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NON-MINIMAL ROOTS IN HOMOTOPY TREES

MicHEAL N. DYER

Let = be a finite group which does not satisfy the
Eichler condition and let M be a 7r-module. A n-module M’
is a noncancellation example of M if MP(Zr)=M'P(Zx)? but
M=% M’. This note classifies the set .7 & y(x) of isomorphism
classes of noncancellation examples for M=7PZr, where
Z is the trivial z-module, M= A(x), the augmentation ideal,
and M=Zz/(N), where (N) is the ideal generated by the
norm element N=> ... It is shown that these noncancel-
lation examples yield nonminimal roots of the homotopy
tree HT(z, m) of (z, m)-complexes.

1. Introduction. Let # be a finite group. We say that a
m-module M satisfies the Eichler condition if the endomorphism ring
End(QM) has no simple component which is a totally definite quater-
nion algebra over its center (see [11, page 176] for a definition). A
finitely generated, Z-torsion free (left) m-module M has the cancella-
tion property (CP) iff for any z-module M’ such that M P (Zn)* =
M' & (Zz) we have M= M'. If MP (Zrn):= M' @ (Zrn)*, we say
that M and M’ are stably isomorphic. Note that this is completely
general, for by Bass’ cancellation [1, Corollary 10.2], M P (Zx)* =
M & (Zry if MD (Zr)" = M' D (Zz)"(n = 2). If M has the Eichler
condition, and M = N& Zr, then M has the cancellation property
[7], [11, Theorem 19.8].

In this paper we are interested in noncancellation examples. A
module M’ is a mnoncancellation example for M iff M' is stably
isomorphic to, but not isomorphic to M. We determine in §2 the
set 4% (w) of isomorphism classes on noncancellation examples
of certain modules M. In §8, we show that the Swan counterex-
ample [10, Theorem 3] for the generalized quaternion group of order
32 gives rise to noncancellation examples.

We apply this to the homotopy classification of (7, m)-complexes.
A (m, m)-complex is a finite, connected, m-dimensional CW-complex
with 7. X =7 and 7, X =0 for 1L <i<m. A (w,m)-conplex X is
called a 7root if there is no other (w, m)-complex Y such that Y v
S™ ~ X; a minimal root if the number (—1)"y(X) is minimal over
all (z, m)-complexes; otherwise a nonminimal 7root. In §4, we
show that the Swan counterexample gives rise to nonminimal roots
for (GQ(382), 4i-1)-complexes.

For = a finite group, a recent theorem of W. Browning [2]
(generalizing the Jacobinski cancellation theorem to the category of
pointed modules) shows that such nonminimal roots occur very
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rarely. In fact, for 7 finite, nonminimal roots for (m, m)-complexes
oncur only if z is periodic \and m =k — 1, where k is a period of
7. The situation for infinite groups is much less clear. However,
M. J. Dunwoody [3] has constructed an example of a nonminimal
root for (T, 2)-complexes, where T is the trefoil knot group.

I would like to thank R. Swan for his proof of the crucial
Lemma 3.4 in this paper and the referee for simplifying the hypo-
theses in Lemmas 2.4 and 2.8.

2. Noncancellation. Let 7 be a finite group of order n. For
each integer p prime to =, let (p, N) denote the ideal of the inte-
gral group ring Zr generated by » and the norm element N =
Sie-%. Each (p, N) is projective [8, Lemma 6.1]. If Z7 denotes
the units of the ring of integers modulo » and p is the residue
class of an integer p modulo %, then the correspondence p — class
[(p, N)] of (p, N) in the (reduced) projective class group K,Zz of
Zr defines a homomorphism

0:Zy — K, Zn
(see [8, Lemma 6.1]).

Note. For any pe ZF, we will abuse the notation and write
(p, N). This is well-defined up to isomorphism because if r =
s(mod n), then (, N) = (s, N).

