SOME PROPERTIES OF THE CHEBYSHEV METHOD

MATTHEW LIU AND BILLY E. RHOADES
SOME PROPERTIES OF THE CHEBYSHEV METHOD

MATTHEW LIU AND B. E. RHODES

Several properties of the Chebyshev method of summability, defined by G. G. Bilodeau, are investigated. Specifically, it is shown that the Chebyshev method is translatable and is a Gronwall method. It is shown that the de Vallee Poussin method is stronger than the Chebyshev method, and that the Chebyshev method is not stronger than the $(C, 1)$ method. The final result shows that the Chebyshev method exhibits the Gibbs phenomenon.

Let \(\Sigma(-1)^n u_i \) be an alternating series with partial sums \(s_n = \sum_{i=0}^{\infty} (-1)^i u_i \). Define a sequence of polynomials \(\{P_n(t)\} \) by \(P_n(t) = \sum_{k=0}^{n} a_{nk} t^k \), \(P_n(1) = 1, \) \(n = 0, 1, 2, \ldots \). The series \(\Sigma(-1)^n u_i \) will be called summable \((P_n) \) to the value \(s \) if \(\lim \sigma(P_n) = s \), where \(\sigma(P_n) = \sum_{k=0}^{\infty} a_{nk} \delta_k \). Bilodeau [1] considered the following question. What are sufficient conditions on \(P_n \) for \(\sigma(P_n) \) to speed up the rate of convergence of a convergent sequence \(\{s_n\} \)? For sequences \(\{u_n\} \) which are moment sequences, i.e., \(u_n = \int_{0}^{1} t^n d\alpha(t) \), he obtains the estimate \(|\sigma(P_n) - s|/|r_n| \leq (\mu_n/|r_n|) \int_{0}^{1} t(1 + t)^{-1} |d\alpha(t)| \), where \(s = \sum_{i=0}^{\infty} (-1)^i u_i \), \(r_n = s_n - s \), and \(\mu_n = \max_{0 \leq t \leq 1} |P_n(-t)| \). Adopting \(\mu_n \) as a measure of the value of the method \(\sigma(P_n) \), the most desirable sequence of polynomials will be those for which \(\mu_n \) is a minimum, subject to the constraint \(P_n(1) = 1 \) for each \(n \). The Chebyshev polynomials, defined by \(T_n(x) = \cos nx \), \(n = 0, 1, 2, \ldots \), \(x = \cos \theta \), form the best approximation to the zero function over the interval \([-1, 1] \). When translated to \([0, 1] \) they give \(P_n(t) = T_n(1 + 2t)/T_n(3) \) as the best polynomials to minimize \(\mu_n \), where

\[
(1) \quad T_n(x) = [(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n]/2 ,
\]

and

\[
T_n(3) = (\alpha^n + \alpha^{-n})/2, \quad \alpha = 3 + \sqrt{8} \approx 5.828 .
\]

The infinite matrix \(A = (a_{nk}) \), associated with these polynomials, has entries

\[
(2) \quad a_{nk} = \begin{cases}
1/T_n(3), & k = 0 \\
\frac{2^{2k-1}}{T_n(3)} \left[2 \binom{n+k}{n} - \binom{n+k-1}{n-k} \right], & 0 < k \leq n \\
0, & k > n .
\end{cases}
\]

213
Bilodeau calls the associated summability method the Chebyshev or σ-method.

We begin by establishing some properties of the maximal entry in each row of σ.

Lemma 1. For each positive integer \(n > 2 \), there exists an integer \(p \) such that

\[
a_{nk} < a_{n,k+1} \quad \text{for} \quad 0 \leq k < p
\]

\[
a_{nk} \geq a_{n,k+1} \quad \text{for} \quad p \leq k < n.
\]

Proof. For \(0 < k \leq n \) we may write

\[
a_{nk} = \frac{2^{2k-1}n}{kT_n(3)} \left(\frac{n+k-1}{n-k} \right),
\]

so that \(a_{nk}/a_{n,k+1} = (k+1)(2k+1)/2(n^2-k^2) \). Treating \(k \) as a continuous variable and differentiating with respect to \(k \), it follows that \(a_{nk}/a_{n,k+1} \) is increasing in \(k \). The proof is completed by noting that \(a_{n0} < a_{n1} < a_{n2} \) and \(a_{n,n-1} > a_{nn} \) for each \(n > 2 \).

Lemma 2. For each \(n \), \(p = [x_0] \) where \(x_0 = (-3 + (32n^2 - 7)^{1/2})/8 \).

Proof. Since \(a_{n1} < a_{n2} \) and \(a_{n,n-1} > a_{nn} \), there exists a real positive number \(x_0 \) such that \(a_{nx0} = a_{n,x0+1} \) which implies \(2x_0^2 + 3x_0 + 1 = 2n^2 - 2x_0^2 \). Since \(x_0 \) is positive, \(x_0 = (-3 + (32n^2 - 7)^{1/2})/8 \).

