CANCELLING 1-HANDLES AND SOME TOPOLOGICAL IMBEDDINGS

MICHAEL FREEDMAN
CANCELLING 1-HANDLES AND SOME TOPOLOGICAL IMBEDDINGS

MICHAEL H. FREEDMAN

In this note we use the existence of a certain type of handle decomposition (see corollary) for compact simply connected P. L. 4-manifolds and R. Edwards results on the double suspension conjecture to prove:

Theorem 2. Let \(\alpha \in H_2(M; \mathbb{Z}) \) where \(M \) is a compact simply connected P. L. 4-manifold. Then there is a proper topological imbedding (possible nonlocally flat) \(\theta : S^2 \times R \to M \times R \) (mapping ends to ends) with \(\theta_*[S^2 \times R] = \bar{\alpha} \in H_2(M \times R; \mathbb{Z}) \). \(\bar{\alpha} \) is the image of \(\alpha \) under \(\times R \). Proper, here, means inverse images of compact sets are compact.

In [2], we considered the problem of constructing smooth proper imbeddings, \(\theta \), and showed that if \(\alpha \) is characteristic (dual to \(w_2(\tau(M)) \)), the only obstruction to the existence of \(\theta \) is an Arf invariant which is equal to the Milnor-Kervaire number \(\left(\text{signature}(M) - \alpha \cdot \alpha/8 \right) \mod 2 \) when \(M \) is closed and that if \(\alpha \) is ordinary (not dual to \(W_2(\tau(M)) \)) there is no obstruction. This suggests two problems: (1) Can \(\theta \) always be arranged to be topologically locally flat, and (2) can \(\theta \) always be arranged to be P. L.?

Here is our "handle cancellation" theorem:

Theorem 1. Let \(M \) be any compact connected P. L. manifold of dimension \(m \) (assume \(M \) orientable if \(m = 3 \)). Let \(N \) be a compact connected codimension 0 submanifold of \(\partial M \). If \(\pi_1(M, N) = \emptyset \), then there is a codimension \(0 \) submanifold, \(\bar{N} \), of \(M \) with: (1) \(N \subseteq \bar{N} \), (2) the inclusion \(N \hookrightarrow \bar{N} \) is a homotopy equivalence, (3) \(M = \bar{N} \cup 2\text{-handles} \cup 3\text{-handles} \cup \cdots \cup m\text{-handles} \).

Note. The P. L. category is convenient here since handle decompositions always exist.

Proof. If \(n \geq 5 \), the usual arguments for cancelling handles produce the desired \(\bar{N} \xrightarrow{P. L.} N \times I \) (see Appendix [3]). We need only consider the cases \(m = 3 \) or 4.

Let \(m = 4 \) and let \(\mathcal{H}(M, N) \) be a handle decomposition of \(M \) relative to \(N \). We may assume \(\mathcal{H}(M, N) \) has no zero-handles.

Let \(\{h_i\} = \{D_i \times D_i^{m-1}\} \) be the 1-handles. Let \(\{c_i\} \) be closed curves
on \(L_i \), the level after the 1-handles are attached, each consisting of \((D^i \times \text{pt.})\) for some \(\text{pt.} \in \partial D^i \) and an arc in \(N - \{D^i \times \partial D^i \} \). We claim that the latter arcs may be chosen so that each curve, \(c_i \), is null homotopic in \(X \overset{\text{def}}{=} M - (1\text{-handles of } \mathscr{H}(M, N)) \). Since \(m = 4 \), \(\pi_1(X) \to \pi_1(M) \) is an isomorphism. The arcs may be chosen (since \(\pi_1(N) \to \pi_1(M) \) is epic) so that each \(c_i \) represents \(0 \in \pi_1(M) \) and, therefore, \(0 \in \pi_1(X) \).

