THE IWASAWA IN Variant μ FOR QUADRATIC FIELDS

Frank E., III Gerth
THE IWASAWA INVARIANT μ FOR QUADRATIC FIELDS

FRANK GERTH III

We let k_0 be a quadratic extension field of the rational numbers, and we let \mathfrak{l} be a rational prime number. In this paper we show that there exists a constant c (depending on k_0 and \mathfrak{l}) such that the Iwasawa invariant $\mu(K/k_0) \leq c$ for all $\mathbb{Z}_\mathfrak{l}$-extensions K of k_0. In certain cases we give explicit values for c.

1. Introduction. We let \mathbb{Q} denote the field of rational numbers, and we let \mathfrak{l} denote a rational prime number. We let k_0 be a finite extension field of \mathbb{Q}, and we let K be a $\mathbb{Z}_\mathfrak{l}$-extension of k_0 (that is, K/k_0 is a Galois extension whose Galois group is isomorphic to the additive group of the \mathfrak{l}-adic integers $\mathbb{Z}_\mathfrak{l}$). We denote the intermediate fields by $k_0 \subseteq k_1 \subseteq k_2 \subseteq \cdots \subseteq k_n \subseteq \cdots \subseteq K$, where $\text{Gal}(k_n/k_0)$ is a cyclic group of order \mathfrak{l}^n. We let A_n denote the \mathfrak{l}-class group of k_n (that is, the Sylow \mathfrak{l}-subgroup of the ideal class group of k_n). In [5, §4.2], Iwasawa proves that $A_n = \mathfrak{l}e_n + \lambda n + \nu$

(1)

for n sufficiently large, and μ, λ, ν are rational integers (called the Iwasawa invariants of K/k_0) which are independent of n. Also $\mu \geq 0$ and $\lambda \geq 0$.

Next we let W be the set of all $\mathbb{Z}_\mathfrak{l}$-extensions of k_0. If $K \in W$, we define

$$W(K, n) = \{ K' \in W | [K \cap K': k_0] \geq \mathfrak{l}^n \}.$$

Thus $W(K, n)$ consists of all $\mathbb{Z}_\mathfrak{l}$-extensions of k_0 that contain k_n, where k_n is the unique subfield of K such that $[k_n : k_0] = \mathfrak{l}^n$. We topologize W by letting $\{ W(K, n) \}$ for $n = 1, 2, \ldots$ be a neighborhood basis for each $K \in W$. It can be proved that W is compact with this topology (see [4, §3]). Next we let W' be the set of $\mathbb{Z}_\mathfrak{l}$-extensions of k_0 with only finitely many primes lying over \mathfrak{l}. In [4, Proposition 3 and Theorem 4], Greenberg proves that W' is an open dense subset of W and that the Iwasawa invariant μ is locally bounded on W'. So if $K \in W'$, there exists an integer n_0 and a constant c depending only on K such that $\mu(K'/k_0) < c$ for all $\mathbb{Z}_\mathfrak{l}$-extensions K' of k_0 with $[K \cap K': k_0] \geq \mathfrak{l}^{n_0}$. Greenberg suggests that perhaps μ is bounded on W; that is, perhaps there exists a constant c such that $\mu(K'/k_0) < c$ for every $K' \in W$. If there is only one prime of k_0 above \mathfrak{l}, then Greenberg does prove in [4, Theorem 6] that μ is bounded on W

In this paper we shall prove that μ is bounded on W if k_0 is a
quadratic extension of Q. We state this result as follows.

Theorem 1. Let k_0 be a quadratic extension of Q, and let I be a rational prime number. Then there exists a constant c (depending on k_0 and I) such that $\mu(K/k_0) \leq c$ for all Z_r-extensions K of k_0.

2. **Proof of Theorem 1.** We let the notation be the same as in the previous section. We let M be the composite of all Z_r-extensions of k_0, where k_0 is a finite extension field of Q. It is known (see [5, Theorem 3]) that $\text{Gal}(M/k_0) \approx Z^d$, where $r_1 + 1 \leq d \leq [k_0:Q]$ and r_2 is the number of complex archimedean primes of k_0. We note that when $k_0 = Q$, there is exactly one Z_r-extension F of Q, and it is contained in the field obtained by adjoining to Q all n^{th} roots of unity for all n. Then for arbitrary k_0, the composite field Fk_0 is one of the Z_r-extensions of k_0. (It is called the cyclotomic Z_r-extension of k_0.)