Lemma 3. For each \(n > 6 \), \(p = [x_0] > n/2 \).

It is sufficient to show that \(x_0 - 1 \geq n/2 \); i.e., \(8(2n^2 - 11n - 16) \geq 0 \), for \(n > 6 \). With \(g(n) = 2n^2 - 11n - 16 \) we have \(g'(n) > 0 \) for \(n > 11/4 \), hence \(g \) is increasing for \(n > 11/4 \), and \(g \) is positive for \(n > 6 \) and \(n \) an integer.

Lemma 4. With \(p \) and \(a_{np} \) as defined in Lemmas 2 and 3, \(\lim_{n} a_{np} = 0 \).

From (3), and Stirling’s formula,

\[
a_{np} = \frac{n2^{p-1}r(n+p)}{PT_n(3)\Gamma(n-p+1)\Gamma(2p)}
\]

\[
\sim \frac{n2^{p-1}(n+p-1)^{n+p-1}e^{-(n+p-1)}(2\pi(n+p-1))^{1/2}}{p\alpha^n(n-p)^{n-p}e^{-(n-p)}(2\pi(n-p))^{1/2}(2p-1)^{p-1}e^{-(2p-1)}(2\pi(2p-1))^{1/2}}
\]

\[
= \frac{1}{2\sqrt{\pi}} \frac{n}{p} \left(\frac{n-p-1}{\alpha(n-1)} \right)^{n-p} \left(\frac{n+p-1}{\sqrt{\alpha(p-1/2)}} \right)^{2p}.
\]
Both \((n + p - 1)/\alpha(n - p)^{n-p}\) and \((n + p - 1)/\sqrt{\alpha (p - 1/2)^{2p}}\) are bounded above. Therefore \(\lim a_{np} = 0\).

Cooke [3, p. 119] shows that a necessary and sufficient condition for a regular matrix to be absolutely translative for all bounded sequences \(\{z_n\}\) is that the matrix \(A\) satisfies \(\lim \sum_{k=0}^n |a_{nk} - a_{n,k+1}| = 0\).

Theorem 1. The \(\sigma\)-method is absolutely translative for all bounded sequences.

Proof. Bilodeau [1, p. 296] has shown that the \(\sigma\)-method is regular. From Lemma 1,

\[
\sum_{k=0}^{\infty} |a_{nk} - a_{n,k+1}| = \sum_{k=1}^{p-1} (a_{n,k+1} - a_{nk}) + \sum_{k=p}^{n} (a_{nk} - a_{n,k+1}) = 2a_{np} - a_{n0}.
\]

The regularity of \(A\) implies that \(\lim a_{n0} = 0\), and the result follows from Lemma 4.

For unbounded sequences, we consider the class of sequences \(\{z_n\}\) satisfying \(|z_k| \leq \theta_k\) (\(\theta_k\) real, positive, and increasing), where \(\sum_{k=0}^{\infty} a_{nk}\theta_k^{p+1}\), \(\sum_{k=0}^{\infty} a_{n,k+1}\theta_k^{k+1}\), and \(\rho_n = \sum_{k=0}^{\infty} |(a_{nk} - a_{n,k+1})\theta_k^{k+1}|\) exist for each \(n\). Cooke [3, p. 119] shows that a necessary and sufficient condition for a regular matrix to be absolutely translative for all (unbounded) \(\{z_n\}\) satisfying \(|z_k| \leq \theta_k\) together with conditions stated above, is that \(\lim \rho_n = 0\).

Theorem 2. The \(\sigma\)-method is absolutely translative for all (unbounded) sequences \(\{z_n\}\) such that \(z_k = o(\sqrt{k})\). This result is best possible.

With \(|z_n| = \theta_n\), and using Lemma 1,

\[
\rho_n = \sum_{k=0}^{p-1} (a_{n,k+1} - a_{nk})\theta_k^{k+1} + \sum_{k=p}^{n} (a_{nk} - a_{n,k+1})\theta_k^{k+1} \leq \theta_{n-1} \sum_{k=0}^{p-1} (a_{n,k+1} - a_{nk}) + \theta_n \sum_{k=p}^{n} (a_{nk} - a_{n,k+1}) \leq \theta_n (a_{np} - a_{n0} + a_{np} - 0) = 0(\sqrt{n}) (2a_{np} - a_{n0}).
\]

It will be sufficient to show that \(\lim 2\sqrt{n}a_{np}\) is finite. But this follows immediately from (4), since \(\lim \sqrt{n(p - 1/2)^{1/2}}/p = 2^{1/4}\), and the remaining limits have already been shown to be finite.

To show that the result is best possible we shall replace \(o(\sqrt{k})\)
by \sqrt{k} and verify that ρ_n does not tend to zero.

From (5), $\rho_n \geq \sqrt{p} \sum_{k=p}^{n} (a_{nk} - a_{n,k+1}) = \sqrt{p} a_{np}$, which does not tend to zero.

Direct calculations verify that σ is not a weighted mean, Nörlund, Hausdorff, or generalized Hausdorff method.

