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An extension of the Meijer transform to a certain space
generalized functions (distributions) is provided. The validity
of the inversion formula in the distributional sense is
established. Characterization theorem for the distributional
Meijer transform is proved and a structure formula for the
Meijer transformable generalized functions is given. An
operation-transform formula is obtained, which together
with the inversion formula, is applied in solving certain
integrodifferential equations.

1. Introduction. During the past decade a number of integral
transforms have been extended to various classes of generalized
functions. Some of these extensions have been incorporated by
Zemanian in his monograph [14]. The Meijer transform of ordinary
functions has been studied by many authors [2], [5], [8], and [9]
but its distributional theory has not yet been explored. The aim
of the present paper is to extend the Meijer transform to a certain
space of generalized functions and to establish certain related results.
The novelity of the extension lies in the construction of the testing
function space where instead of taking a differential operator one
has to think of an integrodifferential operator of a certain kind.

Let k, m, and z be complex variables, let ¢, o, and @ be real
variables in R!, and set s = 0 + 1w. The Whittaker functions W, ,.(2)
and M, ,.(z) are defined by the series [7, pp. 9-10]

(1) Mkm(z> — z(1/2)+me—<1/zn1F1<_;_ +m — k14 2m; z)
and
(2) Win(2)
— T [ — M, u(2) + M, w(2) | .
2 sin mﬂkp<%_m—k>l’(l+2m) F<%—I—m—k>l’(1—2m))

The function M, .(z) is analytic everywhere except at the points
2m = —1, —3, —5, -+, where it has simple poles. At these points,
however, the function M, ,(2)/['(1 + 2m) is analytic. The function
W,.n(2) is defined for all real and complex values of &k, m, and z.
It is a many valued function of 2. We shall take as its principal
branch that which lies in the z-plane cut along the negative real
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axis. It is a faet that W, ,.(z) = W, _.(?) [7, p. 11], therefore, we
lose no generality in restricting according to 0 £ Rem < .

The asymptotic behaviors of Whittaker functions for large
values of z are the following [2, pp. 734-735]. For any fixed ¢ > 0
and [z| — oo,

(3) e =W, o(2) = e M 2H1 + 0(§zb*1)}<—i23-7r +e<argz < %n’—s)

M, () = —LLE2M_gepky 1 0(j2] )
F(% —k + m)

(4) + 1;(1 + 2m) e—-(k—wlb—l/z)n-izk{l 4 O(IZI_l)}

1 3 )
_—— € ar —TT — €
< 27c+ < g’z<2

Gy, (2) = — LA 2M) oy o)

F(—é——lc%—m)

(5) + ];(1 + 2m) eFmminEiY 4 O(2]7)}
I(g+k+m)

_3 1 _>
< —2-7r+8<argz<27c €).

The other results that we shall need are the following differentiation
formula [7, p. 25]

d, - - - -
—{e W (@)} = — e e T Wy meaia()

(6) dx

and the indefinite integral [2, p. 733]
(x — ) S e My rto.m(28)e™ W, L 1po W(E8)8 ™ ds
(7) __ 1 [2mar s et 2= M, 1o (28)e T B Wit o, m(E8)

m — k
— (b + m)tPs7 e P My g, m(8)e P Wi gy p(28)] ©

Now, we reproduce Meijer’s inversion theorem in the original
form.

THEOREM (Meijer). Let F(s) be an analytic function on the half
plane Res > a = 0. For some real constant ¢ > a, let the integral
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|17 + iy

converge. Moreover, assume that F(s) ts bounded according to
|F(s)) < A, A>0 for Res=c¢ and that F(x + iy)—0 as ¢ — o
uniformly for —oo<y<eco. Finally, assume that Re k<—Re<1/2.
Then, for Res > ¢,

(8) Fo) = | e W nlat)(st) 101t

where

_I'Q =k +m) (" . k—1/2
(9)  fo) = GU I I [T et @

2. An integrodifferential operator. From the differential
equation satisfied by Whittaker funections [7] it is a simple exercise
to show that the kernels

