] = [0,20y, 2] for all
z€ R and dxoy e C.

LEmMMA 3.6. Let x€R. If x*=0 then 000yecC for all
0,0,,0,€ Z and y < R.

Proof. Noting that oxeC for all de. =z, we have [0y, z] =
05,(x) € C which implies [0,0y, ] = ,[0y, ] = 0. Thus, by Lemma
3.5, dxo,0yeC.

LemMA 3.7. Let xe R. If x* = 0 then 0,20y = 0 for all 0,0, &
and y € R.

Proof. o0xxd*y = 0,x0*(xy)cC by Lemmas 3.3, 3.4, and 3.6.
Hence 0 = 0,(0,xx0%y) = (0,2)*0*y. By the condition (A), 0,xd*y = 0.

LEMMA 3.8. Let 2,y R and dc=. If dxeC and (0x)*yeC
then oxyeC.

Proof. Suppose dx = (0x)*p where pe K. Then, for any z€R,
0 = p[(0x)’y, 2] = p(Ox)’[y, 2] = (92)[y, 2] = [dzy, 2].

LEMMA 3.9. Let xe R. If 2* =0 then 0,2(0,20y + 0xd,y) € C for
all 0,0, 0,€ 2 and y < R.
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Proof. Let w = 0,2(0,x0y + 0x0,y). By Lemma 3.6, d,x0,0(xy) € C,
i.e., w + dxx0,y e C. Since 0,x, 0,20,0y € C, we have [0,x20,0y, x] = 0
and hence [u, 2] = 0. For any ze R, [u, 2] = (0sy00,00) + 02,000001)(%) €
Z(R) and hence [u, 222]=x[u, 2]z € 2 (R). Since z[u, z]x is nilpotent,
z[u, z]Jx =0 and x[u, 2] is nilpotent. But z[u, 2] = [u, xz]€ Z(R). So
x[u, 2] = 0. Noting that o,u = 0,2(0,20,0y + 0x0,0,y) € C by Lemma
3.6, we obtain 0 = 0,(x[u, 2]) = d,x[u, 2] = [0,2u, 2]. So d,xzucC. By
Lemma 8.8, ucC.

LEMMA 8.10. Let xeR. If 2*=0 then 0x0,0y =0 for all
0,0,€e Z and Y€ R.

Proof. Let 6e =2, Suppose ox = 0. Then according to Lemma
3.9, 0,x0,20y € C for all 9,0, & and ye R. Particularly, (0,x)0yeC
and by Lemma 3.8, 0,20y € C. Thus, 0 = 0,(0,20y) = 0,20,0y.

Now, suppose 0z %= 0. Then by Lemma 3.9, 0,(0,20,xy + 0,£0y0,y) = 0
or d,20,20,y = 0 for all 3,, 0, & and y € R. Particularly, (0,x)*,0y = 0.
Using the condition (A) again 0,20,0y = 0.

LEMMA 3.11. Let xe R. If 2* =0 then dxoycC for all de &
and y € R.

Proof. By Lemma 3.10, 0x00,(yx) = 0 or 0 = 0x(00,yx + 0,y0x +
0y0,x) = ox(0,yox +0yo,x). Consequently, 0,(0xd(yx)) = 0x(0,0yx +0,yox +
0Yyo,x) = 0x0,0yx € Z(R) while its square is zero by Lemma 3.6.
Since zero is the only nilpotent element in &(R) 0xd,0yx = 0, and
since oxo,0yeC and oxeC, 0 = 3(0x0,0yx) = (0%0,0y)0x = (0x)%0,0Y.
Applying the condition (A), we get oxd, 0y =0, i.e., 0,(0xdy) = 0.
Since 0, is arbitrary in <, dxoy € C as we desired.

Now we are in the position to prove the following

ProOPOSITION 3.12. All nilpotent elements in R are central and
hence form an tideal in R.

Proof. Suppose x€ R and 2" = 0. We proceed by induction on
n. Suppose n = 2. By Lemma 3.11, oxd(xy) € C for all 0 € & and
yeR. From [0xd(xy), x] = 0, we arrive [(0x)*y + oxxdy, ] = 0. This
implies that [(0x)*, 2] =0 by Lemma 38.11, i.e., [y, (0x)*x] =0 and
(0x)x € C. Thus, 0 = 0((0x)*x) = (0x)* and consequently, 0x = 0. This
is true for all 0e =, so zeC.

Now we assume xz"™* = 0, where n > 1. Since (2¥)" = («®)" = 0,
2* and 2° are central by the induction hypothesis. Let de =.