Gronwall [4, p. 102] defined a general class of summability methods, each member of which involves a pair of analytic functions f and g. Specifically, the (f, g)-transform of a given series $\sum_{k=0}^{\infty} u_k$ is the sequence $\{U_n\}$ defined implicitly by the formal power series identity

$$g(w) \sum_{n=0}^{\infty} u_n [f(w)]^n = \sum_{n=0}^{\infty} b_n U_n w^n,$$

where f and g satisfy the following properties. Let $A = \{w \mid |w| < 1\}$. The function $z = f(w)$ is analytic in $A - \{1\}$, continuous and $1 - 1$ in A, with $f(0) = 0$, $f(1) = 1$, and $|f(w)| < 1$ for $w \in A$. Moreover, $w = f^{-1}(z)$ has the representation $w = 1 - (1 - z)^{\lambda} [a + a_n(1 - z) + \cdots]$, where $\lambda \geq 1$, $a > 0$, and the quantity in brackets is a power series in $1 - z$ with a positive radius of convergence. The function g satisfies $g(w) \neq 0$ for $w \in A$ and has the form $g(w) = (1 - w)^{-\delta} + \gamma(w)$ for some $\delta > 0$, where $\gamma(w)$ is analytic in A. Also $g(w) = \sum_{n=0}^{\infty} b_n w^n$, with $b_n \neq 0$ for each n. The series $\sum_{k=0}^{\infty} u_k$ is said to be (f, g)-summable to s if $\lim U_n = s$.

Examples of (f, g)-methods are the Cesàro methods of order k, (C, k), for k real and greater than -1; (E, β) (Euler-Knopp) for $0 < \beta \leq 1$; de la Vallée Poussin summability (V); a generalized (V)-summability (Vk), introduced by Gronwall; and a method of summation of Obrechkoff. We will now show that the Chebyshev method is also a Gronwall method.

Writing $s_n = \sum_{k=0}^{n} u_k$, the (f, g)-method can be expressed as a sequence to sequence method by rewriting (6) in the form

$$g(w)[1 - f(w)] \sum_{n=0}^{\infty} s_n [f(w)]^n = \sum_{n=0}^{\infty} b_n U_n w^n.$$

Using (7), (f, g) can be expressed as a triangular matrix transformation of the form $U_n = \sum_{k=0}^{n} a_{nk} s_k$, with $a_{nk} = \gamma_{nk}/b_n$, where γ_{nk} is defined by

$$[1 - f(w)] g(w) [f(w)]^k = \sum_{n=k}^{\infty} \gamma_{nk} w^k.$$

(See, for example, the discussion on page 40 of [2], where the roles of γ_{nk} and a_{nk} have been interchanged.) From (8) it follows that
THEOREM 3. The Chebyshev method is a Gronwall method with
\(f(w) = w(\alpha - 1)^2/(\alpha - w)^2 \),
\(g(w) = (1 - w)^{-1} + \gamma(w) \), and
\(\gamma(w) = w/(\alpha^2 - w) \), where \(\alpha = 3 + \sqrt{8} \).

Proof. If (6) is a Gronwall method, then, from (8) with \(k = 0 \) and (2),

\[
[1 - f(w)]g(w) = \sum_{n=0}^{\infty} b_n a_n w^n = \sum_{n=0}^{\infty} b_n w^n/T_n(3) .
\]

Thus

\[
f'(w) = 1 - [g(w)]^{-1} \sum_{n=0}^{\infty} b_n w^n/T_n(3) ,
\]

\[
f''(w) = [g'(w)/g^2(w)] \sum_{n=0}^{\infty} b_n w^n/T_n(3) - [g(w)]^{-1} \sum_{n=1}^{\infty} nb_n w^{n-1}/T_n(3)
\]

and \(f'(0) = [g'(0)/g^2(0)](b_0/T_0(3)) - b_1/g(0)T_1(3) = 2b_1/3b_0 \), since \(T_0(3) = 1 \) and \(T_1(3) = 3 \).

From (9) and (3),

\[
b_n = (2b_1/3b_0)^n T_n(3)/2^{2n-1} = (b_1/6b_0)^n(\alpha^n + \alpha^{-n}) .
\]

In particular, \(b_1 = b_1/b_0 \), which implies \(b_0 = 1 \), since each \(b_n \neq 0 \). One can also deduce that \(b_0 = 1 \) from (9), since \(a_{00} = 1 \).

Thus

\[
g(w) = 1 + \sum_{n=1}^{\infty} b_n w^n
\]

\[
= 1 + \sum_{n=1}^{\infty} [(b_1 \alpha w/6)^n + (b_1 w/6\alpha)^n]
\]

\[
= 1 + \frac{b_1 \alpha w}{6 - b_1 \alpha w} + \frac{b_1 w}{6\alpha - b_1 w}
\]

\[
= \frac{6}{6 - b_1 \alpha w} + \frac{b_1 w}{6\alpha - b_1 w} .
\]

For \(g \) to have the required form choose \(b_1 = 6/\alpha \).