Let .&°'(x) denote the set of isomorphism classes of projective
(left) ideals in the integral group ring Zz of n. By Theorem A of
[9], .Z”(r) is also the set of isomorphism classes of rank 1 projec-
tive m-modules. Let {P} denote the isomorphism class of the pro-
jective ideal P. Let SF(Z”') (respectively SW(Z')) denote the
subset of .&”'(w) consisting of those isomorphism classes {P} such
that the element [P] in K,Zr is zero (respectively, [P]eimd).
Furthermore, let F(x) ={pe Z}|(p, N) = Zz} and SF(r) = kerd =
{peZ}|(p, N)®D Zr = (Zrn)}.

We may identify the groups SF(x)/F(x) <> Z)/F(r) as subgroups
of the set .7°'(x) via p — {(p, N)}. The group action is given by
{(p, N)}-{(g, N)} = {(p, N) ®- (¢, N)} = {(pg, N)}. Thus

SF(x) - Z
F(rm) F(r)

N N c.FY(x) .
SF(&)cSW(g™)

Furthermore, the group Z7}/F(x) (respectively SF(x)/F(r)) acts on
the set SW(.F) (respectively SF(5°')) as follows: for each projec-
tive ideal P and pe Z)F, define P, = (p, N)@.P. Then let p-{P} =
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{P,}. In order to define the above tensor product, we note that
(p, N) is a 2-sided ideal, hence a right z-module ((p, N) is also an
invertible bimodule). Then P, has a left m-module structure using
the left module structure of P, because (p, N)@.P = Zznq-P +
ZnN-P(qge p is an integer) and hence is the left ideal generated by
(¢-P, N-P).

DEFINITION. Let M be a m-module. Let *, denote the class of
modules isomorphic to M. Let _4+"& () be the set whose elements
consist of *, together with the set of isomorphism classes of non-
cancellation examples of M. Thus

A G () = {*+x} UM} M' B (Zr) = M P(Zr) but M'+M}.

In this section we will compute .+ & u(x) for M = Z Zx,
where Z is the trivial 7-module, M = A(x), the augmentation ideal
in Zz, and M = Zrn/(N), where (N) is the ideal generated by the
norm element N. If a group G acts on a set S (on the left) as a
group of permutations, we denote the set of orbits by S/G.

THEOREM 2.1. The following sets are isomorphic:
(@) A Croz(m) = SW(F()/(Z.x|F(x))
(b) A Cun7) = AN E g2p(w) = SF(FH @) [(SF(7)[F(r)).

Note 2.2. (a) It follows from [11, Theorem 9.7], [4, Propositions
5.8, 5.4, 5.5] that if Mis Z& Zr, A(w), or Zx/(N), then M’ is stably
isomorphic to M if M P Zr = M P Z=n.

(b) Lemma 6.2 of [8] and Proposition 5.5 of {4] show that

M @G Zr = (ZD Zn)p Z=n

iff M’ = Z@P where P is a projective ideal and [P]cimd in K,Zx.
We will prove Theorem 2.1 after a series of propositions and
lemmas.

LEMMA 2.8. For any g€ ZF, and any projective (left) ideal
Pc Zr, P;/Pf = P/Pr, where P; = (¢, N)@.P and P*={pe Plap=
p, Vx € 7).

Proof. Let N-P =i, Z-NC(N)NP =sp-4-N = P*, where t,
and s, are positive integers such that s, divides ¢,. Then

Pa/P;f (qy N)®1P - q.P+P_N

(¢, N)®-P)Y ~ (¢s,Z + t,Z)N

1.P+ P-N ]
= ~ P/(s,Z)N = P/P* .
GoZ+t,Z)N [(s:2) /
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The second isomorphism is given by carrying g + &N —a + o' N
for any e, a’'c P.

PROPOSITION 2.4. Let P be a projective (left) ideal in Zmw and
n be the order of m. Then Ext,.(P/P, P?)= Z,. Furthermore,
the projective extemsions of P~ = Z by P/P* are Z} ={0-— P;—
|
Z
P,— P,/P;—0|qe ZF}, where P/P™ = P,/P;}.