DERIVATIONS AND COMMUTATIVITY OF RINGS 83

0 = 0x® = x0x + dxx and 0 = ox® = x%0x yield [0z, x]* =0. Since
[0z, x] € 2 (R), [0x, ] = 0. Noting that 0 = x(0x*) = xoxx we obtain
(x0x)* = x[ox, x]ox = 0. Thus, by the induction hypothesis, zdxeC
and, consequently, 0 = o(xox) = (0x)* + xd*x. Pre-multiplaying by «
and (0x)* respectively and by noting that 0 = d(2*0x) = dx*0x + x*0°x =
x?0*c, we obtain x(dx)* = 0 and hence (0x)* = 0. Thus ox = 0 for all
0e 7 and zeC. This completes the proof.

COROLLARY 3.13. Let A be a ring. Suppose for each commuta-
tor x € A, there exists a p(x)e A such that x = x*p(x). Then all nil-
potent elements im A are central and form an ideal in A.

REMARK. The proof of Proposition 3.12 can be simplified slightly
by transfinite method. Let ¢, be epimorphisms of R onto prime
rings R, with ), Ker ¢, = N. First show that each R, has no non-
zero nilpotent elements. Then for each nilpotent element ze R,
o (x) = 0 and consequently ¢,(0x) =0 for all 4. This means that
oxe N and so ox = 0 for all 0 e 2.

ProposITION 3.14. Suppose R is a prime ring. Then R 18
either a commutative ring or a division ring.

Proof. We should note that R has no zero divisors. For zy =0
implies (yRx)* = 0. Since R has nonzero nilpotent elements accord-
ing to Proposition 3.12, yRx = 0 and whence x =0 or y = 0.

Suppose now to the contrary that R is neither a commutative
ring nor a division ring. Then Z(R) = (0). Let 0 # dx ¢ Z(R) and
ox = (0x)*p, where pe R. Then, for any yeR, ox(y — oxpy) =0
vields ¥ = oxpy, so oxp is a left identity in B. By Proposition 3.12,
all nilpotent elements in R are central so all idempotent elements
in R are also central and, particularly, oxpeC. Therefore, oxp is
a two-sided identity element in R which will be denoted by 1. This
shows that, for ox e <7(R), either ox = 0 or ox is invertible.

Since we also assume that R is not a division ring, there exists
0 = a€ R which is not invertible. Suppose acC. Then, for any
0e =7, dlax) = dax + aox = adx + 0 for some xe R. Thus d(ax) is
invertible so is @, a contradiction. Therefore a ¢ C. Let 0 xde =
and let be R, db = 0. Observe 0(a*h) = da*h + a*0b. Suppose 0o’ is
not invertible. Then da®> = 0 and d(a*) = a*b = 0. Hence 9(a) is
invertible, so is a, again contradicting the choice of a. Thus, da®
must be invertible for each nonzero 0 € &. Likewise da®is invertible
for each nonzero o€ 2. Let u and v be respectively the inverses
of 9da® and da’. Then (e’ — a’v) = da*u + a*0u — da’v — a’dv =
a’(0u — adv) which is not invertible since a is not. Hence
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da*uw — a*v) = 0. However, a*u — a*v = a*(u — av) # 0 since a #= 0
and o is not a unit. It follows that d((a*u — a*v)b) = d(a’*u — a*v)b +
(a*u — a®v)ob = (a’u — a’v)ob = 0. Consequently, J((a*u — a®v)b) and
hence a’*u — a®v are invertible. This is clearly impossible since a is
not invertible. This completes the proof.

THEOREM 3.15. Let R be a ring with lower mnil radical N.
Then RN is a subdirect sum of division rings and commutative
rings.

Proof. From Corollary 2.3, R/N is a ring having a primary
class of derivations <* satisfying the condition (A). It is known
by Proposition 3.12 that N is the set of all nilpotent elements in
R, R/N has no nilpotent elements # 0, and R/N is a subdirect sum
of prime rings R,. By Proposition 2.1, each R, possesses a primary
class of derivations which satisfies the condition (A). Each R, is
either a division ring or a commutative ring by Proposition 3.14.

COROLLARY 3.16 (Ligh). Suppose, for each commutator x€ A,
there exists p(x)€ A such that x = x*p. Then A/N is a subdirect
sum of division rings and commutative rings, where N is the lower
nil radical of A.

THEOREM 3.17. Let R be a ring with Jacobson radical J. Then
R/J is a subdirect sum of division rings.

Proof. R/J is a subdirect sum of primitive rings. Each sub-
direct summand is a division ring by Proposition 3.14 and the fact
that commutative primitive rings are fields.

COROLLARY 3.18 (Putcha, Wilson, Yaqub). Let A be a ring.
Suppose, for each commutator x€ A, there are a central element
z€ A and an integer m > 1 such that x = x"2. Then AlJ is a sub-

direct sum of division rings, where J denotes the Jacobson radical
of A.