From (10), and (11), with \(b_1 = 6/\alpha \),

\[
f(w) = 1 - [g(w)]^{-1}\left[1 + \sum_{n=1}^{\infty} 2(\alpha w)^n \right]
\]

\[
= 1 - \frac{2w}{\alpha - w}
\]

\[
= 1 - \frac{(\alpha + w)}{\alpha - w} \cdot \frac{(1 - w)(\alpha^2 - w)}{(\alpha^2 - w^2)}
\]

\[
= 1 - \frac{(1 - w)(\alpha^2 - w)}{(\alpha - w)^2} = \frac{w(\alpha - 1)^2}{(\alpha - w)^2} .
\]
We now show that \(f \) is a 1 - 1 selfmapping of \(\Delta \). If \(f(w_1) = f(w_2) \), i.e.,
\[
\frac{w_1(\alpha - 1)^2}{(\alpha - w_1)^2} = \frac{w_2(\alpha - 2)^2}{(\alpha - w_2)^2},
\]
then \((w_1 - w_2)(\alpha^2 - w_1w_2) = 0\). Since \(w_1, w_2 \in \Delta, w_1w_2 = \alpha^2 \), so \(w_1 = w_2 \).

By the Maximum Modules Theorem, it is sufficient to show that \(|f(w)| \leq 1 \) for \(w = e^{i\theta} \). \(|f(e^{i\theta})| = (\alpha - 1)^2(\alpha^2 - 2 \cos \theta + 1) \leq 1 \).

We now verify that \(w = f^{-1}(z) \) is regular on \(\Delta - \Delta \), except possibly at \(z = 1 \), and that \(0 \in \Delta \). \(f^{-1} \) is regular except at \(z = 0 \), so now we must show
\[
\min_{0 \leq \theta < 2\pi} |f(e^{i\theta})| \geq \delta > 0.
\]

\(|f(e^{i\theta})| = (\alpha - 1)^2/T(\theta) \), where \(T(\theta) = (\alpha + 1)^2 - 4\alpha \cos \theta /2 \). A direct calculation certifies that the maximum of \(T(\theta) \) occurs at \(\theta = \pi \), and \(T(\pi) = [(\alpha - 1)/(\alpha + 1)]^2 > 0 \).

It remains to show that at \(z = 1, 1 - w = (1 - z)^4[a + a_i(1 - z) + \cdots] \), \(\lambda \geq 1, a > 0 \). \(z = f(w) = (\alpha - 1)^2w/(\alpha - w)^2 \). From the equation \(z = f(w) \) we obtain \(1 - z = (1 - w)(\alpha^2 - w)/(\alpha - w)^2 \), which when solved for \(1 - w \) yields
\[
1 - w = \frac{-(\alpha - 1)(1 - 2z - \alpha) \pm (\alpha - 1)(\alpha + 1)\sqrt{1 - 4\alpha(1 - z)/\alpha + 1}}{-2z}.
\]

Now divide the numerator and the denominator by \(-2\) and write \(z \) in the denominator as \(1 - (1 - z) \).
\[
1 - w = \left\{ \frac{\alpha - 1}{2} \left[2(1 - z) - (\alpha + 1) \right] \pm \frac{\alpha^2 - 1}{-2} \left[1 - \frac{4\alpha}{2(\alpha + 1)^2}(1 - z) \right. \\
\left. + \frac{1}{8} \frac{16\alpha^2}{(\alpha + 1)^4}(1 - z)^2 + \cdots \right] \right\} \cdot \sum_{k=0}^{\infty} (1 - z)^k.
\]

Using the negative branch,
\[
1 - w = \left\{ (\alpha - 1)(1 - z) - \frac{\alpha(\alpha^2 - 1)}{(\alpha + 1)^2}(1 - z) - \frac{1}{8} \frac{16\alpha^2}{(\alpha + 1)^4}(1 - z)^2 \\
\right. \\
\left. + \cdots \right\} \cdot (1 + (1 - z) + (1 - z)^2 + \cdots).
\]
\[
= (1 - z) \left\{ (\alpha - 1) - \frac{\alpha(\alpha - 1)}{\alpha + 1} + \sum_{k=1}^{\infty} b_k(1 - z)^k \right\}
\]

Therefore \(1 - w = (1 - z)^4[a + a_i(1 - z) + \cdots] \) where \(\lambda = 1 \) and \(a = (\alpha - 1)/(\alpha + 1) > 0 \).

Theorem 3, along with Theorems 1 and 2 of [2] show that the Chebyshev method is neither an \([F, d_n]\) nor a Sonnenschein method.
One of the important properties of \((f, g)\)-summability is the following [5, p. 267]:

Let \((f, g), (f', g')\) be two Gronwall means which map regions \(D, D_i\) and with exponents \(\lambda, \lambda_i\). If \(\lambda > \lambda_i\), and \(D\) is interior to \(D_i\), then \((f, g)\) is stronger than \((f', g')\); i.e., \((f, g) \succ (f', g')\).

