THREE-DIMENSIONAL OPEN BOOKS CONSTRUCTED FROM THE IDENTITY MAP

MAURICE GILMORE
THREE-DIMENSIONAL OPEN BOOKS CONSTRUCTED FROM THE IDENTITY MAP

MAURICE GILMORE

Three-dimensional manifolds are constructed as open books, using the identity diffeomorphism. The open book constructed in this way with (non)orientable page of Euler characteristic χ is the connected sum of $(1-\chi)$ copies of the (non)orientable S^2 bundle over S^1.

Introduction. We investigate orientable and nonorientable three-dimensional manifolds which are open books according to the following definition of Winkelnkemper [2].

DEFINITION. A manifold of dimension n is said to have an open book description if it can be constructed using a co-dimension 2 submanifold ∂V and a diffeomorphism $h:V\to V$ of an $(n-1)$-dimensional manifold with boundary ∂V. h is required to be the identity map in a neighborhood of ∂V. The construction is to form the mapping torus $(V \times I)/(v,0) = (h(v),1)$ and then to identify $(v,t) = (v,t')$ for all v in ∂V and t, t' in I. The image of the copies of ∂V in the resulting manifold is called the binding of the open book and the circle's worth of copies of V are called the pages.

Related results appear in the recent book of Rolfsen [1].

Statement of results.

THEOREM 1. If $V = S_g - n\hat{B}^2$, the surface of genus g with n disjoint, open discs removed from it, then the open book produced by setting h equal to the identity map is the connected sum of $(2g+(n-1))$ copies of $(S^1 \times S^2)$. (Adopt the convention that zero copies of $(S^1 \times S^2)$ will refer to S^1.)

THEOREM 2. If $V = P_k - n\hat{B}^2$, the 2-sphere with k cross-caps attached and n disjoint, open discs removed from it, then the open book produced by setting h equal to the identity map is the connected sum of $(k+(n-1))$ copies of the Klein bottle of dimension three. ($k \geq 1, n \geq 1$)

By the three-dimensional Klein bottle we mean the nonorientable S^2 bundle over S^1, $(S^2 \times I)/(x,y,z,0) = (-x,y,z,1)$.

Proofs of results.

137
Lemma 1. Let M be a closed, smooth manifold of dimension $(n + 1)$. If an unkotted copy of $(S^1 \times \mathbb{B}^n)$ is removed from a coordinate patch on M and the identification $(\theta, x) = (\theta', x)$ is performed for all (θ, x) in $(S^1 \times S^{n-1})$ then the resulting manifold is the connected sum $M \# (S^2 \times S^{n-1})$.

Proof. Remove a copy of \mathbb{B}^{n+1} which contains the bounding $(S^1 \times S^{n-1})$ and temporarily add a copy of \mathbb{B}^{n+1} to it, giving $S^{n+1} - (S^1 \times S^*)$. The identifications glue all the meridian $(n - 1)$-spheres to one copy of S^{n-1} on the boundary of the removed torus. On the bounding $(S^1 \times S^{n-1})$ in $S^{n+1} - (S^1 \times S^*) = (B^2 \times S^{n-1})$, the $(n - 1)$-spheres are parallels. When these are all identified to one S^{n-1} we obtain $(S^2 \times S^{n-1})$. Now remove the superfluous copy of \mathbb{B}^{n+1} and form the connected sum of $M - \mathbb{B}^{n+1}$ with $(S^2 \times S^{n-1}) - \mathbb{B}^{n+1}$ to finish the proof.

Proof of Theorem 1. Consider the polygonal normal form of $S_\gamma a_1 b a_1^{-1} b_1^{-1} \cdots a_n b a_n^{-1} b_n^{-1}$. Punch n holes in it and form the Cartesian product with the unit interval.

![Diagram](image1)

We diffeomorph one of the inner cylinders to the outside and form the mapping torus. If we perform the required identifications on the outer copy of $(S^i \times S^i)$ we obtain $S^\gamma - \{n \text{ solid tori}\}$. The $(n - 1)$ copies of $(S^i \times S^i)$ which do not come from the $a_i b_i \cdots a_n^{-1} b_n^{-1}$ each contribute a connected sum of S^3 with $(S^i \times S^2)$ when the required identifications are performed. This follows from the absence of linking and Lemma 1.