Let \(\{\gamma_j\} \) be the disjoint simple closed curves in \(L_i \) along which the 2-handles \(\{h_j\} \) are attached. Picking paths to the base \(* \), \(\{\gamma_j\} \) determines relations \(\{r_j\} \) and \(\pi_1(X) = \pi_1(L_i) / \langle r_j \rangle \). Choosing a path from \(c_i \) to \(* \), we have \([c_i] \in \langle r_j \rangle \). So \([c_i] = \prod_{k=1}^{n} u_kx_ku_k^{-1} \) where \(u_k \in \pi_1(L) \) and \(x_k \in \{r_j, r_j^{-1}\} \). For each curve \(c_i \), introduce a trivial oriented (2-handle, 3-handle) pair. Let \(h^j \) be the new 2-handle. Choose a path from \(\partial h^j \) to \(* \). Now perform a sequence of \(n \)-handle passings. \(h^j \) should be passed over the oriented (+ or - as \(x_k = r_j \) or \(r_j^{-1} \)) 2-handles corresponding to \(x_1, \ldots, x_n \) along arcs corresponding to the elements \(u_1 \cdots u_n \). The framing along each arc is immaterial so long as it restricts at the end points to a framing induced by the orientation of each 2-handle. Let \(\{\gamma_i\} \) be the curves along which \(\{h_j\} \) are attached after the above handle passings. \(\gamma_i \) is homotopic to \(c_i \). By the handle cancellation lemma [3], attaching 2-handles to \(\{c_i\} \) would result in a product \(N \times I \). Since homotopy type depends only on the homotopy class of attaching maps, \(N \overset{\text{def}}{=} N \cup \{h^j\} \cup \{h_i\} \overset{s.e.}{=} N \times I \). \(N \) has the desired properties.

Let \(m = 3 \). If \(\pi_1(N) = 0 \) then \(\pi_1(M) = 0 \) and \(M \) must be a homotopy \((S^3\text{-interior of closed disks})\). Let \(N = M - \{\text{closed disk } \cup \text{thickened arcs to } \partial \text{ components } \not\approx N\} \), so \(M = N \cup 2\text{-handles } \cup 3\text{-handles. We now assume } \pi_1(N) \neq 0 \).

If \(\pi_1(N) \to \pi_1(M) \) is an isomorphism, every imbedded 2-sphere in \(M \) separates \(M \), one component of the complement being a homotopy \(B^3 \) with finitely many punctures. Let \(\tilde{M} = M \cup_{\text{spherical } \partial \text{ components }} (3\text{-cells}) \). By the sphere theorem, \(\tilde{M} \) is a \(K(\pi, 1) \) so \((\tilde{M}, N)\) is an \(h \)-cobordism. But \(M \overset{\text{diff}}{=} \tilde{M} \cup 2\text{-handles, so } \tilde{M} \) satisfies the conditions for \(\tilde{N} \).

Assume \(\pi_1(N) \to \pi_1(M) \) is epi. By Dehn's lemma, if \(\pi_1(N) \to \pi_1(M) \) is not injective, there is an essential simple closed curve, \(\alpha \subset N \), bounding an imbedded 2-disk \(\beta \subset M \). Let \((M', N')\) be the result of ambient surgery (handle subtraction) along \(\beta \). \(\pi_0(N') \to \pi_0(M') \) is an isomorphism. (Proof: \(\beta(\alpha) \) disconnects \(M(N) \) if and only if there is no curve in \(M(N) \) meeting \(\beta(\alpha) \) algebraically once. Since \(H_1(N) \to H_1(M) \) is epi, there is a dual curve for \(\beta \) if and only if there is a dual curve for \(\alpha \).)
PROPOSITION. On each component, $\pi_1(N') \to \pi_1(M')$ is epi.

Proof. M is obtained from M' by attaching a 1-handle, and N' is obtained from N by the corresponding 0-surgery. The proposition can be deduced from the following group theoretic fact: Let $\theta: A \to X$, $\phi: B \to Y$ be group homomorphisms. If $\theta \ast \phi$ is epi, then θ and ϕ are epi.

Proceeding inductively (on the genus of the components of N'), we obtain (M'', N'') with $\pi_1(N'') \to \pi_1(M'')$ an isomorphism on each component. This decomposes M as:

Diagram 1:

\[
\begin{array}{c}
\text{2-handles} \\
\text{\textit{h}-cobordism} \\
\text{2-handles}
\end{array}
\]

By a theorem of J. Stallings [5], every \textit{h}-cobordism between orientable surfaces is the connected sum of a product and a homotopy 3-sphere, Σ^3. So we have:

Diagram 2:

\[
\begin{array}{c}
\text{2-handles} \\
\text{Product} - D^3 \\
\Sigma^3 - D^3 \\
\text{2 han dles}
\end{array}
\]

$\tilde{N} = N \times I \# (\Sigma^3 - D^3)$.

This completes the proof of Theorem 1.
Note. The orientation restriction in dimension 3 results from ignorance about h-cobordisms on RP^2.

Corollary. Let M be a compact simply connected P. L. (= smooth) 4-manifold. $M \overset{\text{P. L.}}{\longrightarrow} K \cap 2$-handles $\cup 3$-handles $\cup 4$-handles, where K is a compact contractable 4-manifold.

Proof. Apply Theorem 1 to $(M - D^4, \partial D^4)$. Let $K = \overline{N} \cup D^4$.