The de la Vallee Poussin method \((V)\) [4, p. 103] is a Gronwall method with \(\delta = 2^{-1}\), \(f(w) = (1 - \sqrt{1 - w})/(1 - \sqrt{1 - w})\), \(g(w) = (1 - w)^{1/2}\) and \(\lambda = 2\).

Theorem 4. \((V) \supset (\sigma)\).

Proof. Since \(\lambda_{(V)} = 2\), \(\lambda_{(\sigma)} = 1\), it is enough to show that \(D(V)\) is interior to \(D(\sigma)\), that is,

\[
\frac{|1 - \sqrt{1 - w}|}{1 + \sqrt{1 - w}} \leq \frac{|(\alpha - 1)w|}{|\alpha - w|^2}.
\]

It suffices to consider \(|w| = 1\); thus we need to show

\[
\frac{1}{|(1 + \sqrt{1 - w})^2|} \leq \frac{(\alpha - 1)^2}{|\alpha - w|^2}.
\]

Writing \(1 - w = \rho e^{i\phi}\), where \(-\pi < \phi < \pi\), (12) becomes

\[
|\alpha - 1 + \rho e^{i\phi}|^2 \leq (\alpha - 1)^2 |1 + \rho^{1/2} e^{i\phi/2}|^2,
\]

i.e.,

\[
2(\alpha - 1) \cos \phi + \rho \leq 4\alpha(2\rho^{-1/2} \cos \phi/2 + 1).
\]

Since \(\cos \phi/2 > 0\), it is sufficient to show that \(2(\alpha - 1) \cos \phi + \rho \leq 4\alpha\), which is readily verified.

Theorem 5. \(\sigma \not\supseteq (C, 1)\).

We shall make use of the well-known result that if \(A\) and \(B\) are regular summability methods, and \(B\) is a triangle, then \((A) \supseteq (B)\) if and only if \(AB^{-1}\) is regular.

Consider \(D = AC^{-1}\), where \(A\) is the Chebyshev method and \(C\) is \((C, 1)\). \(C^{-1}\) has entries

\[
c^{-1}_{nk} = \begin{cases}
-n, & k = n-1 \\
n+1, & k = n \\
0, & \text{elsewhere}.
\end{cases}
\]

Then
\[d_{nk} = \begin{cases} (k + 1)a_{nk} - (k + 1)a_{n,k+1}, & k < n \\ (n + 1)a_{nn}, & k = n \\ 0, & \text{elsewhere} \end{cases} \]

We shall show that \(D \) has infinite norm.

\[
\sum_{k=0}^{n} \left| d_{nk} \right| = \sum_{k=0}^{p-1} (k + 1)(a_{n,k+1} - a_{nk}) + \sum_{k=p}^{n-1} (k + 1)(a_{nk} - a_{n,k+1}) + a_{nn}(n + 1).
\]

Now,

\[
\sum_{k=0}^{p-1} (k + 1)(a_{n,k+1} - a_{nk}) = \sum_{k=0}^{p-1} (k + 1)a_{n,k+1} - \sum_{k=0}^{p-1} ka_{nk} - \sum_{k=0}^{p-1} a_{nk} = pa_{np} - \sum_{k=0}^{p-1} a_{nk}.
\]

\[
\sum_{k=p}^{n-1} (k + 1)(a_{nk} - a_{n,k+1}) = \sum_{k=p}^{n-1} ka_{nk} + \sum_{k=p}^{n-1} a_{nk} - \sum_{k=p}^{n-1} (k + 1)a_{n,k+1} = pa_{np} - na_{nn} + \sum_{k=p}^{n-1} a_{nk}.
\]

Therefore,

\[
\sum_{k=0}^{n} \left| d_{nk} \right| = pa_{np} - \sum_{k=0}^{p-1} a_{nk} + pa_{np} - na_{nn} + \sum_{k=p}^{n-1} a_{nk} + a_{nn}(n + 1).
\]

Since the Chebyshev method has row sums equal to 1,

\[
\sum_{k=p}^{n-1} a_{nk} = 1 - \sum_{k=0}^{p-1} a_{nk} - a_{nn}.
\]

Thus

\[
\sum_{k=0}^{n} d_{nk} = 2pa_{np} - 2 \sum_{k=0}^{p-1} a_{nk} + 1.
\]

But \(\sum_{k=0}^{p-1} a_{nk} \leq 1 \), so it is sufficient to show \(pa_{np} \to \infty \). This follows immediately from (2), since \(\lim \sqrt{n} = \infty \) and the remaining limits have already been shown to be finite and nonzero.

The Fourier series

\[
\sum_{k=1}^{\infty} \sin kt/k = (\pi - t)/2, \quad 0 < t \leq \pi,
\]

converges for all \(t \), and the function has a jump at \(t = 0 \). Hence
the convergence is nonuniform at \(t = 0 \); that is, the sequence \(\{s_n(t_n)\} \), where \(\{t_n\} \) is a positive null sequence and

\[
s_n(t) = \sum_{k=1}^{n} \sin kt/k, \quad s_0 = 0,
\]

has several limit points, depending on the manner in which \(t_n \) approaches 0.