In the balance of this section, we shall consider those rings R
having a primary class & of derivations and satisfying a rather

stronger condition than the condition (A), namely,

(C) For each xe R and 0e .=, there exists an element z€C
such that ox = (0x)%z.

THEOREM 3.19. Let R be a ring having a primary class & of
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derivations and satisfying the condition (C). Then R is commuta-
tive.

Proof. By Theorem 3.15, R/N is a subdirect sum of rings R,,
where each R, is either a commutative ring or a division ring.
Suppose R, is a division ring. Let =¥ be the primary class of
derivations of R, induced from <. For zc R, and 0*e¢ &, d*x =
(0*xz)’z where z lies in the center of R,. If o0*x %= 0, then 0*x has
inverse 2z which is central. Thus o0*x is central for all 0* € &'¥ and
xe R,. If the characteristic of R, is 2 then, for 0* e &=}, 0*(a*) =
2¢0*r = 0. Thus 2® is central for all xeR,. By a well known
result of Kaplansky (see [4], p. 219), R, is commutative. Now
suppose the characteristic of R, is not 2. Then, for 0 # x e R, let
y be the inverse of x. We have, for 0*e &}, 0 = o*(xy) = 0*xy +
20*y and 0 = 0**(xy) = 20*x0*y which yield that 0 = 0*x(0*xy + x0*y) =
(0*x)*y. Thus, 0%z = 0 for all 0*e &} and zc¢ R,. R, is therefore
commutative.

R/N being a subdirect sum of commutative rings is commuta-
tive. To see that R is commutative, let &, ye¢ R. Then a2y —yzxe N
yields 0x € N and hence dx = 0 for all 0¢ & and xe R. Thus R is
commutative.

COROLLARY 3.20 (Putcha, Wilson, Yaqub). Let B be a ring.
Suppose, for each commutator xc R, there exists a central element
z which depends wpon x, such that x = x*z. Then R 18 commutative.

4. Primary class satisfying (B). Let us first list a useful result
which will be used in the sequel of this section.

LEMMA 4.1. Let F be a division ring of characteristic p + 0
and C be the center of F. Suppose ac F\C and o™ = a for some
integer w = 1. Then there exists an x € F such that xax™ = a° # a
for some integer 1.

Proof. (See [3], p. 70.)

LEMMA 4.2. Let R be a division ring and <&Z be a primary
class of derivations of R. Suppose, for each a € R and 0 € =, there
exists an integer m >1 which depends upon a and 0 such that
da = (0a)*. Then R is a field.

Proof. Suppose to the contrary that R is not a field. Let
a € R\C, where C denotes the center of B. Then there exists de &
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such that da # 0, and (0a)™ = da. Let P be the prime field of R.
Since 20 € 2, 20a = (20a)" = 2"(0a)* for some integer n > 1. Let
g=(m —1(n —1)+1. One can see easily that (20a)? = 20a and
(0a)? = da. Hence 27 = 2 and R is of nonzero characteristic p say.

We shall show now that, for each 0 = 0 € &7, there is an ac R
such that da ¢ C. suppose not. Then [0x, ¥] = 0 for all z, y € R and
0,0(x) =0 for all xeR, 0,e . If p=+2, we have 0 = 0(0x*) =
0(2x0x) = 2(0x)* and consequently dx = 0 for all xe R, a contradic-
tion. Thus we may assume now » = 2. Since, for each z¢R,
o(x*) = 2x0x = 0, we have, for all z, y e R, 0 = [0(xx?), y] = ox[x?, v].
If 6x = 0 then [2% y] = 0 for all ye R and 2*cC. If ox = 0, then
since, for all y,ze R, 0 = [0(x2), y] = 0z[x, y], [, y] = 0 for allye R
and hence x € C. Thus in either case, x*e C. Using again the result
of Kaplansky cited in the proof of Theorem 3.19, we obtain the
commutativity of R, a contradiction. This proves the assertion
that, for each 0 £ 0€ =, an element a € R exists with da¢ C. For
this da, (0a)™ = da for some integer m > 1 and hence da is algebraic
over P and hence (da)”" = da for some integer k > 0. By Lemma
4.1, there is an x€ R such that xdax™ = (0a) # da, i.e., xda =
(Oa)'w + dazx. Thus, [da,x] =0 and [da, x]oa = daxda — x(0a)* =
(0a){(0ax — xoa) = (0a)‘[da, x]. However, by the hypothesis, [da, z]* =
[0a, x] for some integer > 1. Thus the ring S = {33,,; (0a)’[0a, ]|
a,; € P} is a finite division ring. By the Wedderburn theorem for
finite division rings, S is a field. Consequently dalda, x] = [da, x]oa,
a contradiction.

In the balance of this section, we assume R is a ring having a
primary class &2 of derivations. Also we assume <7 satisfies the
condition (B) stated in the introduction.

