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We use the concept of a wandering subspace to study
isometries on spaces with an inner product that is not assumed
to be positive definite. The theory in many respects parallels
the Hilbert space theory, but there are significant differences
that are emphasized here. Examples are given which illus-
trate the complications that can arise when the inner product
is indefinite. .

The first few sections of this paper are devoted to the
study of indefinite inner product spaces with admissible to-
pologies, and the continuous operators on these spaces. - The
rest of the paper concentrates on isometric operators, their
wandering subspaces, and the Fourier representations of
shifts.

1. Introduction. In the paper |5], Halmos studies shifts on
Hilbert spaces by using wandering subspaces. We apply this technique
here, where we consider isometries on indefinite inner product spaces.
These operators have been studied in the past, principally by Iohvidov
(6] and [7]), on spaces where the indefinite inner produect is derived
from a Hilbert space inner product (a J- or G-inner product). The
results obtained for isometries here, however, apply in the more
general situation of an inner product space with an admissible to-
pology.

The theory of shifts on Hilbert space was used by Sz.-Nagy and
Foiag [11] in the study of the geometry of spaces of minimal unitary
dilations of contractions. A noncontraction possesses a minimal unitary
dilation on a space with an indefinite inner product [2], and it was
the study of the geometry of these dilation spaces (originating in the
papers of Davis [2] and Davis and Foias [3]) that motivated the
present work.

Most of the results appearing here formed part of the author’s
Ph. D. thesis [10]; other work was partially supported by a grant
from the National Science Foundation.

2. Inner product spaces. An inner product space is a complex
vector space 57 with an inner product [-, -] satisfying
[k, + b, k] = alh, k] + a,[h,, k]
and
%, h] = [h, k]

113



114 BRIAN W. McENNIS

for all @, @, C and for all &, h,, h, k€ 57 The inner product is not
assumed to be positive, that is [k, h] may be negative for some h e,
For the theory of inner product spaces, refer to [1] and [8].

If [h, k] = 0, then we write b L k. If .o~ and <Z are two sub-
sets of 57, then we write h L Z if h L kforallke <, and & | &%
if h L & for all he %

If <4 and &, are two subspaces, with &7 1 &5 and &£ N & =
{0}, then we write <& P & for the direct sum of & and <.

For any subset .o € 57 we define

o ={heSFh L .7}

Note (cf. [1, Sec. 1.3]) that .o+ is a subspace, and if &% C <7 then
FBLrCrt. Also, if &£ and & are subspaces of 5% then we have

(“A+AB)=A"N.45".

In contrast to the situation in Hilbert space, it is possible to have
N ¥+ =+ {0} for a subspace <. The subspace

L'=FNLH

is called the isotropic part of &~ A subspace & of 57 is said to
be degenerate if #° = {0}, i.e., if X N ¥+ %= {0} (1, Sec. 1.4]).

We will be assuming throughout that all inner product spaces
are nondegenerate, i.e., 57 = {0} for every inner product space .~
Consequently, if

[k, k] = [h, K

for each h € 257, then k, = k..

If &~ and & are subspaces of 57 with &£ C &, then 50 &4
will be used to denote the subspace &5 N <&+

We will need the following lemma. The proof is straight-forward

and is omitted. (See [10, Lemma I.1.1].)
LEMMA 2.1. If &¥ = & D &, for subspaces &4, &, of an inner
product space 97, then
LOA=A 7.

A topology on an inner product space 57 is said to be admissible
if it is locally convex, and if (i) for every k< .22 the linear functional

#i(h) = [h, k]

is continuous, and (ii) for every continuous linear functional ¢ on 52
there is a k € 57 such that ¢ = ¢, ([1, Sec. IIL.5]). Every admissible
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topology on a nondegenerate space is separated, i.e., Hausdorff ([1,
Lemma II1.5.2}).

The weak topology on 57 is the locally convex topology defined
by the family {p.}ics» of seminorms, where

oi(h) = ’ [k’ k] I (hy k€ 227)
([1, See. I11.2]). The weak topology is admissible ([1, Theorem III.5.1}).

THEOREM 2.2. If & is a subspace of o7; then the closure of .7,
with respect to any admissible topology, i1s & **.

Proof. See [1, Theorem III.6.1].

COROLLARY 2.3. A subspace of ¢ 1is closed with respect to an
admissible topology if and only if it is weakly closed.