If \(\lim nt_n = \tau \geq 0 \), then \(\lim s_n(t_n) = \int_{0}^{\tau} (\sin t/t)dt \), and the maximal limit is attained when \(\tau = \pi \), in which case

\[
\lim s_n(t_n) = \int_{0}^{\pi} \frac{\sin t}{t}dt = \frac{\pi}{2} \times 1.17897 \cdots.
\]

On the other hand, \((\pi - t)/2 \to \pi/2 \) as \(t \downarrow 0 \). Thus the limit points of \(\{s_n(t_n)\} \) cover an interval which extends beyond \(f(0^+) \) if \(f(0^+) \neq 0 \). This situation is called the Gibbs phenomenon relative to the partial sums.

We shall now show that the corresponding phenomenon occurs for the Chebyshev means.

Theorem 6. The Chebyshev means of (13) satisfy

\[
\text{lim sup } \sigma_n(t_n) \leq \int_{0}^{\pi} \frac{\sin t}{t}dt.
\]

The lim sup inequality is an immediate consequence of (14) and the well-known fact that, for any totally regular matrix \(A \), and any sequence \(x = \{x_n\} \), \(\lim sup A_n(x) \leq \lim sup x_n \).

The proof of the theorem is similar to that of [6]. One may write \(s_n(t) \) in the form

\[
s_n(t) = -t/2 + \int_{0}^{t} \frac{\sin (n + 1/2)x}{2 \sin (x/2)}dx.
\]

Since \(\sin (k + 1/2)x = \mathcal{J}(\exp (i(k + 1/2)x)) \),

\[
\sigma_n(t) = -t/2 + \mathcal{J} \left[\int_{0}^{t} \frac{1}{2 \sin (x/2)} \sum_{k=0}^{n} a_{nk}e^{ikx}e^{ix/2}dx \right].
\]

From [1, p. 297], \(\sum_{k=0}^{n} a_{nk}e^{ikx} = T_n(1 + 2e^{ix})/T_n(3) \), where \(T_n(x) \) is defined by (1).

Define
\[n^e = 1 + 2e^ix + [(1 + 2e^ix)^2 - 1]^{1/2} = 1 + 2e^ix + 2e^ix/2e^ix/2 \cos x/2 \right)^{1/2} \]

Let \(a = (2 \cos x/2)^{1/2} \). Then \(\rho \cos \beta = 1 + 2(\cos x + \alpha \cos (3x/4)) \),

(16) \[\rho \sin \beta = 2(\sin x + \alpha \sin (3x/4)) \]

and

(17) \[\rho^2 = 5 + 4(\cos x + \alpha \cos (3x/4)) + 8(\cos (x/2) + \alpha \cos (x/4)) \]

Therefore \(1 + 2e^ix - [(1 + 2e^ix)^2 - 1]^{1/2} = \rho^{-1}e^{-ix} \), and assume \(0 < x \leq t \leq \pi/2 \).

\[
\sigma_n(t) + t/2 = \frac{1}{2T_n(3)} \int_0^t \frac{1}{2 \sin (x/2)} \left[\rho^n \sin (n\beta + x/2) - \rho^{-n} \sin (n\beta - x/2) \right] dx = \frac{1}{4T_n(3)} \left\{ \int_0^t \rho^n \cot (x/2) \sin n\beta dx + \int_0^t \rho^{-n} \cot (x/2) \sin n\beta dx + \int_0^t \rho^{-n} \cos n\beta dx \right\} .
\]

From (17), \(\rho \) is monotone decreasing in \(x \) for \(0 < x \leq \pi/2 \). Therefore for \(0 < x \leq \pi/2, \rho < \alpha \). Thus

\[
\left| \frac{1}{2T_n(3)} \int_0^t \rho^n \cos n\beta dx \right| < \int_0^t (\rho/\alpha)^n dx < t ,
\]

so that there exists an \(\eta \) satisfying \(|\eta| < 1 \) such that

\[
\frac{1}{2T_n(3)} \int_0^t \rho^n \cos n\beta dx = \eta t .
\]

Now assume that \(t = t_n, nt_n \to \tau, 0 \leq \tau \leq \infty \), and \(nt_n^\varepsilon \to 0 \).

