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B. R. BHONSLE AND R. A. PRABHU

In this paper a Finite-Ήankel-Laplace transformation of
a certain generalized functions is defined, and an inversion
formula is established.

1* Introduction. Schwartz first introduced the Fourier trans-
form of distributions in 1947. Since then, extension of the classical
integral transformation to generalized functions has been of con-
tinuing interest. Some pertinent references are [1], [2], [3], [4], [5],
[7], [8], and [9]. The classical Finite-Hankel-Laplace transform of
function / defined on — o o < £ < o o ? 0 < τ / < l i s defined as

(1.1) F(s, jm) = Γ Γ ye-s*Jn(jmy)f(x, y)dxdy
JO J-oo

where Jn(z) is the Bessel function of first kind of order n ^ —1/2
and jlf j2, is are positive zeros of Jn(z) arranged in ascending
order.

An inversion theorem for the transform (1.1) is as follows.

THEOREM 1.1. Let f(x9 y) satisfy Dirichlet conditions in the
interval — ° o < # < o o > 0 < τ / < l and ye~cxf(x, y) be absolutely inte-
grable on — c^<x<°°,0<y<l for some positive value of c. If
its FiniteΉankel-Laplace transform in that range is defined as (1.1),
then at any point (x, y), — °° < x < <*>, 0 < y < 1 at which the function
f{x, y) is continuous,

fix, v) = - 5 ^ Σ 2?;U™y)

λ Γ > F ( 8 , jjds

where Re (s) = σ > c.
It is natural to try to extend the classical Finite-Hankel-Laplace

transform to generalized functions. In this paper above Theorem
1.1 is extended to generalized functions.

2* The notation and terminology* In notation and terminology
we follow [2] and [10]. The open set (— °o, oo) x (0, 1) will be denoted
by /. We will use the following operators,

(2.1) DlΩl\y = D*(lJ> + i-Zty - ^)\ k, V = 0, 1, 2, 3,
\ y y2/
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where n ^ — 1/2 and the expression,

(2.2) TN(y, r) = Σ 2J^

3* The spaces LUa,b,e>n, LU(w, z, c, n) and their duals* Let
α, 6, c, n be real numbers such that c ^ 1/2, n ^ — 1/2, and let k{*\
be the function defined as

0 ^ a; < co

oo X < 0

then LUa,b}C>n is defined as the linear space of all complex valued
smooth functions φ(x, y) on — ° o < χ < o o > 0 < ? / < l such that for
each k, fc' = 0, 1, 2, 3,

0tt,*.*'fofo 1/)] = sup Ifc&S/^UlTV

We assign to LUa>bjC,n the topology generated by the semi-norms
{pa?b,kΛ'}k,k'=o- Hence LUa,b)C>n is countably multinormed space which
is complete. The dual space LUά,b,c>n consists of all continuous linear
functionals on LUa>b)C>n. By the Theorem 1.8.3 [10, p. 21] LUa,b,c,n

is also complete. If a <; d and e ^ 6, then LUd>e9Ctnd LUa,b>c,n, and
the topology of LZ7d,e,c,w is stronger than the topology induced on it
by LUa>bfC,n. Consequently the restriction of any member / e LUά)b>c>n

to LUd,e,c>n is in LUie,c>n.

We turn now to a certain countable union space LU(w, z, c, n).
Let w denote either a finite real number or — oo and z denote either
a finite real number or + oo. Choose two monotonic sequences {αfc}£U
and {6*}ϊU such that ak-^w+ and bk —• £_. Then LU(w,z,c,n) is
defined as countable union space of all LUak>bk,c>n spaces; thus
LU(w, z, c, n) = [Jΐ=ιLUak,b]e,c,n. A sequence {φk}k=ι converges in
LU(w, z,c,n) if and only if it converges in LUakfbk)C>n for some k.
Since for each k, LUak>bk>Cin is complete and hence a countable-union
space, LU(w, z, c, n) is complete. LU'(w, z, c, n) denotes the dual
space of LU(w, z, c, n). Hence LU'(w, z, c, n) is also complete [10,
p. 25].