COROLLARY 2.4. If &4 1 4, then £, | %, where 2, denotes
the closure of the subspace <7, with respect to any admissible topology.

3. Operators on inner product spaces. We assume from this
point on that all spaces are nondegenerate inner product spaces with
admissible topologies. An operator T:.:57]— 277 is assumed to be
linear with domain equal to .©#. The identity operator will be denoted
by I.

We will be needing the concept of a generalized sequence (or net)
(see, for example, [4, Definition 1.7.1]), and in particular the follow-
ing lemma (cf. [4, Lemma I.7.4]):

LEMMA 3.1. An operator T is continuous if and only if for
every gemeralized sequence {h,} converging to zero, {Th,} converges
to zero.

LEmMMA 3.2. Suppose 57 and 57 are two spaces with topologies
defined by the families of seminorms

{pz}ze}( a‘nd {pﬂ}yEY ’

respectively. If an operator T from ZZ to 57 has the property
that for each yeY there is an x € X such that

p(Th) = p.(h) ,

for every he .z, then T is continuous.

Proof. Suppose that the generalized sequence {#,} in 5#° converges
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to zero. Then, for every ye Y, the generalized sequence of numbers

{py(Tha)} = {pz(ha)}
converges to zero. But this is equivalent to saying that {Th,} con-

verges to zero and so, by Lemma 3.1, T is continuous.

ProrosiTION 3.3. If T 4s a continuous operator from S7 to
77, then there exists a umnique operator T* from 27 to 57 such
that, for each he 52 and h'e o7’

[Th, '] = [h, T*K'] .
T* 1is weakly continuous.

Proof. For h'e 577, |[Th, h'] is a continuous funetion of h. Since
the topology on 7 is assumed to be admissible, there is a vector
ke 57 such that [Th, k'] = [h, k]. 27 is nondegenerate, and so this
equation uniquely determines %, and we can define T*h’ = k. Clearly,
T* is an operator from 57 to 57, and it follows directly from Lemma
3.2 that T* is continuous in the weak topologies of 57 and 57.

T* is known as the adjoint of T.

PROPOSITION 3.4. Ewvery continuous operator 1is weakly con-
tinuous.

Proof. If T is continuous, then 7' = T'**, and by Proposition 3.3
the adjoint of any operator is weakly continuous.

4. Regular subspaces. Projections.

THEOREM 4.1. If < is a subspace of 57, then & + &+ is
dense in 27 if and only +f £+t is nondegenerate.

Proof. See [1, Theorem IIIL.6.5].
Thus if .&” is a closed subspace which is nondegenerate, then
X =P rt.
If in fact
=P rt,

we call & a regular subspace. Note that every regular subspace is
nondegenerate.
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REMARK. This definition generalizes the use of the terms regular
in [3], right in [9], and previl’nym in [7], and coincides with the
use of ortho-complemented in [1], at least for nondegenerate inner
product spaces.

If <2 is regular, then every he 57 has a unique expression in
the form h =1+ U’ (le &, I'e £*). We define P., the projection
of 57 ontos, by

P.h=1.
Clearly, P. is linear, P2 = P., and for each h, ke 57
[Peh, k] = [h, Pok] .

Therefore, by Lemma 3.2, P. is weakly continuous and P% = P...
It is obvious that if <& is regular, sois &+ and P,. = I — P..
An operator P on 52 is called a projection if it is weakly con-
tinuous and if P* = P* = P,
The proofs of the following theorem and its corollaries are straight-
forward, and are omitted.

THEOREM 4.2 (cf. [9, p. 116]). If P is a projection, then & =
P27 is regular and P = P..

COROLLARY 4.3. & is regular if and only if there is a projec-
tion P such that ¥ = PS#

COROLLARY 4.4. If P. and P, commute, for two regular sub-
spaces &, and Z, then &4 = £ N & 18 regular with Py = Py Po,.

COROLLARY 4.5. If &£ and < are regular subspaces with £,
4, then & = 460 £ 18 regular with P,, = P, — P...

In a Hilbert space the direct sum of two orthogonal closed sub-
spaces is always closed. In an indefinite inner product space this is
true, provided we assume that one of the subspaces is regular.

THEOREM 4.6 (cf. [9, Lemma 5.1]). Suppose &, and &, are sub-
spaces of ZF satisfying L, L 5. Then if & is regular and &
28 closed, & P & s closed. If, in addition, & is regular, them
FZ D & 1s regular.