Since, from (17), \(\rho \geq \sqrt{5} \),

\[
\left| \frac{1}{4T_n(3)} \int_0^t \rho^{-n} \cos n\beta dx \right| < \frac{1}{4(\alpha \sqrt{5})^n} < \frac{1}{\sqrt{2}(\alpha \sqrt{5})^n} \int_0^t n\beta \cot (x/2) dx .
\]

We wish to show that \(\beta < x \). For \(0 < x \leq \pi/2 \), from (16), \(\rho \sin \beta < 2(1 + \alpha) \sin x \). From (17), if \(\cos (3x/4) + 2 \cos (x/4) \geq 2 \), then \(\rho > 2(\alpha + 1) \). In the interval \([0, \pi/2]\),

\[
\cos (3x/4) + 2 \cos (x/4) \geq \cos (3\pi/8) + \cos (\pi/8) = \cos (\pi/8)(4 \cos^2 (\pi/8) - 1) .
\]

Since \(\cos (\pi/8) = \sqrt{2 + \sqrt{2}/2} \), it is sufficient to show that
which is easily verified. Therefore \(0 < \sin < \beta(\rho/2(1 + a))\) \(\sin \beta < \sin x\), and \(\beta < x\).

For \(0 < x \leq \pi/2\), \(2 \leq x/\sin(x/2) \leq \pi/\sqrt{2}\). Substituting in (18) we have

\[
\left| \frac{1}{4T_n(3)} \int_0^t \rho^n \cot(x/2) \sin n\beta dx \right| < \frac{n}{2(\alpha\sqrt{5})^n} \int_0^{\pi/2} \cos(x/2) \cdot \frac{x}{\sin(x/2)} dx
\]

\[
< \frac{n\pi^2}{4\sqrt{2(\alpha\sqrt{5})^n}} = o(1) ,
\]

and

\[
\sigma_n(t) + (1 - \eta)t/2 = \frac{1}{4T_n(3)} \int_0^t \rho^n \cot(x/2) \sin n\beta dx + o(1) .
\]

Using (17), and the values of \(a\) and \(\alpha\),

\[
1 - (\rho/\alpha)^2 = [17 + 12\sqrt{2} - 5 - 4(\cos x + a \cos(3x/4)) - 8(\cos(x/2) + a \cos(x/4))] / \alpha^2
\]

\[
= \frac{4}{\alpha^2}[1 - \cos x + 2(1 - \cos(x/2)) + \sqrt{2}(1 - \cos(3x/4)\sqrt{\cos(x/2)}) + 2\sqrt{2}(1 - \cos(x/4)\sqrt{\cos(x/2)})].
\]

Since \(0 < \cos(x/2) < 1\),

\[
1 - \cos(x/4)\sqrt{\cos(x/2)} \leq 1 - \cos(x/4) \cos(x/2)
\]

\[
= 1 - (\cos(3x/4) + \cos(x/4))/2 .
\]

Similarly, \(1 - \cos(3x/4)\sqrt{\cos(x/2)} \leq 1 - (\cos(5x/4) + \cos(x/4))/2\). Therefore,

\[
1 - (\rho/\alpha)^2 \leq \frac{4}{\alpha^2}[2 \sin^2(x/2) + 4 \sin^2(x/4) + \sqrt{2}(2 \sin^2(5x/8)
\]

\[
+ 2 \sin^2(x/8))/2 + \sqrt{2}(2 \sin^2(3x/8) + 2 \sin^2(x/8))] \leq \frac{4}{\alpha^2}[2(x/2)^2 + 4(x/4)^2 + \sqrt{2}((5x/8)^2 + (x/8)^2)
\]

\[
+ 2\sqrt{2}(3x/8)^2 + (x/8)^2)] = \frac{4}{\alpha^2}\left(3/4 + \frac{46\sqrt{2}}{64}\right) x^2 < \frac{x^2}{4} .
\]

Since \(0 < \rho/\alpha < 1\), \(1 - \rho/\alpha \leq 1 - (\rho/\alpha)^2\), so that \(1 - \rho/\alpha < x^2/4\). 0 <
\[1 - (\rho/\alpha)^n = (1 - \rho/\alpha) \sum_{k=0}^{n-1} (\rho/\alpha)^k < n(1 - \rho/\alpha) < nx^2/4. \]

Therefore \(1 - (\rho/\alpha)^n = \lambda nx^2 \) for some \(\lambda \) satisfying \(0 < \lambda < 1/4 \), so that we may write

\[
\frac{1}{2T_\alpha(3)} \int_0^t \rho^n \cot(x/2) \sin n\beta dx = \frac{\alpha^n}{2T_\alpha(3)} \left[\int_0^t \cot(x/2) \sin n\beta dx \right] \\
- n \left[\int_0^t \lambda x^2 \cot(x/2) \sin n\beta dx \right] \\
\times \left[\int_0^t \lambda x^2 \cot(x/2) \sin n\beta dx \right] < n \left[\int_0^t x^2 \cot(x/2) dx \right] \\
\leq \frac{nt\pi}{\sqrt{2}} \int_0^t dx < nt^2 = o(1),
\]

since \(\lim nt^2 = 0 \). Note that \(\lim \alpha^n/2T_\alpha(3) = 1 \).

