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For pell, +0) let %", be the space of distributions on
R” not growing faster than some power of exp (|:|?), and
let 22", be the space of distributions on R» of finite order.
For every p € (1, +co] the existence of convolutors f is proved
such that fx %", = %", but f+ %, + 2%, for every s < p.
The main step in the proof is a construction of slowly
decreasing entire functions which satisfy suitable estimates
of Paley-Wiener type and which have countably many zeros
of orders as high as possible.

1. Introduction. Let &) (resp. ¥’) be the space of Schwartz
distributions on R" of finite order (resp. of compact support). &’
is the space of convolution operators on <. Recall that a function
F:C*— C is said to be very slowly decreasing if it satisfies an
inequality of the form

(1) sup{|F(z + w)|; we C*, |w| =< r(x)} = const exp (— Nw()) ,
reR",

where r: R* — R, is a function satisfying
(2) r(x) = o(w(x)) as x— oo

and where @ equals log (1 + |-]) and N is a constant. The following
theorem is well-known.

THEOREM 1 (Ehrenpreis [3], Hormander [6]). For every fe&’
the following conditions are equivalent.

(i) [+ = D5

(ii) f=xhas a fundamental solution in .

(iii) The Fourier transform 7 of f is very slowly decreasing.

Let 97, »p = 1, be the space of distributions on R" which do
not grow faster than some power of exp (|-]?), and let &,(.9¢",) be
the space of distributions which decrease faster than any negative
power of exp (|-|?) (for the precise definitions see [8, 9]). Zu(#7})
is the space of convolution operators on .27,. A function F:C"— C
is said to be g¢-slowly decreasing, g€ (1, + ], if it satisfies (1) with

(3) r = Aw"" + B
where A, B, N are constants and @ is equal to log (1 + |-|); a oco-
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slowly decreasing function is also called extremely slowly decreasing.
Recently Sznajder and Zielezny proved an analogue of Theorem 1
for the spaces .%7,; for the case p = 1 see also Grudzinski [5]:

THEOREM 2 (Sznajder and Zielezny [8, 9]). For arbitrary p e
[1, + o) and fe P 5%;) the following conditions are equivalent.

(1) X =

(ii) f*has a fundamental solution in 5%,

(iii) fis g-slowly decreasing where 1/p + 1/q = 1.

In the present note we are concerned with the relations between
the various types of slowly decreasing functions defined above.
Observe that we have the following inclusions:

Ly Ty for 1£p=<s< o0
and
O HNDO(FN)DE" for 1<p=<s<+x.

For a few moments let us denote 2% and &’ by 2. and Z¢(%".).
Let p,s€[l, +c] and fe,(.%",) where »: = max{p,s}. Since
trivially a g¢-slowly decreasing function is g,-slowly decreasing for
every ¢, < q and also very slowly decreasing, Theorems 1 and 2
show: if s > then fx2¢, =2, implies f+ %, = % ,. Now,
the main question we are dealing with in this note is whether or not
this assertion remains valid if s < p. Under additional assumptions
on f the answer is positive as is shown by the following result to
be proved below.

THEOREM 3. Let f e (9%,) such thatl 7 is q-slowly decreasing
?i)here 1/p +1/q = 1. If f belongs to ¢ %) for some t > p then
f s extremely slowly decreasing.

Combined with Theorem 2 this leads to

COROLLARY 1. Let fe&u( ;) such that f» 2%, =%, If f
belongs to ¢ (F7:) for some t > p then fx ¢, = 9%, for every
sell, p).

In general, however, the answer to our question is negative.
For the space <7, this was established by Malliavin who —according
to Hormander [6, Remark on p. 168]—proved the following unpublished
result.
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THEOREM 4. There exist distributions f €&’ such that f 18
very but not extremely slowly decreasing.

Combining this with Theorems 2 and 3 we obtain

COROLLARY 2. There exist distributions [fe &' such that
Dy = Dy but [+, + 5%, for every pe[l, + ).

According to a personal communication by Prof. Ehrenpreis a
proof of Theorem 4 can be obtained by modifying the construction
in [4, §2]. Below we give a proof which is based on the slightly
simpler method of [4, §4]. It is the same method which we use
to establish the negative answer to our question for the spaces .57,
p < + oo, namely we shall prove

THEOREM 5. For every pe(l, +oo) there exist distributions
feZu( 2 ,) such that f is q-slowly decreasing but mnot q,-slowly
decreasing for any q, > q. Here 1/p + 1/q = 1.