(10) K@) & e Wipypm(@)a™ 712
and
I'l—Fk+m) p. k—1/2
H(x) A el —1/2,m !
(11) () & Td T om) M je, m(®)2

satisfy the integrodifferential equations

12) 4,K(ax) = —aK(ax)
and
13) V. H(ax) = aH(ax)

respectively, where 4, and V, are defined as below:
(14) Ax é Ag/:,m é x—1(x—sz—1x2k—1)(x1—k+mek—m)(x1~k—mek+m)
(15) Va; é me é x-l(msz—lw—2k—1)(x1+k+me—-k—m)(x1+k—mDm—k+m)

in 4, we interpret D™ = Y «e+dt and in V,, D' = Sx dt.

o 0

REMARK. The operator 4, can be applied on any C*(R-+) funec-
tion ¢ any number of times which satisfies the asymptotic orders

(16) $" (@) = 0@*™"), x—> o, r=20,12 ...

where & + 2Re k < 0. If ¢(x) possess exponentially small aymptotic
orders as x — oo, then this condition does not apply. The operator
7, can be applied to any C*(R+) function ¢ any number of times
which satisfies the asymptotic orders
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(17) ¢m(x) = O(xﬂvr) y X 0+ ’ T = Oy 1y 27 e

where « > 2Rek. Furthermore, if ¢(x)c C°(R+) is of compact

support in (0, «) then the two interpretations of D™ are identical

and the aforesaid asymptotic order conditions are not required.
Some properties of these operators are described below.

LEMMA 1. Let ¢ C*(R+) with the asymptotic orders (16) (or
A7) wn case of V,), then the integration operator (x™**D*x*') and
the differentiation operator (' *t™Dx* ™) ocecuring in 4, (or in V,)
when acting on ¢ in succession are commutative.

Proof. A simple computation shows that
(xl—-IH»mekfm)(x~ZIcD~1x2k—l)¢(x)

— xl—k‘ i'me-—m-—lc g: y2k‘1¢(y)dy

=g(x) — (m + k)™ S ¥ e(y)ydy , « + Re2k <0
and

(x—2kD-lx?/:~l><ml*lr}»'rILka—-m)@r(x)
— x~2IcD~lxk+m[xk—m¢’(x> + (k . m>xk—m—l¢(x)]

= (@) — (m + K)o S v e(y)dy , @ + Re2k <0 .
This proves the lemma.

COROLLARY. The differentiation and integration operators as
defined im Lemma 1 occuring in 4, and V, when acting on ¢ ¢ C*(R+)
satisfying (16) in case of V, and (17) in case of V, can be switched in
any order.

Proof. Since two differentiation operators are commutative the
result follows in view of Lemma 1.

3. The testing function space .#5™(I). Let I denote the open
interval (0, «), eI and let a be a real positive number and %k and
m be complex numbers. Assume that Re m = 0. Now, define _#4"(I)
to be the collection of all infinitely differentiable complex valued
functions ¢(x) on I with the properties (16) and

(18) 0u(9) £ 0(9) & sup leat T Aig@)| <oy m=0,1,2, -

where 4, is the integrodifferential operator defined by (14). The
sequence {0,};., 18 a separating collection of seminorms [14, p. 8]
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which generates the topology of .“¥™(I). It can be readily seen
that _#&™(I) is a locally convex, sequentially complete, Hausdorff
topological vector space. The dual space of #%™(I) is denoted by
™).

Let D(I) denote the space of infinitely differentiable complex
valued functions with compact support on I, equipped with the usual
topology. The dual space D’'(I) is the space of Schwartz distribu-
tions on I [14, pp. 33-34]. It is easily seen that D(I)c _“t™(I)
and that the topology of D(I) is stronger than that induced on it
by #&™(I). Hence the restriction of any fe Z5™(I) to D(I) is in
D'(I).