Remark. A. Casson has recently exhibited (unpublished work) a simply connected P. L. 4-manifold with boundary, M, with the property that every handle decomposition of M, $\mathcal{H}(M)$, must contain a 1-handle. This answers negatively a question raised in [4] on the existence of (relative) 2-spines. So the preceding corollary is all one can hope for.

Proof of Theorem 2. Let $M \overset{\text{P. L.}}{\longrightarrow} K \cup 2$-handles $\cup 3$-handles $\cup 4$-handles. Let $\tilde{M} = \text{cone}(\partial K) \cup 2$-handles $\cup 3$-handles $\cup 4$-handles. $H_2(M; Z) \cong H_2(\tilde{M}, \text{cone}(\partial K); Z) \cong H_2(\tilde{M}; Z)$. Any element of $H_2(\tilde{M}, \text{cone}(\partial K); Z)$ is represented by a relatively imbedded 2-disk constructed as a linear combination of 2-handles in the above handle decomposition by taking ambient boundary-connected-sums. So every element, α, of $H_2(\tilde{M}; Z)$ is represented by a simplicial imbedding, ω, of S^2 in \tilde{M}. By a theorem of R. Edwards, [1], $(\text{cone}(\partial K)) \times R$ is (topologically) homeomorphic to $K \times R$, $\tilde{M} \times R$ is (topologically) homeomorphic to $M \times R$. The composition:

$$S^2 \times R \xrightarrow{\omega \times \text{id}_R} \tilde{M} \times R \overset{\text{top. homeomorphism}}{\longrightarrow} M \times R$$

is the topological imbedding with the claimed properties.

References

1. R. Edwards, Unpublished results on the double suspension conjecture.
2. M. Fredman, A converse to (Milnor-Kervaire theorem) $\times R$, etc. ..., to appear.

Received October 20, 1976 and in revised form August 9, 1977. Author partially supported by NSF Grant MPS 72-05055 A03.

University of California, San Diego
La Jolla, CA 92037
Jeroen Bruijning and Jun-iti Nagata, *A characterization of covering dimension by use of $\Delta_k(X)$* ... 1
John J. Buoni and Albert Jonathan Klein, *On the generalized Calkin algebra* 9
Thomas Ashland Chapman, *Homotopy conditions which detect simple homotopy equivalences* ... 13
John Albert Chatfield, *Solution for an integral equation with continuous interval functions* ... 47
Ajit Kaur Chilana and Ajay Kumar, *Spectral synthesis in Segal algebras on hypergroups* ... 59
Lung O. Chung, Jiang Luh and Anthony N. Richoux, *Derivations and commutativity of rings* ... 77
Michael George Cowling and Paul Rodway, *Restrictions of certain function spaces to closed subgroups of locally compact groups* 91
David Dixon, *The fundamental divisor of normal double points of surfaces* 105
Hans Georg Feichtinger, Colin C. Graham and Eric Howard Lakien, *Nonfactorization in commutative, weakly selfadjoint Banach algebras* 117
Michael Freedman, *Cancelling 1-handles and some topological imbeddings* 127
Frank E., III Gerth, *The Iwasawa invariant μ for quadratic fields* 131
Maurice Gilmore, *Three-dimensional open books constructed from the identity map* ... 137
Stanley P. Gudder, *A Radon-Nikodým theorem for $*$-algebras* 141
Peter Wamer Harley, III and George Frank McNulty, *When is a point Borel?* 151
Charles Henry Heiberg, *Fourier series with bounded convolution powers* 159
Rebecca A. Herb, *Characters of averaged discrete series on semisimple real Lie groups* ... 169
Hideo Imai, *On singular indices of rotation free densities* 179
Sushil Jajodia, *On 2-dimensional CW-complexes with a single 2-cell* 191
Herbert Meyer Kamowitz, *Compact operators of the form uC_ϕ* 205
Matthew Liu and Billy E. Rhoades, *Some properties of the Chebyshev method* 213
George Edgar Parker, *Semigroups of continuous transformations and generating inverse limit sequences* ... 227
Samuel Murray Rankin, III, *Oscillation results for a nonhomogeneous equation* 237
Martin Scharlemann, *Transverse Whitehead triangulations* 245
Gary Joseph Sherman, *A lower bound for the number of conjugacy classes in a finite nilpotent group* ... 253
Richard Arthur Shoop, *The Lebesgue constants for (f, d_n)-summability* 255
Stuart Jay Sidney, *Functions which operate on the real part of a uniform algebra* 265
Tim Eden Traynor, *The group-valued Lebesgue decomposition* 273
Tavan Thomas Trent, *$H^2(\mu)$ spaces and bounded point evaluations* 279
James Li-Ming Wang, *Approximation by rational modules on nowhere dense sets* 293