We now specialize to the case where k_0 is a quadratic extension of Q. Then $1 \leq d \leq 2$. If k_0 is a real quadratic extension of Q, it is known that $d = 1$ (see [5, §2.3]). So there is a unique Z_r-extension K of k_0, and hence the Iwasawa invariant μ is bounded on $W = \{K\}$. Next we suppose k_0 is an imaginary quadratic extension of Q. Then $d = 2$, and hence there are infinitely many Z_r-extensions of k_0, since there are infinitely many quotient groups of Z_r isomorphic to Z. We note that when $k_0 = Q$, there is exactly one Z_r-extension F of Q, and it is contained in the field obtained by adjoining to Q all n^{th} roots of unity for all n. Then for arbitrary k_0, the composite field Fk_0 is one of the Z_r-extensions of k_0. (It is called the cyclotomic Z_r-extension of k_0.)

We let $(I) = p_1p_2$, where p_1 and p_2 are primes of k_0. We recall from the theory of Z_r-extensions (see [5, Theorem 1]) that no primes other than p_1 and p_2 can ramify in a Z_r-extension of k_0. We let $L = Fk_0$, the cyclotomic Z_r-extension of k_0. Since I ramifies totally in F/Q and decomposes in k_0/Q, then p_1 and p_2 ramify totally in L/k_0. We let I_1 (resp., I_2) be the inertia group for p_1 (resp., p_2) for the extension M/k_0. (We note that we get the same inertia group for p_i no matter what prime above p_i in M that we use because M/k_0 has abelian Galois group. A similar result holds for p_2.) Next we claim that $I_1 \approx Z_i$ and $I_2 \approx Z_i$. Since p_1 and p_2 are totally ramified in L/k_0, then I_1 and I_2 have quotient groups which are isomorphic to $\text{Gal}(L/k_0) \approx Z$. Also the completions of k_0 at p_1 and at p_2 are isomorphic to Q, and by local class field theory, the inertia group for the maximal abelian l-extension of Q is isomorphic to the subgroup $U = \{1 + \alpha l | \alpha \in Z\}$ of the group of units of Q. Since $U \approx Z_l$ when $l \neq 2$, then I_1 and I_2 are isomorphic to quotient groups of Z_l when $l \neq 2$. Combining the above results, we conclude that I_1 and I_2 are isomorphic to Z_l.
when \(I \neq 2 \). When \(I = 2 \), \(U \cong \mathbb{Z}_2 \times (\mathbb{Z}_2/2\mathbb{Z}_2) \), and we still get \(I_1 \cong \mathbb{Z}_2 \) and \(I_2 \cong \mathbb{Z}_2 \) since \(I_1 \) and \(I_2 \) are subgroups of \(\text{Gal}(M/k_0) \cong \mathbb{Z}_2 \).

Now since \(\text{Gal}(M/k_0) \cong \mathbb{Z}_2^2 \), \(I_1 \cong \mathbb{Z}_2 \), and \(p_1 \) and \(p_2 \) are totally ramified in \(L/k_0 \), then \(\text{Gal}(M/k_0) / I_1 \cong \mathbb{Z}_2 \) and \(\text{Gal}(M/k_0) / I_2 \cong \mathbb{Z}_2 \). Thus there exists exactly one \(\mathbb{Z}_2 \)-extension \(K_j/k_0 \) (resp., \(K_2/k_0 \)) in which \(p_1 \) (resp., \(p_2 \)) is unramified. So if \(K \) is any \(\mathbb{Z}_2 \)-extension of \(k_0 \) other than \(K_1 \) and \(K_2 \), then both \(p_1 \) and \(p_2 \) are ramified in \(K/k_0 \) (although not necessarily totally ramified). Then there are only finitely many primes of \(K \) above \(I \), and hence by the results of Greenberg in [3], there is a neighborhood of \(K \) in \(W \) on which \(\mu \) is bounded. Suppose we could show that \(K_1 \) and \(K_2 \) have neighborhoods on which \(\mu \) is bounded. Then all \(K \in W \) would have neighborhoods on which \(\mu \) is bounded. Since \(W \) is compact, \(W \) is covered by a finite number of these neighborhoods, and hence \(\mu \) would be bounded on \(W \). So to complete the proof of Theorem 1, it suffices to show that \(\mu \) is bounded on some neighborhood of \(K_1 \) and on some neighborhood of \(K_2 \).