Perhaps we should note that the condition (B) implies the condi-
tion (A) and hence we can use the results in §3 freely in the sequel
of this section.

LEMMA 4.3. If R is a division ring then R is a field.

Proof. Suppose the characteristic of R is not zero, and P is
the (finite) prime field of R. Since each da € &Z(R) is algebraic over
P, there exists an integer m > 1 such that (da)™ = da. By Lemma
4.2, R is commutative. Suppose the characteristic of R is zero.
Suppose to the contrary that R is not commutative and a € R is not
central. Then there is 0 & with da # 0. For each prime number
p € %, there exists f,(t) € Z7[t] such that (pda)’f,(pda) = poda. Thus
poaf,(poa) —1 =0. Let g¢,(t)e Z[t] be a polynomial with least
degree such that poag,(0a) —1 =0. We claim that pig,(t) —1 is
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irreducible over %2~ and hence it is also irreducible over & by the
Gauss lemma. Suppose ptg,(t) — 1 = h(t)k(t), where h(t), k(t) e Z[¢t],
h(da) = 0 and k() = +1. By comparing the constant terms of
ptg,(t) — 1 and h(t)k(t), one can see that k(t) is not a constant and
the degree of k(t) is n say. Let a, 8, v be respectively the leading
coefficients of k(¢), h(t), and ¢,(t). Then aB = pvy. Since h(t)k(t) =
—1 (mod p), k(t) is a constant polynomial modulo » and p|a. Thus
deg (9,(t)—ap™t"*h(t))<deg ¢,(t) and since pdag,(da)=1 and h(da)=0,
poalg,(0a) — ap~*(0a)"*h(da)) — 1 = 0. This contradicts the choice
of g¢,(t). Therefore, for each prime number p, pig,(t) —1 is
irreducible over «” and has da as a root. All these polynomials
therefore must be divisible by each other over &. This clearly is
impossible, and the lemma is proved.

From Proposition 3.14 and Lemma 4.3, we immediately have the
following

LEMMA 4.4. If R is a prime ring then R is commutative.

Now we are in the position to prove our main result of this
section.

THEOREM 4.5. Let R be a ring having a primary class & of
derivations which satisfies the condition (B). Then R is commuta-
tive.

Proof. By Corollary 2.4, & induces a primary class &2* of
derivations of R/J, where J denotes the Jacobson radical of B. Being
semisimple, R/J is a subdirect sum of primitive rings. According
to Lemma 4.4, each subdirect summand is commutative. Hence R/J
is commutative. Note that J is the intersection of all prime ideals
of R which contain J. Since for all x€ R and d <. % the group of
all inner derivations of R, dx ¢ J, we have dx e J for all 6e &2, From
the condition (B), dx = (dx)*p(0x) for some p(t) e Z[t]. Let e = dxp(ox).
Clearly, ec J and o0x = dxe. Let f be the quasi-invere of e. Then
0 = oxele + f —ef) = 0xe = 0x. Thus, ox =0 forallzeRand de &
and R is commutative.

The following corollary which generalizes the celebrated result
of Herstein cited in the introduction is an immediate consequence of
Theorem 4.5.

COROLLARY 4.6. Let A be a ring. If, for each commutator
x € A, there exists a polynomial p(t) € Z[t] such that x = x*p(x), then
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A 1s commutative.

5. Some remarks and open problems. We have seen that, in
many imposed conditions which imply the commutativity or “near”
commutativity of rings R, general elements in R may often be
replaced by the elements in &(R), where & is a primary class of
derivations of RB. In view of this, we would raise the question as
to what extent can we replace elements of R or commutators by
elements of &(R) and still yield the same or similar results? Thus
a wide field of questions on commutativity is open. For example,
one problem immediately comes to our minds: By the results given
by Herstein, Martindale, Utumi and many others ([1], [3], [7], [9],
ete.), we would like to propose the following open problems:

Let &7 be a primary class of derivations of a ring R and C be
the center of R.

(1) Suppose, for each oxe = (R), there exists a pe€ R which
depends upon ox, such that ox — (0x)*» € C. Do the nilpotent elements
in R form an ideal N? If so, is R/N a subdirect sum of commuta-
tive rings and division rings?

(2) Suppose, for each oxe < (R), there exists a polynomial
p(t) € Z°[t] which depends upon oz, such that ox—(0x)*p(0x) € C. Does
(R) < C?

Ligh has recently extended many commutativity theorems for
rings including the one by Putcha, Wilson and Yaqub to near rings
or d.g. near rings. For this reason we would like to know:

(3) Can the results in the present paper also be extended to
d.g. near rings?

Once again, we propose the following:

(4) Does every member in a primary class of derivations have
to be an inner derivation?
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