Now we note several facts to which we will refer later.
( I ) Clearly, D(I) is sub-space of LUa>bfC,n as well as of LU(w, z,

c, n), whatever be the value of a,b,w or z; the convergence in D(I)
implies the convergence in LUa>btC>n and also convergence in LU(w, z,
c, n). Consequently, the restriction of any member of LUά,byCyn or
LU\w, z, c, n) to D(I) is a member of D'(I). Hence the member of
LUά)b,c,n and LU'(w, z, c, n) are distributions in the sense of Zemanian
[10, p. 39].
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(II) Since D(I) is dense in LU(w, z, c, n) for every w, z therefore
by Theorem 1.9.1 [10, p. 24] LU'(w, z, c, ri) is a subspace of D'{I).

(III) Let w^x and y^z, then LU(x, y, c, n)czLU(w, z, c, ri) and
convergence in LU(x, y, c, ri) implies the convergence in LU(w, z, c, ri).
Since D(I)cLU(x, y, c, ri) and D(I) is dense in LU{w\ z, c, ri), LU(x,
y, c, n) is also dense in LU(w, z, c, n). Hence by Theorem 1.9.1 [10,
p. 24] LU\w, z, G, n) is a subspace of LU'(x, y, c, ri).

(IV) If f{x, y) is locally integrable function defined on — oo <

x < oo, 0 < y < 1 and if [ [ liKlYψ-'fix, y)\dxdy exists, then

f(%, y) generates a regular generalized function on Lu'a>b}Cfn through
the definition

</, Φ) = [ Γ /(*, V)φ(x, y)dxdy, φ e LUa,b,c,n .
JO J-oo

Similarly, if w < a and b < z, then / generates a regular member
of LU'(w, z, c, ri) through the definition

S i r°°
\ /O, y)Φ(%, y)dxdyt φ e LU(w, z, c, n) .

0 J-oo

(V ) For each m = 1, 2, 3, and n ^ - 1/2, c ^ 1/2 and a ^
Re (s) <̂  6, the function e~sxyjn(jmy) is a member of LUa}b>c,n.

For all a > w and z > δ, e~sxyjn(jmy) is a member of LU(w, z, c, ri).

4* The generalized Finite-Hankel-Laplace transformation* Let
c, n satisfy n i> — 1/2, c ^ 1/2. We shall call a generalized function
/ as Finite-Hankel-Laplace-transformable if it belongs to LU'(w, z, c, n)
for some real number w, z. Let σf and pf defined as follows:

σf = inf {wjf e LU\w, z, c, w)}

^z = sup {z/f G L ί/'(w, z, c, n)} .

We are now in a position to define the generalized Finite-Hankel-
Laplace transformation, which we denoted by J^3ίfn. For given
Finite-Laplace-transformable generalized function /, let Ωf denote
the strip {s/σf < Re (s) < pf) and let {jm} be the positive zeros of
Jn(z) arranged in ascending order. Then, the Finite-Hankel-Laplace
transform F(s, jm) of / is defined as the application of / to the
kernel e'sxyJn{jmy), i.e.,

(4.1) J^WXs, i J = F(8, jj = (f(x, y\ e-3*yjn(jmy))

where seΩf and {jm} are the positive zeros of Jn{z). For any s e Ωf

and all jm, the right-hand-side of (4.1) has meaning as the application
of / eLU'(σf, pf, c, n) to ye~sxJn(jmy) e LU(σf, pf, c, n) (or equivalently
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the application of feLUά,b,c>n to ye'sxJn(jmy)eLUatb}Cin for any σf <
a ^ Re 0) ^ b < ρf).

If f(%f V) is a locally integrable function such that ye~sxJn(jmy)
is absolutely integrable and σf < a <b < ρf then its conventional
Finite-Hankel-Laplace transform

S I Λoo

\ ye sxJn(jmy)f(%, y)dχdy
0 J-oo

exists for at least one s e Ωf and for all j ^ where {jm} are positive
zeros of Jn(z) and can be identified with our generalized Finite-Hankel-
Laplace transform (4.1).

5* Inversion and uniqueness* We shall now derive an inversion
formula for Finite-Hankel-Laplace-tranformation. The proof of the
inversion formula requires some lemmas.

LEMMA 5.1. Let £f£ίfn(f) = F(s, jm) for seΩf and j m , let
φ(x, y) e D(I), and set for 0 < a' < V < 1

s, jm) = [ \ ye+sxJn(jmy)Φ(x, y)dxdy .