Using (17),

\[
\frac{\rho\beta}{2} - \frac{2}{\alpha} \left(1 + \frac{3\sqrt{2}}{4} \right)x = \frac{\rho}{\alpha} (\beta - \sin \beta - \frac{2}{\alpha} (x - \sin x) \\
- \frac{2\sqrt{2}}{\alpha} \left(\frac{3x}{4} - \sin (3x/4)\sqrt{\cos(x/2)} \right),
\]

so that

\[
|\rho\beta/\alpha - rx| \leq \frac{\rho}{\alpha} |\beta - \sin \beta| + \frac{2}{\alpha} |x - \sin x| \\
+ \frac{2\sqrt{2}}{\alpha} \left| \frac{3x}{4} - \sin (3x/4)\sqrt{\cos(x/2)} \right|,
\]

where \(r = 2(1 + 3\sqrt{2}/4)/\alpha = (4 + 3\sqrt{2})/2\alpha = (4 + 3\sqrt{2})(3 - 2\sqrt{2})/2 = 1/\sqrt{2} \).

But \(0 \leq 3x/4 - \sin (3x/4)\sqrt{\cos(x/2)} \leq 3x/4 - \sin (3x/4) \cos(x/2) \), \(\sin (3x/4) \geq 3x/4 - (3x/4)^3/3! \), and \(\cos(x/2) \geq 1 - x^2/4 \), so that

\[
|3x/4 - \sin (3x/4)\sqrt{\cos(x/2)}| \leq 3x/4 - (3x/4 - (3x/4)^3/6)(1 - x^2/4) \\
= 33x^5/128.
\]

Since \(0 < x - \sin x < x^3 \) and \(\beta < x \),

\[
|\rho\beta/\alpha - x/\sqrt{2}| \leq (\rho\beta^3 + 2x^3 + 33\sqrt{2}x^5/64)/\alpha < 2x^3.
\]

Also, \(|\beta - x/\sqrt{2}| \leq |\rho\beta/\alpha - x/\sqrt{2}| + (1 - \rho/\alpha)\beta < 2x^3 + x^3 = x^3 \), so that \(\beta = x/\sqrt{2} + \mu x^3 \), where \(|\mu| < 3 \).

The remainder of the proof of (15) is the same as that of [6], beginning with formula (2.7), and will therefore be omitted.
REFERENCES

Received August 25, 1977 and in revised form July 12, 1978.

UNIVERSITY OF WISCONSIN-STEVENS POINT
STEVENS POINT, WI 54481
AND
INDIANA UNIVERSITY
BLOOMINGTON, IN 47405
Jeroen Bruijning and Jun-iti Nagata, *A characterization of covering dimension by use of $\Delta_k(X)$* ... 1
Thomas Ashland Chapman, *Homotopy conditions which detect simple homotopy equivalences* ... 13
John Albert Chatfield, *Solution for an integral equation with continuous interval functions* ... 47
Ajit Kaur Chilana and Ajay Kumar, *Spectral synthesis in Segal algebras on hypergroups* ... 59
Lung O. Chung, Jiang Luh and Anthony N. Richoux, *Derivations and commutativity of rings* ... 77
Michael George Cowling and Paul Rodway, *Restrictions of certain function spaces to closed subgroups of locally compact groups* 91
David Dixon, *The fundamental divisor of normal double points of surfaces* 105
Hans Georg Feichtinger, Colin C. Graham and Eric Howard Lakien, *Nonfactorization in commutative, weakly selfadjoint Banach algebras* 117
Michael Freedman, *Cancelling 1-handles and some topological imbeddings* 127
Frank E., III Gerth, *The Iwasawa invariant μ for quadratic fields* 131
Maurice Gilmore, *Three-dimensional open books constructed from the identity map* ... 137
Stanley P. Gudder, *A Radon-Nikodým theorem for $*$-algebras* 141
Peter Wamer Harley, III and George Frank McNulty, *When is a point Borel?* 151
Charles Henry Heiberg, *Fourier series with bounded convolution powers* 159
Rebecca A. Herb, *Characters of averaged discrete series on semisimple real Lie groups* ... 169
Hideo Imai, *On singular indices of rotation free densities* 179
Sushil Jajodia, *On 2-dimensional CW-complexes with a single 2-cell* 191
Herbert Meyer Kamowitz, *Compact operators of the form uC_ψ* 205
Matthew Liu and Billy E. Rhoades, *Some properties of the Chebyshev method* 213
George Edgar Parker, *Semigroups of continuous transformations and generating inverse limit sequences* .. 227
Samuel Murray Rankin, III, *Oscillation results for a nonhomogeneous equation* ... 237
Martin Scharlemann, *Transverse Whitehead triangulations* 245
Gary Joseph Sherman, *A lower bound for the number of conjugacy classes in a finite nilpotent group* ... 253
Richard Arthur Shoop, *The Lebesgue constants for (f, d_n)-summability* 255
Stuart Jay Sidney, *Functions which operate on the real part of a uniform algebra* ... 265
Tim Eden Traynor, *The group-valued Lebesgue decomposition* 273
Tavan Thomas Trent, *$H^2(\mu)$ spaces and bounded point evaluations* 279
James Li-Ming Wang, *Approximation by rational modules on nowhere dense sets* ... 293