The remaining $(S^1 \times S^i)$ can be surgered out in a \mathbb{B}^3 as in Lemma

![Diagram](image2)
1 and an extra B^3 added. Since the a_t and b_t were meridians on the removed $(S^1 \times B^3)$ they are parallels on the remaining $(S^1 \times B^3) = S^3 - (S^1 \times B^2)$. An identification such as this, pictured in Figure 2, gives the connected sum of $2g$ copies of $(S^1 \times S^2)$. The four vertical discs give the union of two S^2's joined along a common equator. This configuration is $S^3 - 4B^3$ and we now attach two copies of $S^2 \times I$. A separating S^2 between the two handles can be constructed using four of the discs with the flanges shown in Figure 3. One quarter of the S^2 consists of the two curved half-flanges, and the sub-disc in a vertical disc from Figure 2.

We now complete the proof by removing the extra B^3 which we added above and forming the required connected sum.

Proof of Theorem 2. The proof is analogous. The two extra ingredients are to notice that the connected sum of $(S^1 \times S^n)$ with the $(n+1)$-dimensional Klein bottle is diffeomorphic to the connected sum of two $(n+1)$-dimensional Klein bottles and that an identification such as that shown in Figure 4 gives a connected sum of two Klein bottles of dimension 3.

![Figure 4](image4.png)

REFERENCES

Received November 28, 1976.

NORTHEASTERN UNIVERSITY
BOSTON, MA 02115
Jeroen Bruijning and Jun-iti Nagata, *A characterization of covering dimension by use of $\Delta_k(X)$*. 1

Thomas Ashland Chapman, *Homotopy conditions which detect simple homotopy equivalences*. 13

John Albert Chatfield, *Solution for an integral equation with continuous interval functions*. 47

Ajit Kaur Chilana and Ajay Kumar, *Spectral synthesis in Segal algebras on hypergroups*. 59

Lung O. Chung, Jiang Luh and Anthony N. Richoux, *Derivations and commutativity of rings*. 77

Michael George Cowling and Paul Rodway, *Restrictions of certain function spaces to closed subgroups of locally compact groups*. 91

David Dixon, *The fundamental divisor of normal double points of surfaces*. 105

Michael Freedman, *Cancelling 1-handles and some topological imbeddings*. 127

Frank E., III Gerth, *The Iwasawa invariant μ for quadratic fields*. 131

Maurice Gilmore, *Three-dimensional open books constructed from the identity map*. 137

Stanley P. Gudder, *A Radon-Nikodým theorem for \ast-algebras*. 141

Peter Wamer Harley, III and George Frank McNulty, *When is a point Borel?*. 151

Charles Henry Heiberg, *Fourier series with bounded convolution powers*. 159

Rebecca A. Herb, *Characters of averaged discrete series on semisimple real Lie groups*. 169

Hideo Imai, *On singular indices of rotation free densities*. 179

Sushil Jajodia, *On 2-dimensional CW-complexes with a single 2-cell*. 191

Herbert Meyer Kamowitz, *Compact operators of the form uC_φ*. 205

Matthew Liu and Billy E. Rhoades, *Some properties of the Chebyshev method*. 213

George Edgar Parker, *Semigroups of continuous transformations and generating inverse limit sequences*. 227

Samuel Murray Rankin, III, *Oscillation results for a nonhomogeneous equation*. 237

Martin Scharlemann, *Transverse Whitehead triangulations*. 245

Gary Joseph Sherman, *A lower bound for the number of conjugacy classes in a finite nilpotent group*. 253

Richard Arthur Shoop, *The Lebesgue constants for (f, d_n)-summability*. 255

Stuart Jay Sidney, *Functions which operate on the real part of a uniform algebra*. 265

Tim Eden Traynor, *The group-valued Lebesgue decomposition*. 273

Tavan Thomas Trent, *$H^2(\mu)$ spaces and bounded point evaluations*. 279

James Li-Ming Wang, *Approximation by rational modules on nowhere dense sets*. 293