Proof. To prove the first statement we localize: Ext}.(P/P*, P~)=
®D,. Ext,  (P,/P, P;). [6, Corollary 3.12, page 16.] Theorem
4.4 of [6] yields that Z, = is isomorphic to P,. Thus Ext,.(P/P~,
P~ = Ext,.(Zr/Zn", Z7™) = Z,.

The projective extensions are necessarily the units Z* of Z,
[5, 1.1] and hence are given by the diagram below. Choose seqge
Zy.

Z
0 l » P P/Ps—0
I I |
0 — P; — P, —— (P,/P; —) P/P*— 0
(sP JIL N-P}

Thus P, represents the element ¢ ¢ Ext (P/P7, P?) = Z,.

Note. We observe that the funetion Z = End P* — Ext}.(P/P7,
P7) given by pushouts is surjective because P is projective.

LEMMA 2.5. If h: PP Zn d (Zx), then P/P~@ Zmw = Zz/(N)PD
zr.

Proof. It is easy to see that P=(N)NP and that (P Zr) =
(N)NP)@ (N). Consider h = h|(PE Zr). h is an automorphism
of Z@ Z. By diagonalizing the (integer) matrix of %, one may
obtain a basis {e, ¢} for Zn* with respect to which A(N)NP) =
N-Zr-e¢,., Thus P/P~@ Zr = Zrn|/(N) P Z~r.

LEmMMmA 2.6. For each pe Z), P, Zr = PP (p, N).

Proof. Choose an integer ge pe Z* and consider the following
commutative diagram with exact rows:
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00— (N)— Znr — Zz/(N)—0

for

0 — (N) — (g, N) — (Zz/(N) — 0
I
VA

where h:(q, N)— Zz/(N) carries aq + ¢’ N—a + (N) and fla) =
q-a(a, &' e Zw). Then g is multiplication by ¢, also. By tensoring
the above diagram (*) on the right by P we obtain

Z

[
0— (N)®. P > P » Za)(N) ®: P— 0

K ls H

0— (N)@:P— (¢, N)®: P—> Zz/(N) @ P— 0.

Thus by Schanuel’s lemma [8, §1], ZP P, = ZP P by a map of
degree ¢ (multiplication by ¢ on the left factor). By Lemma 6.4 of
[8], [P,] =[P] + [(», N)] in K,Zr and hence P,P Zzx = PP (p, N)
follows from Bass’ cancellation theorem [11, Theorem 9.7].

LemMMA 2.7. If [P] is a member of im0, then P/P"@ Zmw =
Zr[(N) P Zr.

Proof.

P® Zr = (p, N)D Zn — PD Zx D (¢, N) = (Zn)¥(q = p™)
= P, P (Zn)* = (Z7)* (2.6)
= P, @ Zr = (Zr) (Bass cancellation)
= P,/PF P Z7 = Zx/(N) D Zr (2.5)
= P/P"@ Zrn = Zn|/(N) D Zr (2.3).

PROPOSITION 2.8. If P and Q are projective ideals in Zw, then
ZBP=7ZPQ iff Q= P, for some pe Z;.

Proof. 1f Q@ = P,, then ZH P = ZP P, follows from the proof
of Lemma 2.6. Z@P=ZPR implies that P/P" = Q/Q". Since
Ext (Q/Q", Z) = Z,, there is an extension 0 > Z — R — P/P~—0
such that R = Q. R is projective implies that R = P, for some
peZr.

The following proposition follows easily from Lemma 6.1 of

[8].
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PROPOSITION 2.9. Z@P PP Zr = Z P (Zr) iff [Pleimoc K, Zx.

PROPOSITION 2.10. Zzw/(N)P Zrn = M P Zr iff there exists a
projective ideal P, such that

@) Pul(Pyy =M _

(b) [Pyl =0 in K, Zx.
Furthermore, let Zn/(N)D Zn = M' @D Zr. Then M = M' 1ff Py =
(Py), for some pe Z;.