Then for any fixed real number R, 0 < R < oo

Γ </(*, τ), e-stτJn(jmτ))Φ(s, jjdw
(5.1)

= (/(*, τ), \\-^τJn(jmτ)Φ(s, jjdw

where s = σ + ίw and σ is fixed with σf < σ < pf.

Proof. As it is obvious that the functions e~~stτjn(jmτ) and
e~stτJn(jmτ)Φ(s, jm) dw are members of the space LUab c n with

-R

t, τ as the variables of testing functions, the expressions on both
the sides of (5.1) have sense. Using the technique of Riemann sums
as used in [10, Lemma 3.5.1. p. 64], (5.1) can be easily established.

LEMMA 5.2. Let a', V be any two real numbers satisfying 0 <
af < V < 1. Then

(5.2) lim Γ Γ yTN(V, r ) S i n . f l ( a ? " * W y - π
R,N-*oo J α ' J-oo [X — t)

when — oo < t < oo, a! < τ < 6'.

The proof can be left to the reader.
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LEMMA 5.3. Let a, b, c and R be real numbers such that a < σ <b
and c ^ 1/2, let ψ(x, y) eD(I). Then for fixed y, φ(x, y) eD(Iy)Iy =
{(%, V)l— °° < x < °°fV is fixed}

(5.3) 1 Γ ψ(x,
π J-oo (x — f)

converges in LUa>htC>n to ψ(t, y) as R-> ©o.

The proof is similar to that of Lemma 3.5.2 [10, p. 66].

LEMMA 5.4. If ψ(x9 y) e D{I), then

ft

(5.4)
-1K*, τ)]vTN{y, r) S l n R(χ - V dxdy

{x - t)
converges to zero uniformly as R, N"-» ^ for all (t,τ)e(—oo9 oo) x
(0, 1), where the support of ψ(x, y) is contained in [A, B] x [α', 5'];
where - c o < A < £ < o o , 0 < α ' < 6 ' < l .

Proof. Let us divide the interval (—oo, oo) x (0, 1) into four
disjoint sets [(-oo, A)U(B, -)] x (0,1), (A, B) x (6', 1), (A, B) x (0, ar)
and [A, 5] x [α', &']. For (t, τ) 6 [ (- oo, A)U(B, oo)] x (0,1), ψ(t, τ) = 0
since ψ(ί, τ) is supported by [A, 5] x [a\ 6'].

Therefore

' Γ [^-'V(a?, ») - ^(t, τ)]yTN{v, τ)^nR^x " l) dxdy
' J-oo (X — t)

- - ^ % τ c t6' Γ e^-»ψ(xf y)yTN{y, τ)SinR^x " ^ d x d y .
π 3a' J-oo (X — ί)

In view of Lemma 5.3 as R—>°°, this integral reduces to

t, y)TN{y, τ)dy .

Thus we want to show that for fixed t and 0 < y < 1

(5.5) lim ±k«lbτ
c \h'yψ(t, y)TN(y, r)dy - 0

jV Jζ J '

uniformly for all (ί, τ). Since ψ(t, y) 6 D(It),

It = {(t, y)/t is fixed , 0 < y < 1}

then ψ(t, y) is bounded say by K
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, y)yTN(y, τ)]dy

In view of the analogue of Riemann Lebesque lemma [6, p. 589],
for given e > 0 there exists a positive integer No such that

I \[vTΛy, 8e?e

πc\{2-τ-V)Vτ

for all N ̂  No, which is bounded by c's/(l - b')Vτ~. Therefore, for
all N ̂  No and for all (ί, τ) e [ ( - «., A)U(B, oo)] x (0,1)

since c ̂  1/2. Hence as ε is arbitrary, we have (5.5) as stated above.
Thus

(5.6)

1 fδ' Γ°°
—k{a\τc I \ [eσ{x~t]ψ(xf y)

—φίt,τ)]yTN(yfi (x — ί;

as i2, iV-^ oo, uniformly for all (ί, r) 6 [ ( - oo, A)U(B, oo)] x(0,1).
In a similar manner we can prove that for all (ί, r) e (A, B) x

(&', 1) and (ί, T) e (A, B) x (0, a')

(5.7)
7Γ J α ' J

», 2/) - Ψ(t, τ)]

X
(x-t)

uniformly as R, N—> °°.
Next we want to show that

' Γ — ί)

X ί/ Γ^d/, τ)dxdy > 0 as

uniformly for all (ί, τ) e [A, £] x [αf, &'].
Now

1 f&/ f00
—ka!b?c \ \ e^-^fix, y) - ψ(t, τ)]
7Γ J α ' J—oo

X
(x -t)
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k{ΆτΆ \[ψ(t, y) - ψ(t9 τ)]yTN(y, τ)dy ,

as R > °° .