Proof. Since &5 < &' and & is regular, the sum of <4 and
%4 is direct.
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Suppose & is in the closure of <& @ .&5. Then, by Corollary 2.3,
there is a generalized sequence {h,} in &£ @ &4 converging weakly to
h ({4, Lemma I1.7.2]). Let P be the projection of 5#° onto <#. Clearly,
(I — P)h,e & and, since P is weakly continuous and <4 is closed,
(I~ P)he . Hence h = Ph+ (I — PYhe & P .45, and £ P & is
therefore closed. ‘

Now suppose & is regular and let @ be the projection of 57
onto . Since &, | &, QP = PQ = 0. Hence P + Q is a projec-
tion with (P + Q)o#F = &£, 0 & and so, by Theorem 4.2, &£ P &
is regular.

5. Isometries., An operator V from 5% to 27 is called an
isometry if it is continuous and [Vh, VEk] = [k, k] for each h, k € 5+
The condition that a continuous operator V be an isometry is equiv-
alent to V*V = I, and hence every isometry is injective. (Cf. [6,
Proposition 1°]. Recall that 57 is assumed to be nondegenerate.)

An isometry is called unitary if it is surjective. As in Hilbert
space, the unitary operators V are characterized by the relations
V*V =1 and VV* = I, i.e., by the relation V* =V

LEMMA 5.1 (cf. [6, Theorem 2]). If V is an isometry and &
1s a closed subspace, then V. is also a closed subspace.

Proof. V. is clearly a subspace. In view of Corollary 2.3 it
suffices to show V.&¥ is weakly closed.

Suppose h is in the weak closure of V.&¥, Select a generalized
sequence {l,} of vectors in & so that {VI,} converges weakly to k.
Since V* is weakly continuous, {l,} = {V*Vl,} converges weakly to
V*h. By Corollary 2.3, & is weakly closed, so V*he & Also, since
Proposition 3.4 implies the weak continuity of V, {VI,} converges
weakly to VV*h. But {VI,} was assumed to converge weakly to h
and the weak topology is separated, so h = VV*he V.&¥, Hence V.&¥°
is weakly closed.

THEOREM 5.2 (cf. [7, p. 176], [1, Theorem VI.3.8]). If & s a
regular subspace of 27 and V is an isometry from 57 to 57, then
V. is a regular subspace of 57'. The projection of 52" onto V.&
is VPLV*.

Proof. Let P=P., Q = VPV*. Then Q is weakly continuous,
Q@ = Q*, and since V is an isometry, @° = Q. Therefore @ is a pro-
jection.

Wehave Q577 CVPs# =V~ andforany le &¥ QVI=VPV*Vi=
VPl = VI. Hence Q5" = V.<%, so by Theorem 4.2, V.& is regular
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and @ is the projection of 57 onto V.&7

We also include the following result, in which the operator V is
not assumed to be continuous. A similar result has been obtained by
Iohvidov [7, Theorem 2] for G-isometric operators on a Hilbert space
with a G-metric. Here we consider arbitrary nondegenerate inner
product spaces 54 and % and we discuss the weak continuity of V.

THEOREM 5.3. Suppose that V: 52 — 227 satisfies [Vh, VE] =
{Rh, k] for all h, ke 5. Then V is weakly continuous if and only if
VE7Z is a regular subspace of 57

Proof. If V is weakly continuous, then Theorem 5.2 shows that
Vo7 is a regular subspace of 57/. Conversely, suppose that V.2o#&
is regular and let P be the projection of 27 onto Vo If VR =10
for some he 57, then [h, k] =[Vh, Vk] =0 for all ke 5%, and so V
is injective. Thus we can define U = V'P, an operator from 57~
to o7

For all he 27 and ke 57’ we have

[h, Uk] =[Vh, VUE] =[Vh, Pk] = [Vh, k] .
Consequently, by Lemma 3.2, V is weakly continuous.
6. Wandering subspaces. Let V be an isometry on 527 Follow-
ing Halmos [5], we call a closed subspace & of 57 wandering for
V if it is nondegenerate and V?.< 1 V°.<¥ for every pair of integers

p,q=0, p=*gq. Since V is an isometry, < is wandering for V if
and only if it is nondegenerate and

V' | &~ forn=1,2,---.
Let M (&) = Vi, V"< (i.e., the closed linear span of the sub-
spaces V"<, n=201,2, ---).
PropPOSITION 6.1. (i) VM ()=M (V&) and (ii) & L VM, ().