We consider \(K_i/k_0 \) with intermediate fields \(k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K_1 \). Since \(p_1 \) is unramified in \(K_1/k_0 \), then \(p_2 \) must ramify in \(K_1 \) since by class field theory the maximal unramified abelian extension of \(k_0 \) is of finite degree over \(k_0 \). So there are only finitely many primes of \(K_1 \) above \(p_2 \). Let \(t \) denote that finite number. Next we recall that \(W(K_1, n) = \{ K' \in W \mid [K_1 \cap K': k_0] \geq n \} \), and these sets \(W(K_1, n) \) for \(n = 1, 2, \ldots \), form a neighborhood basis for \(K_1 \) in \(W \). Since \(\text{Gal}(M/k_0) \cong \mathbb{Z}_2^2 \) and \(F \) and \(K_1 \) are disjoint \(\mathbb{Z}_2 \)-extensions of \(k_0 \), then it is clear that \(M = FK_1 \). If \(f_1 \) is the subfield of \(F \) such that \([f_1:k_0] = 1 \), then every \(K' \in W(K_1, n) \) has a subfield \(k_{n+1}' \) such that \([k_{n+1}': k_n] = 1 \) and \(k_{n+1}' \subset f_1 k_{n+1} \). We take \(n \) large enough so that \(\lambda^n > t \). Unless \(k_{n+1}' = k_{n+1} \), there are at most \(\lambda^n \) (resp., \(t \)) primes of \(k_{n+1}' \) above \(p_1 \) (resp., \(p_2 \)). Then if \(k_{n+1}' \neq k_{n+1} \), there are at most \(\lambda^n \) (resp., \(t \)) primes of \(K' \) above \(p_1 \) (resp., \(p_2 \)). If we let \(s \) denote the number of primes of \(K' \) that are ramified over \(k_0 \), then \(s \leq \lambda^n + t \). From [3, Theorem 1], we see that

\[
\mu(K'/k_0) \leq e'_{n+1}/(\lambda^{n+1} - s + 1) \leq e'_{n+1}/(\lambda^{n+1} - \lambda^n - t + 1),
\]

where \(\lambda^{n+1} \) is the order of the \(\lambda \)-class group of \(k_{n+1}' \). Since \([f_1:k_{n+1}; k_{n+1}'] = 1 \), then by class field theory \(e'_{n+1} \leq e_{n+1} + 1 \), where \(1^{n+1} \) is the order of the \(\lambda \)-class group of \(f_1 k_{n+1} \). So if \(K' \in W(K_1, n) \) and \(k_{n+1}' \neq k_{n+1} \), then

\[
\mu(K'/k_0) \leq (e_{n+1} + 1)/(\lambda^{n+1} - \lambda^n - t + 1).
\]

Now \(f_1 K_1 \) is a \(\mathbb{Z}_2 \)-extension of \(f_1 \). From Equation 1, \(\varepsilon_n = \mu_1 \lambda^n + \lambda_1 n + \nu_1 \) for \(n \) sufficiently large, where \(\mu_1 = \mu(f_1 K_1/f_1) \), \(\lambda_1 = \lambda(f_1 K_1/f_1) \), \(\nu_1 = \nu(f_1 K_1/f_1) \). So for \(n \) sufficiently large,

\[
\varepsilon_{n+1} + 1 = \mu_1 \lambda^{n+1} + \lambda_1 (n + 1) + \nu_1 + 1
\]
and

\[
\mu(K'/k_0) \leq (s_{n+1} + 1)/(l^{n+1} - l^n - t + 1) = \frac{\mu_l^{n+1} + \lambda_l(n + 1) + \nu_l + 1}{l^{n+1} - l^n - t + 1}.
\]

Since

\[
\lim_{n \to \infty} \frac{\mu_l^{n+1} + \lambda_l(n + 1) + \nu_l + 1}{l^{n+1} - l^n - t + 1} = \frac{\mu_l}{1 - l^{-1}} < 3\mu_l,
\]

we see that for \(n \) sufficiently large, \(\mu(K'/k_0) < 3\mu_l \) for all \(K' \in W(K, n) \). So \(\mu \) is bounded on some neighborhood of \(K \). Similarly \(\mu \) is bounded on some neighborhood of \(K_0 \). Hence our proof of Theorem 1 is complete.