Hence we need to show that for fixed t and a! <τ <bf

—k{:\τc \b'[ψ(ί, y) - ψ(t, τ)]yTN(y, τ)dy > 0 as N > oo

uniformly for all (ί, r) . Let F(y, t, τ)(y* - r2) = y~*[ψ(t, y) - ψ(t, τ)]
for 0 < 2/ < 1, 0 < τ < l , and t is fixed. Now define function

G(y, t, τ) = F(y, t, τ), y = τ

2y dy

G(y, t, τ) is continuous of y, t, and τ in the domain {t is fixed, 0 <
y < 1, 0 < τ < 1}. Now

\hy[ψ(t,y)-ψ(t,τ)]TN(y,τ)dy

, t, τ)(y> - τ*)TN{y, τ)dy

, t, τ)(y2 - τ*)TN(y, τ)dy

as the value of the integral remains unchanged by replacing expression
f(Vf t, τ)(y2 - τ2) by G(y, t, τ)(y* - τ2).

Let us now divide the interval a! ^ τ ^ V in to p equal parts
by the points α' = y0, y19 *,yP — bf and after choosing positive number
ε, p so large that

where Um and Lm are upper and lower bounds of G(t, y, τ) in ym^ ^
y ^ ym, a' ^ τ ^ V. Let G(t, y, τ) = G(t, ym_ί9 τ) + wm(t, y, τ) for
ym-i ^y^y^a'^τ^V so that | wjt, y,τ)\^Um- Lm.

Using uniform continuity of the function G(t, y, τ) over the
region {ar ^ y ^ δ', α' ^ r ^ &'} and following the lines in the proof
of the analogue of Riemann Lebesgue lemma [6, p. 589], for an
arbitrary ε > 0 we get a positive integer Nι such that

, V, τ)(y2 - τ*)TN{y, τ)dy c' ε
(l-δ')vr

for all N ^ iSΓlβ Hence for all (t, τ), ί is fixed and a' < τ < V
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a'
, v) - fit, τ)]TN(y, τ)dy

c-l\2 ntp 1

< — — where c >— .
- (1 60 - 2

where c
- (1 - 60 - (1 - 60 - 2

Since ε is arbitrary,

—K?bτ° [? [ y[f(t, y) - φ(t, τ)]TN(y, τ)dy > 0 as N

uniformly for all fixed t and τ e [a', 6'].
Thus

(5.8) π ]a']™

(x - t)

uniformly for all (t, τ) e [A, B] x [a', 6'] as R, N->oo. Combining (5.6),
(5.7) and (5.8), the lemma yields.

LEMMA 5.5. For ψ(x, y) e D(I), 0 < α' < 6' < 1

(5.9) Φ(s, jm) - Γ Γ ye+sxJn(jmy)Φ(x, y)dxdy .
Ja' J-co

(5.10) τMR,N{t, τ) = τ\ Σ r 2

 2 , . . -^- Γ [e~stJn(jmτ)Φ(s, 3m)}dw~\

converges in LUa,b,c,n to τφ(t, τ) as R, N —> oo /or α-M (ί, r) e (— oo, oo) x
(0, 1).

Proof. Since the integrand in (5.10) is a smooth function and
Φ is of bounded support, we may differentiate under the integral
sign, and obtain

X

N

V

L eSXyJ^«y^

x \ \ {-l)k'skjΐyesxjn{3my)φ{x,
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= Σ T Γ T T T - ^ - ( - l )V 'J.(j«τ)

Now we consider

(-If \" Γ DlΩk;ιV[e°xJn{jny)\yφ(x, y)dxdy .
Ja' J-co

Upon integrating by parts the inner integral k times and since
Φ(x, y) is of compact support this integral reduces to

Again integrating by parts 2/b' times we get

Γ Γ Dk

xΩ
k

n[y[φ(x, y)]yes*Jn(jmy)dxdy .
ja' J—co

Therefore

Dk

tΩlτ[τ-'-τMR,N{t,τ)} = -A- Σ Γ2

 2,. J Γ e^
2τr«=iJM

2

+1OJU-iί

Changing the order of integration, we obtain

A^Ur-'rAfjUi, r)]