Proof. (=) By 2.7, P, @ Zn = (Zr)* implies Zz/(N )P Zr =
P)I/(PM): @ It = MP Z=.
(=) Consider the exact sequence
00—z

I
((N), 0)

Since a: Zrn/(N)D Zn = M P Zr, we have

(ZxY — Zr(N) @ Zr — 0 .

1

0— Z— s 70 ™ M@ Znr — 0

is exact. Zrm is a projective m-module implies that there exists a
projective ideal P, such that 8B: P, P Zn = Zxn P Zr and

0— Z— P, @ Zx -2 M@ 22— 0
[l
J'Pid

Thus 0 — Z — P, 2 M -0 is exact. M is torsion free and M~=0
implies that i'(Z) = P;. Thus P,/(P,) = M and [P,] =0 in K, Zx.
For the second part, suppose that P,. = (P,), for some pe Z}r.
Then M' = Py /(Py)" = (Py)/(Py)s = P, /Py = M by 2.3.
If M=M', then 0-Z—>P,, —-—M—0 is exact. By 24,
Ext (M, Z) = Z, and the set of projective extensions is given by

{0 — Pi — (Pu), — (Pu)y/(Pu); = Pu/Pi = M—0|pe Z}} .

Thus P, = (Py), for some pe Z).

The following proposition has a proof which is similar to that
of 2.10. For any projective ideal Pc Zm, let ¢: P— Z be the
augmentation.

PROPOSITION 2.11. A(n) P Zn = M @ Zr ff there exists a pro-
jective ideal P, such that

(@) 0— M — Py 70 with M= M,
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and

() [Pyl =0 in K, Zx.
Furthermore, let Am)@P Zrn =M P Zr. Then M =M iff Py =
(Py), for some pe Z;.

We point out that the proof of 2.11 is not quite “dual” to that
of 2.10, for it uses the relative injectivity of Zz and the fact that,
for any projective ideal P in Zx, Ext (Z, Pl/ker¢) = Z,, ete.

Proof of Theorem 2.1. We prove only (a), as (b) is similar.
Define a function v: SW(Z' (%)) — A" E 20z by Y{P}) = {Z @ P}[P]e
im 9), where P is a projective ideal in Zz. Clearly v is onto by
2.2(b). If ZOP = Z@ P’, then (2.8) implies that P’ = P, for some
peLr.

3. Nontrivial .+ % y(x). In this section we show that both
N C oz ) and A% ,e,-(Aut T) are nontrivial for 7 = GQ(32), the
generalized quaternion group of order 32.

DEFINITION. Let ¢ be an automorphism of #. Two m-modules
M, M’ are 0-isomorphic (M = ¢M’) if there is a function g8: M — M’
which is bijective such that B(x-m) = 0(x)B(m) for all xex, me M.
G is called a #-isomorphism. Let ¥, denote the class of all modules
stably isomorphic to M and 6-isomorphic to M for some fec Autx.
Clearly x, C%,. Furthermore, let _#"&,(Autw) denote the set
which is the union of %, with the set of Aut m-isomorphism classes
of m-modules M’ such that

(a) M'@(Zrny =M@ (Zr)
and

(b) M’ is not f-isomorphic to M for any 6 Autz.

DEFINITION. A 7w-module M is full if for each 0 e Autm, there
is a @-isomorphism M — M.

For example, it is clear that Z P Zr, A(w), and Zzn/(N) are full
m-modules.

PropPoOSITION 38.1. If M is a full m-module, then =, = %,.
Proof. We must show that M = M’ if M = (M’'. Suppose gG:
M — M' is an f-isomorphism. Let a: M — M be a 6 '-isomorphism.

Then the composite B-a: M — M’ is an id-isomorphism.

COROLLARY 8.2. If M is a full m-module, then N"Fy(w) # %y
yields V& y(Aut ) = *,,.
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Now let G = GQ(32), the generalized quaternion group of order
32, and let P be the projective ideal in ZG defined in [10]. P has
the following properties:

3.3 (a) PO ZG = (ZG)
but

3.3 (b) Pz ZG.