3. Explicit upper bounds for \(\mu \) in certain cases. We first consider a real quadratic extension \(k_0/Q \). Then there is only one \(\mathbb{Z}_l \)-extension \(K \) of \(k_0 \), namely the cyclotomic \(\mathbb{Z}_l \)-extension of \(k_0 \). It is known that \(\mu(K/k_0) = 0 \) in this case (see [2]).

Now we consider an imaginary quadratic extension \(k_0/Q \). We first suppose that \(l \) ramifies or remains prime in \(k_0 \). We let \(H \) denote the maximal unramified abelian \(l \)-extension of \(k_0 \), and we let \(l^\alpha \) be the exponent of \(\text{Gal}(H/k_0) \). If \(K \) is any \(\mathbb{Z}_l \)-extension of \(k_0 \) with intermediate fields \(k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_\alpha \subset \cdots \subset K \), then the primes above \(l \) in \(k_\alpha \) ramify totally in \(K/k_\alpha \), and there are at most \(l^\alpha \) such primes. Then from [3, Theorem 1], we see that \(\mu(K/k_0) \leq e_\alpha \), where \(l^\alpha = |A_\alpha| \). So in Theorem 1, we may take \(c \) to be the maximum of the \(e_\alpha \) obtained from the extensions \(k_\alpha \) of \(k_0 \) such that \(k_\alpha \) is contained in a \(\mathbb{Z}_l \)-extension of \(k_0 \) and \([k_\alpha:k_0] = l^\alpha \). Frequently we can obtain a better upper bound for \(\mu \). For example, if \(M \) is the composite of all \(\mathbb{Z}_l \)-extensions of \(k_0 \) and if \(M \cap H = k_0 \), then the prime of \(k_0 \) above \(l \) is totally ramified in each \(\mathbb{Z}_l \)-extension of \(k_0 \), and hence from [3, Corollary 1], \(\mu(K/k_0) \leq e_0 \) for each \(\mathbb{Z}_l \)-extension \(K \) of \(k_0 \).

Finally we suppose that \(k_0 \) is an imaginary quadratic extension of \(Q \) and that \(l \) decomposes in \(k_0 \). In this case we shall give an explicit upper bound for \(\mu \) only under certain conditions. We let \(M \) be the composite of all \(\mathbb{Z}_l \)-extensions of \(k_0 \), and we let \(M_1 \) be the maximal extension of \(k_0 \) contained in \(M \) such that \(\text{Gal}(M_1/k_0) \) has exponent \(l \). We note that \(\text{Gal}(M_1/k_0) \approx (\mathbb{Z}_l/\mathbb{Z}_l)^3 \) since \(\text{Gal}(M/k_0) \approx \mathbb{Z}_l^3 \), and hence \(M_1 \) contains \(l + 1 \) subfields of degree \(l \) over \(k_0 \). We let \((l) = \pi_1 \) and \(\pi_2 \) are primes in \(k_0 \). We shall assume that there is exactly one prime of \(M_1 \) above \(\pi_1 \) and exactly one prime of \(M_1 \) above \(\pi_2 \). (Note: From our discussion in §2 and our definition of \(M_1 \), we see that there is exactly one prime of \(M_1 \) above \(\pi_1 \) precisely when \(\pi_1 \) remains prime in one of the extensions of \(k_0 \) of degree \(l \) and
ramifies in the other I extensions of degree l over k_0. A similar result applies to p_2.) Then there is exactly one prime of M above p_1 and exactly one prime of M above p_2. It then follows from [3, Corollary 2] that we may take c in Theorem 1 to be the maximum of the numbers $e_i/(l-1)$ obtained from the fields k_i contained in M, with $[k_i:k_0]=l$. As usual, $l^*\iota$ is the order of the I-class group of k_i.