For 0 < @ < b the space ™ _#E5™ and the topology of _~%4™
is stronger than the topology induced on it by .#%*™. Consequently,
the restriction of fe 5™ to #&™ is in _#%™ and the convergence
in £&™ implies convergence in 5™,

We notice that for every fixed s such that Res >a >0 and
Rem = 0, (st)y ¥ e\ W, 1/0n(st) is 2 member of . ZF™(I).

4, The Meijer transform of generalized functions. Let f be
a member of %™ for some k, m, and a. Then, from the preceding
argument it is clear that there exists some real number o, = 0,
depending upon f such that fe %™ for all a > o, and fg¢ 7&™

for every a < oy.
Now recall the definition (10) of K(z). Since K(st)e . “t™ for

every s such that Res>a and Rem =0, we may define the
distributional Meijer transform of f by

19) F(s) & #nf(s) & (), K(st)) , Res> oy

where o, is called the abscissa of definition.

LEMMA 2. Let Rem = 0, and let a and b (>a) be two real
numbers. Then, for Re{ = b, # 0, —w <argl{ =mand 0 <t < oo,

(20) |e**(CE)™ e Wiy, m(CO)] < AL + ()

where A is a constant independent of ¢ and t, and N, = Re (m + k).

Proof. The proof can be given by following the technique of
Zemanian [14, p. 184] and using the estimates

jzm e W (@) <A for Rem =0 and |2/ 1
and

LA Wk+1/2,m(z)[ < B|z|zre_Rez for |2/ >1.
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These estimates can easily be obtained from the series representation
(2) and the asymptotic expansion (8).

THEOREM 1. (Awnaliticity of F(s)). For Res > a;, let F(s) be

the Meijer tramsform of fe Zb™ defined by (19). Then, F(s) in
analytic and

(21) L pis) = (£11), ZK(st))
ds 0s
where Re m = 0.
Proof. Using the differentiation formula (6), series representa-
tion (2) and the asymptotic expansion (3) we observe that 9/0sK(st) ¢
FEm(I) and hence the right-hand side of (21) is meaningful. Using

Lemma 2 and following the technique of Zemanian [14] used in
proving Theorem 6.5-1, p. 185, the proof can be given.

5. Inversion and uniqueness. In this section we shall prove
an inversion theorem for the distributional Meijer transform and
then deduce an uniqueness theorem.

LEMMA 3. For Res > oy, let F(s) be defined by (19). Let ¢ € D(I),
and set

¥ = | Klshio(®)dt, Res>0.
Then, for any fived real number r in (0, ),
e | e, Kepdo = (o, | veKehde)
where s = 0 + 1w and ¢ is fized with ¢ > max (0, o;).
Proof. Consider the integral
(23) 10) = | woKer)dw

where max (0, 65) < @ < 0. For Rem = 0 we can apply the operator
4. within the integral sign in (23) and write

o Tk A [(7)] = IS- W(8)e s K (st)do

<" s AQ + [sfdo < o

(by Lemma 2).
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This proves that I(t)e #%™ and hence the right-hand side of (22)
is meaningful. The equality (22) can be proved by following the
technique of Riemann sums [14, pp. 187-188].

LEMMA 4. Let ¢(x)e D(I) and let its support be contained in
[c, d], where 0 <c<d< o, Let Rem=0, Re(m —k)=0 and
Rek < 1/2. Then for fixed ¢ > a =0,

W) A L S K(s7) S“’ SO H(st)dtdw , s =0 + iw
27 J-r 0

converges in F ™ to ¢(t) as r— oo.