The proof of the following lemma was shown to me by R.
Swan. It generalizes (3.3(b)).

LemMmA 3.4. For any p< Zs, (p, N) £ P.

Proof. Suppose P = (p, N) for some pecZj. Then PHZ =
ZG P Z. Let A be the order considered in [10] and apply 4 &) —
to the above obtaining

(3.5) (AQ 26P) D UK 262) = 4D AR 264) -

The module & = AR 4P 2 4 [10, Lemma 1]. Now AR ,.Z is a
torsion module because QG = Q@4 X Q X -++, 50 QAR ¢,Q@ = 0. Fac-
toring out the torsion in (8.5) gives &7 = 4, which is contradiction.

COROLLARY 8.6. For G = GQR(32) and M = Z P ZG, A(GR), or
ZGIN), N Ey(G) # *y.

Proof. P % (p, N) for any pe Z;; implies that Z ) ZG % ZPP,
by 2.8. Clearly ZOPPZG=ZP(ZG® by 38.3(a). If A'=
ker {e: P— Z}, then by 2.11, A(G) D ZG = AP ZG, but A’z A(G).
Letting B = P/P% 2.10 shows that B ZG = ZG/(N) D ZG, but
B % ZG/(N), by 8.4.

4. Roots in homotopy trees. Let (7, m) be fixed, where 7 is
a group and m an integer greater than or equal to two. Let Ynun=
Y™, m) = min {(—1)"y(X)| X is a (w, m)-complex}. The level of a
(m, m)-complex X is the number (—1)"%(X) — Ymw. For x finite, it
is known that roots occur only at levels 0 (minimal roots) or 1. In
this section we give an example of a (x, m)-complex which is a
root at level one. As pointed out in the introduction, these level
one roots are rare (for =« finite), occurring only when 7 is periodic
and m =k — 1, where & is a period of #. Dunwoody’s example is
also at level one [3].

Question. Do roots occur at levels other than 0 or 1?

DeFINITION. The homotopy tree HT(w, m) is a directed tree
whose vertices [X] consist of the homotopy classes of (z, m)-com-
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plexes X; a vertex [X] is connected by an edge to vertex [Y] iff
Y has the homotopy type of the sum XV S™ of X and the m-

sphere S™.

COROLLARY 3.7. Let G = GQ(82). Then each homotopy tree
HT(G, 43-1)(© > 0) has nonminimal roots (at level one).

Proof. Consider ker {0: Z3 — K,ZG} (see §2). Recent compu-
tations of S. Ullom [12, Prop. 3.5] show that

kerd = + (Z2) .

Let +4"C = 4" Crgz¢ (Aut G). For each ae . 4%, choose a repre-
sentative Z @ P,ea. It follows from Theorem 9.1 of [4] that the
number of distinet homotopy classes of (G; 4i-1)-complexes at level
one is given by order of the set

U {kero/Q, .(Z @ P.)} .

ae NG

For a definition of the subgroup Q,_.(Z & P,) of kerad, see [4, page
272]. The number of distinct classes of #oots is given by the order
of the nonempty set

U _{ker9/Qu(Z @ P.)} .

ae S E—

We note that /& (G) # = for M = A(G) or ZG/(N) implies
that the homotopy trees HT(G, 4i-2) or (respectively) HT(G, 41) have
nontrivial minimal roots, with the possible exception of HT(G, 2).

Finally, the computations of Ullom [12, 3.5] allow one to show
that the homotopy tree HT(G, 3) looks like:

level

[X v 483 ; 4

[X v 383 3

[X v 283 2

[Xv 8 1
[Y]

[X] 0

where X is the unique (G, 3)-complex (up to homotopy type) having
Euler characteristic zero and Y is the (G, 8)-complex at level 1
having 7,(Y)= Z@ P. 1t follows that Q(Z P P,) — kero for all
ac 4% and hence the number of homotopy types of (G, 3)-com-
plexes at level one is given by the order of the set
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N C rezs(Aut @) .
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