= -A. Γ Γ
2?r J«' J -

(x — t)

Hence in light of Lemma 5.2 we have as R, N —> °°

Όh

tΩlττ-\τMB,At, τ) - τφ{t, τ)]

= k Γ Γ [β '—'Ilίfli .IjKa!, ?/)] - DΪΩlMt, T)]]
7Γ Jα' J-oo

χ

(a; - ί )
= 1. Γ Γ [e«*-»f(x, y) - f (t, τ)]^nR{-x ~ f) yTN(y, τ)dxdy

π Jα' J-oo {x — ί)

where ψ(x, y) = Z)̂ i2ί̂ [̂ (x, ?/)] which is again a member of D(I) with
support contained in [A, B] x [α', &']. Hence it suffices to show that
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i - O - ΓΓ Γ [β«-'ty(*f v) - f (ί, r)]Ί

χ

(x - t)
converges to zero as R, iSΓ —> oo uniformly for all (t, τ)e(— ©o, oo) x
(0, 1). This is true in view of Lemma 5.4, and thus the proof of
Lemma 5.5 is complete.

6* The main theorem* Let f(x, y) be a Finite-Hankel-Laplace-
transformable function and F(s, jm) the generalized Finίte-Hankel-
Laplace-transform of f as defined by

F(s, i J - <f(x, V\ e-s*yjn(jmy))

for se Ωf and {jm}, the positive zeros of Jn(z).
Then in the sense of convergence in D\I)

(6.1) f(χ, y) = lim - ^ Σ 2l«U™V] Γ ' V ^ jjds
2 J ( j ) >

where σ is any fixed number σf < σ < pf.

Proof. Let φ(x, y) be an arbitrary member of D(I). We wish
to show that

(-^T- Σ 2ίt*
U~y} \a*%*e"F(8, jjds, φ(x, y)

(6.2) \27Γi.m = l Ji+ι(jm) Jσ-iR

= {f{t, τ), ̂ (ί, τ)> as Λ, N

Since φ(x, y) e D(I) iff yφ(x, y) e D(I), then (6,2) will be equivalent to
showing that

r Σ 2i^y] [+tRe°*F(s, jjds, yφ(xy y)
i l J i ( j ) J i R

= </(«, τ), τφ{t, τ)> as 22, ΛΓ > oo .

As φ(x, y) e 2?(/), let us assume that the support of φ(xf y) is contained
in [A, B] x [α', δ'], where - oo < A < B < oo, 0 < α' < δ' < 1. As

2 ^ «=I Jn+i(jm) )°-iR

is locally integrable and since 2/̂ (ίc, ?/) e J9(J) then without limit nota-
tion (6.3) can be written as
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Put s = σ + iw. We get

Jα' J-oo L*=i Λ + i0m) 2τr J-Λ J

Since ^(x, #) has a compact support and the integrand is a continuous
function of (x, y, w) we can interchange the order of integration.

Σ „ 2,. , f̂ - Γ </(ί, r)f

X [ L ' L eS"J^
= Σ Γ2

 2,. .

where

, i ) = I S e**yjn{jmy)φ{%, y)dxdy .
Jα' Joo

Now by Lemma 5.1 we have

= Σ T2

2,. A(f(t, T), -A- Γ e-siτJn(jmτ)Φ(s, jm)dw)\ .

Since / is a continuous linear functional, we have

Σ T2

 2

f .

\ Λ ' O ) 2TΓ J /- Λ

Because feLU'a,b,cn and in view of Lemma 5.5, the last expression
tends to (f(t, τ), τφ(t,τ)) as R,N-+oo. This completes our proof
of the main theorem.

Uniqueness Theorem 6.1. If .Sf Jgς(/) = F(β, i J cmd
G(s, i J /or αίϊ sei2/ = {s/σ/ < Re (s) < /0/} α^d seΩg = {s/σg <
Re(s) < pg) and {jm}, positive zeros of Jn(z)f if Ωf Π Ωg Φ 0, and if
F(s9 jm) = G(β, im) for seΩf f] Ωg, then f — g in the sense of equality
in D'(I).

Proof. By above theorem, in the sense of convergence in D\I)
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= 0(», 1/).

Hence f — g, in the sense of equality in D'(I)
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