Proof. (i) follows from the definition of M.(<) and the fact
that VM. (<) is closed (Lemma 5.1).

To prove (ii), note that <& 1 V*".¢” for each n = 0, and so (by
Corollary 2.4) .&¥ | M (V) = VM. .(&).

THEOREM 6.2. If &~ is regular, then
(6.1) M(¥)=SVM.(¥)

and
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(6.2) VM (&)= M(&£)O &£

Proof. Proposition 6.1 and the nondegeneracy of & show that
the use of @ in (6.1) is justified. Clearly, M. (&) is spanned by &
and VM,.(%). (6.1) follows from Theorem 4.6, since & is regular
and VM,(<) is closed (Lemma b5.1).

(6.2) is a direct consequence of Lemma 2.1, since .&©° = {0}.

COROLLARY 6.3. If .&© s regular, then for n=1,2, ---

M(PA)=OVrpV'LP --- V"' FLPV'M(¥).

When 57 is a Hilbert space, & is uniquely determined by V
and M.(&):

(6.3) L =M()OVM(¥) .

The following example shows that this is mot necessarily true when
the inner product on 57 is not positive definite.

ExAMPLE 6.4. Let 57 be the space of sequences x = {®.};», of
complex numbers such that

o

|l = 35 @ [F < e

k=0

For two sequences x and y we define
[ﬂ’/', y] = LYo — k;l Y -

The topology on 57 is that defined by the norm ||-||, and this topology
is readily seen to be admissible.

Let <& be the one-dimensional subspace of 57 spanned by the
vector I, where [, =13, 1, =2 and [, =0 for k= 2. It is easily
checked that <& is regular.

For xe 57 let Vx be the sequence ye ¥ with y, = 22, ¥y, =
Vv'8x, and 9, = x,_, for k> 1. Then V is an isometry and &~ is
wandering for V.

By writing down the condition that z L V"l for n =0,1,2, -.-,
it can be readily seen that M, (”)! is spanned by the single vector
z with 2, =1/1"3 and z, = 27* for & = 1.

Let &’ be the one-dimensional subspace of 57 spanned by the
vector I’ =1 + 2. Then &’ is regular and wandering for V. As
before, it can be shown that M, (&’)* is spanned by the same vector
z that spans M. (<)*. Consequently, M. (&) =M (&), but &'+ &,

Note that in the preceding example M. ($°) is a degenerate sub-
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space. In fact, since M. (¥)* is spanned by the vector z and since
[z,z]:l/s—kicrk:o,
=1

then M () < M, (). The following theorem shows that the non-
degeneracy of M.(<”) is a necessary and sufficient condition for (6.3)
to be true, provided &~ is regular.

THEOREM 6.5. If &~ is regular, then ¥ = M(F)O VM (¥)
if and only if M. (&) is nmondegenerate.

Proof. If & is regular, then Theorem 6.2 implies M (&) =
FPVM (). Thus, by Lemma 2.1,

M(2)OVM(L) =[VM(L)] D = .

Hence, M ()OO VM (¥) = if and only if VM (%) is non-
degenerate. Since V is an isometry, this is equivalent to M (&)
being nondegenerate.

THEOREM 6.6. If M. (<”) is regular, then & s regular. If P
18 the projection of 7 onto M (), then P — VPV * is the projec-
tion of S omto &

Proof. If M. (<) is regular, then so is VM. (<), with the pro-
jection of 27 onto VM,(<) being VPV * (Theorem 5.2). As in the
proof of Theorem 6.2, we deduce that M (&) = L P VM ().
Hence, as in the above proof, ¥ = M (&) VM (&), and the proof
is completed by Corollary 4.5.

THEOREM 6.7. If ¥ is regular, then the isolropic part of
M (&7) is

My = NV M() .

Proof. Suppose he(o., V"M, (). By Proposition 6.1 (ii) we
have, for each n =0, he V*'"M ()L V"~ Therefore h L M ().
Since h e M (), we conclude that

N VML) S M2 .
Conversely, assume he M, (<), and let us make the induction

assumption that » € V"M (&) (which is clearly true for » = 0). Since
% is regular, Theorem 6.2 implies
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VM (Z) =V PVM (X)) =V"PV"I'M(¥).

We have assumed h satisfies h | M (¥)2V"<, and V"< is non-
degenerate (because & is). Thus, by Lemma 2.1, he V""M, (&),
and hence, by induction, h e N5, V"M ().