COROLLARY 3. For every pe(l, + ) there exist distributions
fecH%,) such that fx5¢7, = .2, but fx 9, + 5%, for every
sell, p). In view of Theorem 8 these distributions do mot belong
tO Ut>p ﬁé‘( 7 ;)'

The proofs of Theorems 4 and 5 follow the pattern of Ehrenpreis
and Malliavin [4]: For the different kinds of slowly decreaing Fourier
transforms of convolutors we derive estimates of the orders of their
zeros (see §4); then we construct examples showing that these
estimates are sharp (see §6).

Since analogues of Theorems 1 and 2 hold for Beurling distribu-
tions as well (see for example Grudzinski [5] for the case p = 1)
we replace the function log (1 + |-|) by an arbitrary Beurling weight
function @ throughout the rest of the paper. This requires hardly
any additional effort in the proofs.

2. Notation. We stick to the customary notation of Schwartz’
distribution theory. If F: C" — C is an entire function we write
My(z,7): =sup{{F(z + w)|;weC |lw| <7}, z€C", r>0,

and denote by ord (z, F') the order of z as a zero of F (which is by
definition equal to zero if |F(z) # 0). By I, we denote the set of
continuous funections @: R — [0, o) such that

(@) 0=0w0) 2w +y =0 + oy, zyck",
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(B) A+ |-D™'we L(R"),
(7) w=a-+blogd+ |-,

where a € R and b > 0 are constants (see Bjorck [1, Definition 1.3.22]).
It follows from (B) (see [1, Corollary 1.2.8]) that

(4) o(x) = o(|lzl/log |2|) as & —— 0.

Note that log (1 + |:|) belongs to M,. &, is the space of Beurling
distributions with compact support, w € M, (see [1]).

We call a function F:C"— C g¢-slowly decreasing (resp. very
slowly decreasing) with respect to we M, if (1) holds with » being
of the form (3) (resp. (2)). If F is «o-gslowly decreasing with respect
to w it is also called extremely slowly decreasing with respect to .

3. Proof of Theorem 3. We prove the following version of
Theorem 3.

THEOREM 3'. Let weM, and qgell, + ), and let F:C"— C be
an entire function satisfying an inequality of the form

(5) |F(@ + iy)| < Cexp (No(x) + S|yl , «, yeR",

where C, N, S are constants. If there exists a number Q¢ (g, + )
such that F is Q-slowly decreasing with respect to @ then F is ex-
tremely slowly decreasing with respect to w.

COROLLARY 4. Let fe&!. If f is g-slowly decreasing with
respect to w €M, for some q > 1 then [ is extremely slowly decreas-
wng with respect to .

This contradicts an assertion at the end of [2].

Proof of Theorem 3'. We follow the proof of [5, Satz 11] which
is identical with Corollary 4. Let us fix » > 1 and 7 > 0, and set
R: =7, For v:=Ilog(R/r)/log R we have 1l/y =147 and
1 —v)/y =7. Choose z, we C* such that |w| =1 and |F(z + rw)| =
M(x,r). By applying Hadamard’s Three-Circles-Theorem to the
function Ca»\1— F(x + ww) we obtain

(6) My(x, 1) = M(x, rV/)"Mp(z, r)"7, xz€C".
From (5) and (@) we conclude

(7) M(z, R) < Cexp (Nw(x) + 2SR* +d), xzeR",



SOLVABLE AND NON-SOLVABLE CONVOLUTION EQUATIONS 565

where d is the constant defined by d: = sup {No(x) — S|x|; z € R"}
which is finite by (4). Setting 7: = ¢/(Q — q¢) we see that R? = »9;
hence for » = Aw(x)"® we have R? = A’w(x) where A’ is another
constant. Inserting this into (7) and combining the resulting in-
equality with (6) and with (1) where r is of the form (8) with ¢
replaced by @ we arrive at the desired conclusion.

Note that F' = f satisfies (5) with @ = log (1 + |-|) if fe W57
and 1/p + 1/g = 1. So Theorem 3 is a special case of Theorem 3'.

4. Estimates for the orders of the zeros of slowly decreasing
entire functions. In this section we derive the estimates for the
orders of the zeros of slowly decreasing entire functions which we
need for the proof of Theorems 4 and 5. For simplicity we consider
the real zeros only.