In some of these situations where I decomposes in k_0, we can actually find μ, λ, ν exactly for every Z_l-extension of k_0. We assume that I does not divide the class number of k_0. We let M_i be the maximal extension of k_0 contained in M such that $\text{Gal}(M_i/k_0)$ has exponent l^ι. (We note that $\text{Gal}(M_i/k_0) \cong (Z_l/l^\iota Z_l)^*$. We also assume that there is exactly one prime of M_i above p_1 and exactly one prime of M_i above p_2. Then there is only one prime of M_i above p_1 for each i, and only one prime of M_i above p_2 for each i. We recall from §2 that there is a unique Z_l-extension K_i (resp., K_2) of k_0 in which p_1 (resp., p_2) is unramified. Since I does not divide the class number of k_0, then p_2 (resp., p_1) is totally ramified in K_i (resp., K_2). So K_i (resp., K_2) is a Z_l-extension of k_0 in which exactly one prime is ramified, and that prime is totally ramified. Since I does not divide the class number of k_0, then I does not divide the class number of k_0, then I does not divide the class number of every subfield of K_i (resp., K_2). (See [6].) So $\mu(K_i/k_0) = \lambda(K_i/k_0) = \nu(K_i/k_0) = 0$ and $\mu(K_2/k_0) = \lambda(K_2/k_0) = \nu(K_2/k_0) = 0$. If K_i has subfields $k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K_i$, we note that $\text{Gal}(M_i/k_0)$ is a cyclic group of order l^ι for each i. Since I does not divide the class number of k_0, then I does not divide the class number of k'_i, and since there is only one prime of M_i (namely the prime of M_i above p_1) that is ramified over k'_i, we see that I does not divide the class number of M_i, for each i. Now we let K be any Z_l-extension of k_0 with intermediate fields $k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K$, and we suppose K_i has intermediate fields $k'_0 \subset k'_1 \subset k'_2 \subset \cdots \subset k'_n \subset \cdots \subset K_i$. If $K \cap K_i = k_0$ and $K \cap K_2 = k_0$, then p_1 and p_2 are totally ramified in k'_n/k_0, and then M_n/k_n is an unramified cyclic extension of degree l^ι. Since I does not divide the class number of M_n, then M_n must be the Hilbert I-class field of k_n, and hence by class field theory the I-class group of k_n is a cyclic group of order l^ι for all n. So $\mu(K/k_0) = 0$, $\lambda(K/k_0) = 1$, $\nu(K/k_0) = 0$. Now suppose $K \cap K_1 = k'_j$. By arguments similar to those above, it can be proved that the I-class group of k_n is trivial if $n \leq j$ and a cyclic group of order $l^{\iota-j}$ if $n > j$. So $\mu(K/k_0) = 0$, $\lambda(K/k_0) = 1$, $\nu(K/k_0) = -j$. Similarly if $K \cap K_2 = k'_j$, then $\mu(K/k_0) = 0$, $\lambda(K/k_0) = 1$, $\nu(K/k_0) = -j$.

We conclude with an example to which the results of the previous paragraph apply. We let $k_0 = Q(\sqrt{-11})$ and $l = 3$. We note that 3 does not divide the class number of k_0, and 3 decomposes in k_0 (in face, $3 = \alpha_1 \alpha_2$ with $\alpha_1 = (1 + \sqrt{-11})/2$ and $\alpha_2 = (1 - \sqrt{-11})/2$). If M_i is the maximal extension of k_0 of exponent I contained in the
composite of all \mathbb{Z}_p-extensions of k_0, we must show that there is only one prime ideal of M_i above (α_1) and only one prime ideal of M_i above (α_2). Then the results of the previous paragraph will apply to k_0. Now we let $E = \mathbb{Q}(\sqrt{-11}, \zeta)$, where $\zeta = (-1 + \sqrt{-3})/2$ (a primitive cube root of unity). Then $[E : \mathbb{Q}] = 4$, and the three quadratic subfields are $k_0, \mathbb{Q}(\sqrt{33}), \mathbb{Q}(\sqrt{-3})$. We note that there is exactly one prime of E above (α_1) and exactly one prime of E above (α_2). Since 3 does not divide the class numbers of the quadratic subfields of E, then it is easy to see that 3 does not divide the class number of E. It then follows from Kummer theory that the maximal abelian extension of E of exponent 3 in which only primes above 3 are ramified is $E(\alpha_1^{1/3}, \alpha_2^{1/3}, \zeta^{1/3}, \epsilon^{1/3})$, where $\epsilon = 23 + 4\sqrt{33}$ is the fundamental unit of $\mathbb{Q}(\sqrt{33})$. It is not difficult to see that $M_iE = E(\zeta^{1/3}, \epsilon^{1/3})$ (cf. [1, Example 3]). Again using Kummer theory, a calculation shows that the prime of E above (α_1) remains prime in one of the cubic extensions of E contained in M_iE and ramifies in the other three cubic extensions of E contained in M_iE. A similar result is valid for the prime of E above (α_2). It follows that there can be only one prime of M_i above (α_1) and only one prime of M_i above (α_2). Hence the results of the previous paragraph apply to $k_0 = \mathbb{Q}(\sqrt{-11})$.