Consequently, M. (¥) = Ni, VM (F).

7. Fourier coefficients in M, (). We now assume that &~ is
regular, with the projection of 52 onto & denoted by P.

Corollary 6.3 implies that for every he M, (<) there is a unique
sequence {l,},s, of vectors in & such that, for each n =1,

(1.1) h— ki Vi, e VM (&) .

The vectors [, (n = 0) satisfying (7.1) are known as the Fourier coef-
ficients of h in M, (¥).
The Fourier coefficients can be written explicitly in terms of h:

THEOREM 7.1. If he M (<) then the Fourier coefficients of h
are given by

l, =PV*h, n=2012 ---.

Proof. By Theorem 6.2,
(I—-PM(AEM (O ¥ =VM (L) .

Hence if I, = Ph, (7.1) is satisfied for n = 1.
Suppose b — >zt V', = V*h' for some n =1, e M (&), and
loy by » o+, l,_, €% Since V is an isometry,
Vb = 3 Vb, 4 b

k=0

% is wandering for V and so V**& | & for all m=1. Thus
PV **h = Ph' and, letting I, = PV *"h, we have

h— kz Vi, = VI — P)W € V"' M,() .

When the inner product on S# is positive definite, ~ can be
expressed as the orthogonal sum

(7.2) h = kj_"; Vi, .

In general, however, the Fourier coefficients do not determine &
uniquely. For example, the vector z in Example 6.4 is in M (&)
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and hence in V"M, (<) for each n = 0 (Theorem 6.7). Consequently,
for I, =0 for each =, (7.1) is satisfied both when % = 0 and when
h = z.

THEOREM 7.2. The map which associates to each he M (7)) its
Fourier coefficients is injective if and only if M, () is nonde-
generate.

Proof. From (7.1), [, = 0 for each » if and only if
he NV"M(Z) = M) (Theorem 6.7).

Since the map taking h to {l,},=, i obviously linear, it is injective
if and only if M, (<) is nondegenerate.

When M_.(<”) is nondegenerate, we still cannot expect to recover
h from its Fourier coefficients by means of (7.2). Indeed, even when
M () = 97, (7.2) may not be valid, as the following example shows.

ExaAMPLE 7.8. Let 5% be the space in Example 6.4, except that
the inner product is given by

[90, y] = XYy + I;) x2k+1gzk+1 - IZ{ xzkf]zk .
= e =

Let &# be the two-dimensional subspace of 57 spanned by the
vectors a¢ and b, where a, =a,=1,a, =0 fork + 0,2, and b, = b, =
-1, b, =0 for k=1,2. A vector x is in &+ if and only if x, =
x, = x,, and hence it is easily deduced that & is regular.

For ze€ .27 let Vx be the vector ye 2% with y, =y, = x,, ¥, =
%,., for k= 2. Then V is an isometry and .&© is wandering for V.

We have

1 for k=01, -+-,2n; k=2n-+2

Va), =
(V*a), {o fork=2n+1: k=2n+3

and

0 fork=0,1,:---,2n; k=2n+3

Wb)k:{q for k=2n+1, 2n+2.

Hence it follows that« L V"< form = 0,1, 2, ---, n — 1 if and only
ife,=2, =+ =2, , = 2,,. Consequently, only the zero vector is
orthogonal to M. (<), and thus M (&) = 574

Let k be the vector with h, =1, h, = 0 for k = 1. Since
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m=0

n—1 —1 for k=12 .--,2n —1,2n
V™) =
<2 b)k { 0 fork=0; k>2n

then

<h EV"‘b) _{1 for k=0,1, .--,2n — 1, 2n
s ¢ (0 for k> 2n
= (V"h), .

Hence h — 37t V™ =V he V"M, (<), and we conclude that the
Fourier coefficients of » in M, (%) are all equal to b. However, h =
S, V*, as the sum does not converge. Also note that although
h, = 1, each of the partial sums 322 V*b has zeroth term equal to
zero. If the inner product on 57 is positive definite, then

[y Bl = 35[0 W],

but the above example, where [k, h] =1 and >}7.,[l, l.] = 0, shows
this is not true in general.

8. Unilateral shifts. Wold decomposition. An isometry V on
&7 is called a unilateral shift if there exists in 57 a subspace &
which is wandering for V such that M, (<) = 52 This subspace &%,
called generating for V, is necessarily regular (Theorem 6.6) and is
uniquely determined by V:

¥ = (V2#)* (Theorem 6.5)
(cf. [5]).