THEOREM 6. Let weM, and fe&.. If f is very slowly
decreasing with respect to @ then

lim sup ord (z, f)/w(z) = 0 .
x>0, € R?
THEOREM 7. Let weIN, and qc(d, + o], and let F:C* — C be

an entire function. If q < +oco we suppose that F satisfies an in-
equality of the form (5); if ¢ = + o we suppose that F satisfies

(8) |F(x +iy)| = Csexp (Nw), = yeR" [y =8, S>0,

where Cg and Ng are constants depending on S.
(1) If F s q-slowly decreasing with respect to @ then
lim sup ord (x, F')/w(x) < + o .

z »0, € R%

This limit is equal to zero if im addition the following condition
holds:

(9) F satisfies () (resp. (8)) for every S >0 with a constant
N = Ny being independent from S.

(ii) If there is Q > q such that F is Q-slowly decreasing with
respect to @ then

lim sup ord (x, F) log w(x)/w(x) < + o .

z—o00,2€ R®

Note that if fe%’ and if f is extremely slowly decreasing
with respect to @ then assertion (ii) of Theorem 7 applies to F' = f.
This special case of Theorem 7 as well as Theorem 6 are contained
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in [5, Satz 13]. The proof of Theorem 7 is similar and is based on
the following lemma.

LEMMA 1. Let F be an entire function, and let . R — [0, 4 o)
and ¢:[0, +c0) — [0, + o] be weight functions such that

(10) |[Fz + 1y)| = exp (v(x) + ¢(ly]), x, yeR".

Suppose that + satisfies (@) and that ¢ is increasing. Then for
arbitrary 6, r > 0 and x € R" the following estimate holds:

ord (z, F') = 0(y(x) — log My(x, r) + ¥(rs) + ¢(10))
where (t): = max {y(y); y € R, |y| < t} and ry: = r exp (1/6).

Proof. Choose w € C" such that |w| = r and |F(x + w)| = M(x, ),
and define entire functions G, g:C— C by G(\): = F(x + ww) and
g\ = NMODG(N). The maximum principle yields B9 M,(0, R)=
M0, R) = M,0,1) = M,0,1), R>1. Since ord (x, F') < ord (0, @),
My(x, rR) = M0, R) and M40, 1) = M,(x,r) we obtain by taking
logarithms and setting R: = exp (1/6)

ord (x, F') < 6(log M (x, rR) — log M, (x, 1)) .
An application of (10) and («) leads to desired inequality.

Proof of Theorem 7, (1). If ¢ < +oo fix & >0 and set ¥ = Nw,
6 =S|-|1and r = A(w(x) + 1)?. Then ¢(ry) = (4,)°S(w(x) + 1). Note
that by (4) there is a constant d(d) such that J(ry) < w(x) + d(g).
Hence applying Lemma 1 and using (1) we see that the lim sup in
(i) is not greater than (N + N + 1 + S(4,)9). If (5) is valid for
every S > 0 with a constant N being independent from S we choose
S to be (4,7 Since 6 can be taken arbitrarily small the lim sup
in (i) is equal to zero. If ¢ = + o fix # and set

log C,, for |yl =7,

) = 4+ o otherwise

and argue similarly as in the case ¢ < + oo.

Proof of Theorem 7, (ii). Here ¢ < 4. Apply Lemma 1 to
w = Nw, ¢ = 8|9 r = A(@() + 1)"? and 6 = t/log w(x) where t: =
g/(1 — q/Q). Note that e”r*<A%(w(x) + 1).

5. The main lemma for the construction of slowly decreasing
functions with high order zeros. The lemma of this section is
essentially due to Ehrenpreis and Malliavin [4, §4].
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Let ({.)r.~ be a sequence of real numbers, and let (m,) and ;)
be sequences of positive numbers. Our main assumption for the
construction of slowly decreasing entire functions postulates the
existence of a sequence of numbers v, = 1 with

(11) Y. = kﬁ] m;, exXp <——g~uk) < H oo

such that the points ¢, lie so far apart from each other that

(12) the intervals J,: = [t, — 4, &, + 7] (Where 7,0 =y.l,) are
pairwise disjoint having distance greater than 1.

Moreover, we assume that the sequence (I,) converges to + oo 80
that we can define a continuous function A: R — [0, + ) by

(13) hw): =+ S max{yl — b, 7%, yek.
enN k

LEMMA 2. Under the preceding hypotheses there exists an entire
Junction F.C— C having the following properties:

(14) Fo @1+ -7 exp (—h(Im(+)) — 2r|Im ()]) € Ly(R*) ,

(15) ord(tk,F)g-’;ﬂ—1, keN,
T

16)  sup{lF(@ + wiuck, 1u\§1}z{1 A

e if wed\l,

where

Ik: = [tk - ilk, tk -+ —g—lk] .
T T

Proof. The idea of the proof is as follows: First a suitable
subharmonic function is constructed which reflects the desired
properties of F' (this step is essentially [4, Lemma 4]); then F is
found by means of the theory of solution of the Cauchy-Riemann
equations as developed in Hormander [7]. The second step is sug-
gested by a result of Bombieri’s (see for example Hormander [7,
Theorem 4.4.4}).