Note. We have learned that the Russian mathematician V. A. Babaicev has obtained by other methods a proof of Theorem 1 (see Math. USSR Izvestija, 10 (1976), 675-685).

References

Received April 4, 1978. Partly supported by NSF Grant MCS 78-01459.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

C. W. CURTIS
University of Oregon
Eugene, OR 97403

C. C. MOORE
University of California
Berkeley, CA 94720

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. FINN AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeroen Bruijning and Jun-iti Nagata, A characterization of covering dimension by use of $\Delta_k(X)$</td>
<td>1</td>
</tr>
<tr>
<td>Thomas Ashland Chapman, Homotopy conditions which detect simple homotopy equivalences</td>
<td>13</td>
</tr>
<tr>
<td>John Albert Chatfield, Solution for an integral equation with continuous interval functions</td>
<td>47</td>
</tr>
<tr>
<td>Ajit Kaur Chilana and Ajay Kumar, Spectral synthesis in Segal algebras on hypergroups</td>
<td>59</td>
</tr>
<tr>
<td>Lung O. Chung, Jiang Luh and Anthony N. Richoux, Derivations and commutativity of rings</td>
<td>77</td>
</tr>
<tr>
<td>Michael George Cowling and Paul Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups</td>
<td>91</td>
</tr>
<tr>
<td>David Dixon, The fundamental divisor of normal double points of surfaces</td>
<td>105</td>
</tr>
<tr>
<td>Hans Georg Feichtinger, Colin C. Graham and Eric Howard Lakien, Nonfactorization in commutative, weakly selfadjoint Banach algebras</td>
<td>117</td>
</tr>
<tr>
<td>Michael Freedman, Cancelling 1-handles and some topological imbeddings</td>
<td>127</td>
</tr>
<tr>
<td>Frank E., III Gerth, The Iwasawa invariant μ for quadratic fields</td>
<td>131</td>
</tr>
<tr>
<td>Maurice Gilmore, Three-dimensional open books constructed from the identity map</td>
<td>137</td>
</tr>
<tr>
<td>Stanley P. Gudder, A Radon-Nikodým theorem for $$-algebras*</td>
<td>141</td>
</tr>
<tr>
<td>Peter Wamer Harley, III and George Frank McNulty, When is a point Borel?</td>
<td>151</td>
</tr>
<tr>
<td>Charles Henry Heiberg, Fourier series with bounded convolution powers</td>
<td>159</td>
</tr>
<tr>
<td>Rebecca A. Herb, Characters of averaged discrete series on semisimple real Lie groups</td>
<td>169</td>
</tr>
<tr>
<td>Hideo Imai, On singular indices of rotation free densities</td>
<td>179</td>
</tr>
<tr>
<td>Sushil Jajodia, On 2-dimensional CW-complexes with a single 2-cell</td>
<td>191</td>
</tr>
<tr>
<td>Herbert Meyer Kamowitz, Compact operators of the form uC_ϕ</td>
<td>205</td>
</tr>
<tr>
<td>Matthew Liu and Billy E. Rhoades, Some properties of the Chebyshev method</td>
<td>213</td>
</tr>
<tr>
<td>George Edgar Parker, Semigroups of continuous transformations and generating inverse limit sequences</td>
<td>227</td>
</tr>
<tr>
<td>Samuel Murray Rankin, III, Oscillation results for a nonhomogeneous equation</td>
<td>237</td>
</tr>
<tr>
<td>Martin Scharlemann, Transverse Whitehead triangulations</td>
<td>245</td>
</tr>
<tr>
<td>Gary Joseph Sherman, A lower bound for the number of conjugacy classes in a finite nilpotent group</td>
<td>253</td>
</tr>
<tr>
<td>Richard Arthur Shoop, The Lebesgue constants for (f, d_n)-summability</td>
<td>255</td>
</tr>
<tr>
<td>Stuart Jay Sidney, Functions which operate on the real part of a uniform algebra</td>
<td>259</td>
</tr>
<tr>
<td>Tim Eden Traynor, The group-valued Lebesgue decomposition</td>
<td>265</td>
</tr>
<tr>
<td>Tavan Thomas Trent, $H^2(\mu)$ spaces and bounded point evaluations</td>
<td>273</td>
</tr>
<tr>
<td>James Li-Ming Wang, Approximation by rational modules on nowhere dense sets</td>
<td>293</td>
</tr>
</tbody>
</table>