In Hilbert space, a unilateral shift is determined up to unitary
equivalence by the dimension of &%, In general, however, it is possible
to have two unilateral shifts acting on isomorphic spaces that are
not unitarily equivalent, even though their generating subspaces are
isomorphic.

ExAMPLE 8.1. Let 57 be the space in Example 6.4, except that
the inner product is defined by

[x, ?/] = ];) TorYor — kZ‘(‘) Lops1Yorsr -

Let &© be the two-dimensional subspace of 57 spanned by the
vectors ¢ and b, where g, =a, =1,a, =0fork +0,1,and b, = b, =1,
b, =10 for k = 1, 2.

For x ¢ 57, let Vx be the vector ye 5% with y, =y, = x, and
Y, =%y, for 5 =2. Then V is an isometry and <&~ is wandering for V.
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It is readily checked that a vector xz € 57 is orthogonal to V™.¢~
for m =0,1,2, --+,n — 1if and only if 2, = x, = --- = a,,, and there-
fore, as in Example 7.3, M, (<) = 5% Thus V is a unilateral shift
on .5 with generating subspace &~

Another unilateral shift on &2 is the isometry V' defined by
V'e =y, where y, =y, = 0 and y, = x,_, for £ = 2. The operator ¢
defined on . by ¢a = ¢, where ¢, =¢, = 1/1/ 2 and ¢, = 0 for k = 2,
and ¢b = d, where d, = —1/12, d, = 1)V 2 and d, = 0 for k = 2, is
a unitary operator from & onto the generating subspace for V’.
But for any z e 27 with x, = 0, we have (for n = 0,1, 2, --+)

Vel =ll=]l,

whereas || V"x|| — o as #— co. Thus, despite having isomorphic
generating subspaces, V and V'’ are not unitarily equivalent.

In Hilbert space, the property V**x — 0 for all x characterizes
those isometries that are unilateral shifts [5]. This does not apply
in general, as the vector h in Example 7.3 has V*'h = h for n =
0,1, ---.

We can prove a Wold decomposition theorem for isometries, but
it does not have the generality of the corresponding result in Hilbert
space (cf. [11, Theorem I.1.1}).

THEOREM 8.2. Let V be an isometry on 22 and let & = (Vo).
In order to have the orthogonal sum 27 = 575 57, where 57 and
97, are tmvariant for V, V| 57 is a unilateral shift and V| 57 is
unitary, it is necessary and sufficient that M, (<) be regular. In
that case,

&ty =M(<)

and
on =NV

Proof. Suppose that M, (<) is regular, and let o7 = M (<),
w77 = M (). Then we have 57 = 577 @ oz;. It is clear that o7}
is invariant for V and V| 5% is a unilateral shift. By a similar
argument to that in [5, Lemma 1], 527 = 7o V"54 and so V.57, =
275. Thus, V| 25# is unitary.

Conversely, suppose S57; and 57 are invariant for V, where 2% =
i@ 57, V| 57 is a unilateral shift, and V| 5% is unitary. Since
Vser, = 57, we have . &¥ = (VSF): = 574,60 V.27, and thus &7 is the
generating subspace for the unilateral shift V| 2#. Consequently,
M. () = 27, and since 5F = S£4 P 57, M. () is regular.
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9. The space M(.%). Fourier coeflicients in M(.%)., Let V be
a unitary operator on 5#° and let .%¥ be a wandering subspace for
V. Then ¥ is nondegenerate and V*.& | V% for all integers p
and ¢. We define

M(7) = \7_ Vi .

It is clear that M(<°) reduces V and that M(&¥°) = M(V.<¥).
The following can be proved in the same manner as Theorem 6.2.

THEOREM 9.1. If & is regular and n is an integer, then

MA)=V"ZBV{VZL k+mn}).

COROLLARY 9.2. If ¥ 1is regular and m and n are integers
such that m < n, then :

MA)=V" PRV D - - BV FDOV{(V:F k>n, E<m).

Consequently, if . is regular and h e M(<”), there is a unique
sequence {l,}7._.. of vectors in .& such that for all integers m and
n, with m < n,

9.1) h= S VeV ViZij>n, j<m).

The vectors [, satisfying (9.1) are known as the Fourier coefficients
of h in M(<). Clearly, if he M, (<), then [, =0 for » <0 and
{l.}.=, is the sequence of Fourier coefficients of 2 in M,(¥).