Step 1. Define ¢g: C-—>[— o, 0] by

0 if Imz =1
9(&): = lilo L) it Ime =1
21 et 4+ 1
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As is eagily calculated, ¢ has the following properties:
am g — (1/27) log|-| is harmonic in the strip {z€C;|Im z| < 1}

(note that g restricted to the strip is Green’s function for the strip),

(18) g(@ + 1) = -—2-exp<——'7—|w1) , T, YER, x| = 2 ,
T 2 T

and

(19) Ag =0 — "r’” ® (5—5—1 + 5—1)

where o6e &’(R?) and 0,,0_, € &'(R") are the Dirac-distributions at
0e R* and +1, —1 ¢ R respectively and where (x): = (4 cosh (wx/2))7,
reR. We set

(20) v(z): :kez,ﬁrz,hz)(z ; tk) , zeC.

k

If RezeJ, then [Re(z — t)/l = v,. So by (12), (18) and (11) we
obtain

0 if Reze U,
(21) v(z) = —v + ‘
l

mkg<z ; t") if Rezeld,

k

Hence v: C — [— <0, 0] is a well-defined upper semicontinuous function.
Since the series (20) converges in the space L},.(R?), differentiation
(in the distribution sense) and summation commute, and using (19)
we obtain

(22) dv = 3 by, — 3 e @ Oy, + 0o)

ke N lk

where 0,, € &'(R*) and 0., 0, € & '(R') are Dirac-distributions and

Prl2): = <4 cosh <7T(x2—l:t’“)>>_l , *eR.

Since +, < 1/4 and since

dh _ 1
dy? 4

My /o
2 - (Ovzk + 5~zk)
keN k

it follows from (22) that the function w: C—[— o0, + o) defined by
w(?): = v(z) + h(Im 2), z€C, is subharmonic.

Step 2. For zeR and » >0 we denote by S(x, ») the open
square {t -~ 1y; |t — x| <7, |yl <r}. Let us choose a test function
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X e Cy(R?) such that

3 @ supp2cS(0, 1), (®) Lhow=1, @ Zz0.

By (x,) we denote the sequence of numbers x € (1/2)Z such that the
distance of x to every I, is greater than 1/4. Define G: C — [0, 4- =)
by

/ 0 on 1’32\nLoj1 S(oc,,, %)
(24) G: = <{e™7, X on S<xn, -:11—> if S(ocn, i—) NJ, #= O
e X on §(z., i_) it S(x, %) NUJi=0

Note that G is well defined by (23.a) and (12). Since G is constant
on every square S(x, 1/8), x €(1/2)Z, 0G/oz is identically zero there,
and we define by

oG . . oG

o9u 2 f o>

(25) @: =132 (#)/sin 2wz if zesupp 73
0 otherwise

a C»-function H: C— C. Because suppG NI, = @ by our choice of
(z,) we derive from (21) and (18) that |6G/0%Z| < conste®. Since
|sin (x + 1Y) = [sinx|* + [sinh y* the same inequality (with a new
constant) holds for H. Consequently the function He (1 + |-
belongs to L,(R?*). By Hormander [7, Theorem 4.4.2] we obtain a
solution u € Li..(R*) of the equation

ou

such that
27 ue (1 + |- e L,(R?) .

We set F(z): = G(z) + u(z)sin2zz, z€ C. By (26) and (25) we
have 0F/oz =0, i.e., F is an entire function. Since |G|, too, is
majorized by const ¢’, it follows from (27) that

(28) Fexp(—w — 2r|Im (+))(1 + [-])7* € Ly(R?) .

Since » <0 (14) is a consequence of (28). (15) follows by
noticing that (28) and (17) imply the local square-integrability of
21— |2 — t,|"* near ¢, where mn,: = ord (¢, F') — m,/2r, and this can
only be true if n, > —1. Finally (16) results from the definition
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(24) of G and from the choice of (x,) since F(x,) = G(x,) and X(0) = 1.