Proof. In view of the definitions of the operators 4, and 7,
we have

A" W (7) = —21? S; 4 K (s7) Sj (6 H(st)dtdw
- 2—1~ S_ K(s7) Sj $(t)(—1)"7 ™ H(st)dtdw

o S_ K(s7) S? o) H(st)dtdw

where ¢,(t) & 4{¢(t), on integrating by parts with respect to t »
times. Changing the order of integration we can write

d

24) A W.(2) = S Uit, Dou(t)dt ,
where

1 T'm—k) o, .

ULt 7) = L §k-i

(¢ 0 2ni I'Cm +1) t — 7
(25) % [2mats gt M, L (st)e™ B W,y n(ST)

— (b + m)T' 272> My 110, m(80)€ ™ Wi 1a(8T)5F80

Now, break up the integration (24) into integrations on c¢<t<
T—0, T—0<t<7t+0 and 74+0<t<d where 0<d<e¢ and
denote the corresponding integrals by I, I,, and I, respectively.
We shall show first that

Vi(7) & et I(7) — ¢a(0)], (n=12--)

converges uniformly to zero on 0 <7< « as r— . If either
T+0=c¢c or t—0=d, then I, =0 and 4,(z) =0. Therefore, we
consider the case ¢ —0 <7< d + 9.

Now, for s = ¢ & 4 where ¢ > 0 is fixed, using the asymptotic
orders (3), (4), and (5) we can write
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V(o) = e T |7 T 2 D ooy gyt

T Lde—s t —
[ D fol ) +of )
+0(5)0(z) e
@) G +mit s o( ) [T (TS0 - =)
X )1 + o(rs%-t)}dt]

_— earz.k+m¢n(z-) .

It is a simple exercise to show that the second and third terms
on the right-hand side of (26) are uniformly bounded on the domain

QL0 )e<t<d,e—0<t<d+ 9}

by ¢/3 for all » > 1 and 6 sufficiently small, say 0 = ..
Next, the difference of the first and last term in (26) can be
written as

en L Sa G(x, 7) sin (rz)de + e"f“”‘g&n(f)[—l- S” siny g, _ 1]
T J-s T J-ar Yy

where G(z, 7) is defined by

G, 7) = e"frm“‘-j;[ewf ) —6,0)] @ #0

— earz.m+k¢;<z-) xr = 0 .

Then G(x,7) is a continuous function of (x,7) for # + 7 >0 and
7 > 0. Consequently, the first term in (27) can be made less than
¢/8 for all » > 1 by choosing d small enough, say ¢ = d,., Now, fix
6 = min (5, §,). Since the second term in (27) converges uniformly
to zero on 0 < 7 < e as r — «, we conclude that

Iim|V(0) <e.

Since & >'0 is arbitrary, V.t) converges uniformly to zero on
0<7< 0 ag r— co,

Following the technique of Zemanian [14, pp. 191-194] it can be
shown that

earz.k+m[1<z.) and earz.k+m1‘3(z-)

converge uniformly to zero on 0 <7 < « as 7 — c. This proves
the lemma.
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Now, we are able to establish the following inversion theorem.

THEOREM 2 (Inversion). Let F(s) be the distributional Meijer
transform of fe Zt™(I) for Res > o, defined by

(28) F(s) & {f(1), (st) ¥ 2™V W 1y,m(SE))
where Rem =0, Re(m — k) =0 and Rek < 1/2. Then for each
¢(x) e D(I),

/1 I'A+m—Fk) (" —k—1/2,,1/2st
@9) = ams T'T + 2m) | a0y lods, 50

= (f(®), 3(8))

where o 18 any fixed number greater than a.

Proof. Recall the definitions (10) and (11) of K(x) and H(x)
respectively. The theorem will be proved by establishing the follow-
ing string of equalities.

(30) (=" FoH(sts, )

(31) — Sw S(6)di-L S Fe)H(st)d® (s = o + io)
0 27'[,' —r

(32) = =\ ), Koo || s Hstdtdo

(33) = <f(r), _21; S_ K(s7) r ¢(t)H(st)dtdw>

(34) — (f(z), 3(7)) .

Since ¢(t) is of compact support (30) is a repeated integral on
(t, ®) and consequently (30) equals (31). Since by Theorem 1 F{(s) is
analytic, for fixed » we can change the order of integration and
arrive at (32). To which an application of Lemma 3 yields (33).
Now, (33) goes into (34) by Lemma 4.

From the above inversion theorem the following uniqueness
theorem can be deduced as a corollary.