REMARK. If we define g by

1 z .
1 ’ \ f Imz=<1
g(z): = {27 g 21—z ! mE=

v 0 otherwise

and take X .,h instead of A in the statement and in the proof of
Lemma 2 we obtain functions F' which are bounded by (1 + |-|)* on
the lower half plane, provided we change the hypothesis (11) into

1y 2 Mfvy < + oo .

This means, however, that the intervals J, become very much
larger, in fact so large that no longer all the examples of the
following section can be obtained by the modified version of Lemma
2. Nevertheless, the examples needed for the proof of Theorems 4
and 5 can be obtained in this manner.

6. Slowly decreasing entire functions with high order zeros.
From Lemma 2 we now derive theorems on the existence of slowly
decreasing entire functions with high order zeros. Together with
our estimates for the orders of the zeros of slowly decreasing
functions they yield proofs of Theorems 4 and 5.

THEOREM 4'. Let weM,. For any function m: R, — R, such
that

(29) m(t) = o(@)) as t—> oo

there exist f € &' and (t,) C R, such that F is very slowly decreasing
with respect to w and t, is a zero of f of order greater than m(t,)
for every ke N.

It we set m: = w(max {1, log ®})™* we obtain fe&’ such that
7 is very but (in view of Theorem 7, (ii)) not extremely slowly
decreasing with respect to w. This proves in particular Theorem 4
(if » > 1 take tensor products).

Proof of Theorem 4'. Choose (t,) C R, with t,,, = 2¢, such that
Seen M/l converges where m,: = 2w(m(t,) + 1) and I,;: = V'mE) o).
Changing m if necessary we may assume that [,,, =1, + 1. Note
that with y,: = (2/)log w(t,) (11) is valid. Since by (4) the function
Vmwlog ® is o(t) as t— o, (12) is valid if we choose ¢, large
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enough. By Lemma 2 there is an entire function F:C— C such
that ord (¢, F) = m(t,) and such that (14) and (16) hold. Since
h < const|-| (14) implies by the Paley-Wiener theorem: There is
fe&’ such that F =f. To conclude from (16) that F is very
slowly decreasing with respect to @ it suffices to demonstrate the
existence of a constant ¢ and of a sequence (¢,) converging to zero
such that

(30) . Z<ewlx) +c¢c, x€l, keN,
‘and
(3L) m, = ewx) +¢, x€d, keEN.

By (4) there is ¢’ such that w < |-| + ¢/. By (29) there is a sequence
(,) converging to zero such that I, < n,0(t,). (30) follows since
o(t,) < o) + o, —2) <o) +1, + ¢ for xel,. To derive (31)
we choose by (4) a constant R > e such that 2w(y) < |y|/log |y| for
every y € R with |y| = R. Hence

(32)  20(t) — 20(x) = 200 — x) S ¢ + Ti/log T, zedy, keN,

where ¢: = max {®w(y); |yl £ R}. Here we have used the fact that
the function ¢t t/log ¢ is increasing on (e, + ). If w(t,) < 7, then
7i/log T, < Ti/log w(t,) = (2/n)l, < w(t,) for sufficiently large k. If on

the other hand w(t,) = 7, then 7./log 7, < w(t,). So (32) becomes

(33) w(t,) < 2w(x) + const, zeJ,, keN,

which together with (29) immediately implies (31).
Theorem 4’ shows that the estimate in Theorem 6 is sharp in
general. Next we prove a similar result for convolutors in Z74(.%7).

THEOREM 5. Let we, and pe[l, +), and let m: R, —> R,
be a function satisfying (29). Then there exist fe (. %",) and
(t,) C R, such that F is g-slowly decreasing with respect to ® and
t, is a zero of F of order greater than m(t,). Here 1/p + 1/q = 1.

Let » > 1. If we again set m: = w(max {1, log w})™* we obtain
f ey such that f is g-slowly but (in view of Theorem 7, (ii))
not @-slowly decreasing with respect to w for every @ >gq. This
proves in particular Theorem 5.

Proof of Theorem b': the case p > 1. By e: R, — R, we denote
the function V/m/max {1, w]. Let us choose a sequence (¢,)C R,
with ¢,,, = 2t, such that >3, e(t,) converges. We define m,: =

om(m(ty) + 1) and I,: = (e(t)w(t))¥e. With v,: = 2/) log w(t,) (11) is
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valid. Since ¢ > 1 the function (ew)/?log® is o(t) as t-— « by
(4); hence if ¢, is large enough (12) holds. Since without loss of
generality m = 1 we may assume that [,., = [, + 1 and that &(¢,) <
1 < m(t,) < w(,). This and the definition of & imply: m, < 4zwe(¢,)l.

Hence for every je N we derive from the definition (13) of h that

j—1

1) = (S22 )l + 47 St vek.

k=1 k

Since ¢ > 1 it follows that
(34> h(y) = O(\[yfq> as Yy - oo,

An application of Lemma 2 and similar arguments as in the proof
of Theorem 4’ lead to the desired assertion. Note that an entire
function F satisfying (14) with & fulfilling (34) is of the form F = f
where fe oL 9770

Proof of Theorem b': the case p = 1. Definec: R. —~ R_by ¢ =
m/max {w, 1}. By changing m if necessary we may suppose that
lim,.... e(tym(t) = +co. Then we can choose a sequence (¢,) C R. with
te., = 2t, such that for every ke N

(35) 1 = et)m(ty) = e(t . )m(t,,)/2
and
(36) e(tr) <e(t) =1,

and such that with m,: = 2z(m(t,) + 1) and v,: = (2/x) log ®(¢,) (11)
holds. Since ¢(¢)™log w(t) < w(t)log w(t) for sufficiently large ¢ and
since by (4) wlog @ is o(t) as t — oo, (12) is valid with [,: = 1/e(¢;)
if ¢, is chosen large enough. By Lemma 2 we obtain an entire
function F: C — C such that ord (¢, F') = m(t,) for every ke N and
such that (14) and (16) hold. Using Cauchy’s formula we deduce
from (14):

(37) F(x + i)l = const (L + [x)*exp (h(jyl + 1) + Tiy)), =, yeR.

This implies: there is f e 4.5 such that F = f (see for example

[5]). To prove that F is extremely slowly decreasing with respect

to @ we conclude from (36) that [, <2 < l,,, for every k. Hence
k

Az = S — 1) 2

Jj=1 Zj

From the definitions of m;, I; and ¢ and from (35) we see
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4’::; < e(tym(t;) < 2 e(tym(ty) = 27 *0t)l, §<Fk.
7

Consequently
(38) ;) < 2row(t,), keN.

Moreover, (35) implies: @(t,) = e(t,)m(t,)li = 2. Since for sufficiently
large k the inequality % = #2 -~ 1 holds where r,: = (2/n)l, + 1, it

follows from (37) and (88) that for sufficiently large k
(39) My(x, r3) < const (1 + |x|)*exp (1dw(t,), xcR.

Since 7, < w(t,) log w(t,) the same arguments as in the proof of
Theorem 4’ yield (33). Combining (6) (with » = 1), (39), (83), (v)
and (16) we conclude that F' is extremely slowly decreasing with

respect to w.

The entire functions constructed in the proofs of Theorem 5
satisfy condition (9). Hence Theorem 5 shows that for entire
functions satisfying (9) the estimate of the orders of the zeros in
assertion (i) of Theorem 7 is sharp in general.

As for the question whether or not the estimate in assertion (ii)
of Theorem 7 is sharp as well, the method of Lemma 2 seems to
yvield only the following rather weak result.

THEOREM 8. For arbitrary @<c M, and s < 1 there exist fe &’
and (t,) C R, such that f is extremely slowly decreasing with respect
to w and t, is a zero of f of order greater than @(t,’ for every
keN.

Proof. Leto: = (1 — s)/2. Choose (t,) < R, with ¢,,., = 2t, such
that >7., w(t,)™° converges. Define m,: = 2x(w(t,) +1) and [, =
w(t,) ™. Then h < const|-|]. By proceeding similarly as in the
proofs of the foregoing theorems we obtain an entire function F,
which is the Fourier transform of a distribution f e &’, such that
ord (¢, F') = w(t,)’ for every ke N and such that F is ¢-slowly
decreasing with respect to @ where ¢: = (s + ¢)™*. By Corollary 4

F is even extremely slowly decreasing with respect to w.

If one wants to obtain better results it seems that one has to
use a more refined method than that of Lemma 2 for instance the
one employed by Ehrenpreis and Malliavin [4, §2] for the con-
struction of distributions fe %’ such that f is slowly but not very
slowly decreasing.
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Note added in proof. A slightly more precise version of Lemma
2 leads to an improvement of Theorem 8 showing that the estimate
in Theorem 7, (ii), is sharp in general, namely: For arbitrary w e I,
and ¢ >0 there exist a distribution fe &’ and a sequence (f,) C R,
such that f is extremely slowly decreasing with respect to @ and

~

ord (t,, f) = cw(t,)/log w(t,) for every ke N.
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