COROLLARY. Let F(s) = #,,.f for Res > oy, let G(8) = _#; n9
for Res > o,, and let F(s) = G(s) for Re s > max (g4, 0,). Then in
the semse of equality in D'(I), f = g.

6. An operation-transform formula. Now, we shall obtain an
operation-transform formula which may be used in solving certain
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integrodiffierential equations.
We define an operator 4. Z%™'(I)— 7™ (I) by the relation

(2 f (@), ¢)) & {flx), 4.0(2))

for all fe ZEt™(I) and ¢ #5™(I). Let us call 4* as the adjoint
of the operator 4, defined by (14). It can also be shown that for
all r =1,2,3, --- and ¢(x) e ~Em(I),

{(2)f(@), 6(2)) = (@), (4)'g(x)) .

It can be readily seen from the definitions of the operators 4, and
V., given in §2 that if f is a regular generalized funetion in _#%"'(I)
generated by a member of D(I), then

Lf=r.f.

THEOREM 3. Let F(s) be the distributional Meijer transform of
f for Res > o;, then for any positive integer v,

(35) Al (4E)f1 = (—8)"F(s) .
The proof of trivial.

7. Characterization of Meijer transforms. The following
theorem gives a characterization of distributional Meijer transforms.

THEOREM 4 (Characterization). Let Rem =0 and Rek =<
—Rem < 1/2. Then a mnecessary and sufficient condition for a
Sunction F(s) to be the Meijer transform of some generalized func-
tion according to our definition given in §4 is that there be a half-
plane {s|Res = b > 0} on which F(s) is amalytic and bounded ac-
cording to

(36) [F(s)| = Py(Js])

where Pys]) is a polynomial in |s| depending in general on the
choice of b.

Proof. Necessity. By Theorem 1 F(s) is analytic function of s
for Res > o;. Choose two real numbers a and b such that o, <
a <b. Then, K(st)e #&™ for Res>b. Now, by the boundedness
property of generalized functions [14, pp. 18-19], there exist a
constant C and a nonnegative integer » such that

[F(s)] < € max o,(K(st))

= Cmax sup |e®t" 4™ {e™(st) ™ W11, m(sD)}

0Ensr 0<i<oo
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= Cmax sup |e*t" s e/ (st) 2P Wiy 1/, m(SE)|

0=ns7r 0<t<oo

= Cls|*reli™ sup |e*(st)" " ¢ Wi, m(st)]

where A, = Re(m + k) and v, = Im (m + k). The inequality (36) now
follows from Lemma 2.

Suffictency. Let ¢ be a real number greater than 1 and let n
be a positive integer such that n — q is greater than or equal to
the degree of P,(|s|). Then, s™"F(s) satisfies the assumptions of
Meijer’s theorem stated in §1 and therefore, for Res > ¢ > b,

(37 s "F(s) = Sw 9()e 2 W i1 /o. m(SE) () F V2L
0
where

—_ c+ioo
(38> g(t) = %_EE% Sc_im S—nF(S>el/Zsth_1/2’m(8t)(st>k—1/2ds .

Now, consider the expression

g(t)e _ 1 7rd—%k+m) Sc”""

A+ ¢ 2mi (1 + 2m)

% [e‘“e“z"‘Mk_l/z,m(st)(sw‘"“”]ds )
@+ 7 + [s|™)

Using the series representation (1) and the asymptotic expansions
(4) and (5) and following the technique of the proof of Lemma 2 it
can be shown that

sk 4 [s|T*)F(s)

c—1co

(39)

o™ (st) ™" 2 My m(s8)] = DAL + [s] )L + £77)

on the line s =¢ + 1w, —c < ® < o« uniformly for all te(0, =),
where D is a constant independent of s and ¢. Furthermore,

7L + [ F(6)] = (s|Pls]) + lslr~Py(lsl)ee
< B(js|™* + [s}) ,

where E is another constant. Since ¢ >1 and », <0, it follows
that for any d>e¢, e #g(t)(1+¢t*)™" is absolutely integrable on 0 <t < o,
and consequently e %t %g(t) is also absolutely integrable on the same
interval. Hence g¢g(t) generates a regular distribution of ~Z&™'(I).
Therefore, (87) represents a distributional Meijer transform for
Res > d.

Now, let f = (—4¥)"g. Then, by Theorem 3,

Aol f1 = 8" A, ul9] = F(s)
for at least Res > d. This completes the proof.
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We conclude this section with the following structure theorem.

THEOREM 5. Let f be an arbitrary element of Zt™'(I). Then
there exist bounded measurable functions g,(x) defined for x > 0 and
Jort1=0,1,2, ---, ¥ where r is some nonnegative integer depending
wpon [ such that for arbitrary ¢e D(I), we have

(40) Syoy = (g ema =z | gaat ] o)) ,
where V, is the integrodifferential operator defined by (15).

Proof. The proof is analogous to a number of proofs available
in the literature [10, pp. 272-274; 6, pp. 14-15] and therefore is
omitted.

8. Applications. Now we will apply our inversion theory to
the solution of certain integrodifferential equations.

(a) Solution of P(4¥)u =g. Let P be any polynomial. For
Rem = 0 and Rek < —Rem < 1/2, consider the operational equation

(41) PUHU =¢g 0< < oo

where ¢ is a given Meijer transformable generalized function and #
is unknown generalized function.

Now to determine %, using (35) we apply the distributional
Meijer transformation to (41) and get

P(—s)U(s) = G(s)

where G(s) = _#;,.9 for Res > g,. Let o, be the largest of the real
parts of the roots of P(—s) = 0. Then G(s)/P(—s) satisfies hypotheses
of Theorem 4 on some half-plane {s|Res = b > max (0, g,, 0,)} and
hence it is a distributional Meijer transform of some ue _“%™. We
may apply the inversion formula (29) to get u. Thus

A —k+m)
(42) w@) = lm o T T 2m)

X Saizjr[G(s)/P(—S)](St)”k"”ze"ka_l/g,m(st)ds

in the sense of equality in D’(I), which is a solution of (41). This
solution is in fact a restriction of we #&™(I) to D(I), and is unique
in view of the corollary following Theorem 2.

By arguments preceding Theorem 3 one can easily verify that
# as determined by (42) is also a solution to the distributional
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integrodifferential equation
(43) Pe™u =g .

(b) Solution of P(V;*™)¢ = +. Suppose that +r is a given Meijer
transformable conventional function possessing the asymptotic pro-
perties:

¥(x) = 0(e™) & — oo
=0(@) xz—0+

where a > 0 and Re(+m — k) + p +1>0. We wish to find ¢ such
that

(44) P(47%™)¢ = .
If we assume that
"(x) = 0(e”), x—> o0
=0 "), z—0+
for each r =0,1,2, ---, we can apply Meijer transform (8) to (44)
and get
(45) r P g K (sz)dw = U(s)

where Res > max(a, b) and ¥(s) is a Meijer transform of ().
Now, using the formula [2, p. 733]

’%{zke—l/zz Wk,m(z)} = - zk—-1e~1/zz Wk+l,m(z)

and integrating by parts the left-hand side of (45), we get
P(—38)0(s) = ¥(s)

where @(s) is the Meijer transform of ¢(x). If we further assume
that Res = ¢ > max (a, b, 0,), Where o, is the largest of the real
parts of roots of P(—s) =0, we find that ¥(s)/P(—s) satisfies condi-
tions of Meijer’s theorem (given in §1), and hence is the Meijer
transform of some function ¢(x) defined by

#oy = Tk +m)
(46) 2nil'(1 + 2m)
X [T(s)/P(—s)lds .

¢+ico
S 0% My (8 (@) "+

c—1ico

Following the technique of proof of sufficiency part of Theorem 4
it can be shown that ¢(x), as a regular distribution, is a member
of ~k™(I), where d > c.
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