We now assume that & is regular with the projection of .57~
onto .&¥ denoted by P. The following analogue of Theorem 7.1 is
given here without proof (see [10, Theorem II.7.4]).

THEOREM 9.3. If he M(<~) then the Fourier coefficients of h are
given by

l, = PV*h, m=0,+l +2 -

10. The space M_(.¥). Let .2 be a wandering subspace for
the unitary operator V on .27 We define

M(7)= V V.

7 =—00

From the above definition, Theorem 4.6, and Lemma 2.1 we obtain
the following decomposition of M(.&).

THEOREM 10.1. If M.(<°) ts regular, then
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Mz)=M(Z)D M(£)
and
M(x) =M oM(<).

Note that M (<) is the same as the space M (V~'<”), formed
with respect to the unitary V. We can therefore obtain directly
from the properties proved for M, (%) analogous properties for M_(.&).
We start with a corollary to Theorem 10.1.

COROLLARY 10.2. If M (<) is regular, then
M) =M(£)D M (<)
and

M(£)=MZX)OM (<) .

THEOREM 10.3. If M_(.%¥) is regular, then < is regular. If P
18 the projection of 57 onto M_(<¥), then VPV * — P is the projec-
tion of 27 omto A

Proof. Apply Theorem 6.6.
THEOREM 10.4. If <# s regular, then
VM(£) = M) ® &

and

M (A)=VM () & .
Proof. Apply Theorem 6.2.

COROLLARY 10.5. If <~ is a regular, then for n =1,2, .-
M) =V'wylV: X - - -V "XV "M (¥).

Hence, if &~ is regular and 4 € M_(.&°), there is a unique sequence
{l,}.<, of vectors in < such that, for all » <0,

(10.1) h— ki‘, Vi, e VM_(&) .

The vectors I, (n < 0) satisfying (10.1) are known as the Fourier
coefficients of h in M_(<°), and these obviously coincide with the
Fourier coefficients (with negative index) of A in M(<2).

Let P be the projection of 57 onto <. For completeness, we
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state the following theorem (ef. Theorem 7.1 and Theorem 9.3).

THEOREM 10.6. If he M (<) then the Fourier coefficients of h
are given by

l,=PV*h, n=—1-2, -

When M () or M_ (&) is regular we get a strengthening of
Corollary 9.2 which more closely resembles Corollary 6.3.

THEOREM 10.7. If M (<) or M_(<¥) is regular, then for each
m, n = 0, we have

M) =V "M(2) @V "L
PV " FrH- - PV PV M(F).

Proof. If M,(<) is regular, then by Theorem 6.6 &~ is regular.
Hence, by Corollary 6.3 and Corollary 10.5, we have

M(A)V= PV H - - PV P V"M (F)
and
M(A)=V'repV*xd - -- BV "rdV "M (¥).

The same equations are obtained when M_(<&°) is regular (by
Theorem 10.3), and the proof is completed by using Theorem 10.1 or

Corollary 10.2.
When M (7) or M_(.&¥) is regular, we can rewrite (9.1) as

b= S Ve VM () @ VML(F),

k=—m

where m, n = 0.

11. Fourier representations. Let V be an isometry on 5%, and
suppose .~ is a wandering subspace for V, with M, ($°) regular.
Then & is regular (Theorem 6.6), and every vector he M, (<) has
a sequence {l,}.-, of Fourier coefficients given by Theorem 7.1. The
Fourier representation of M, (&) is the map & which associates to
every he M, (%) the function @h, where

(11.1) (OR)(N) = i A, .

©Oh is defined for all complex numbers )\ for which the series (11.1)
converges, and takes values in the space <4 The action of ¥V on
M. (%”) corresponds (via the Fourier representation) to multiplication
by the independent variable x on OM.(.&).
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If the topology on .&¥ can be defined by a norm ||-||, and if <
is separable, then we define H* <) as the space of all functions u,
defined and analytic on the open unit disk, with values in <& such
that

[l %] = lim 1/27:827r I u(re™) |2 di
exists. The inner product on H*_ &) is given by
(11.2) {u, v] = lim 1/27rszﬂ[u(7'e“), v(re’))dt .

71— 0

In Hilbert space, the shift V| M, (<) depends (up to unitary
equivalence) only on the generating subspace <%, and @ is a unitary
map from M,(<) onto H¥ <) (cf. [5], [11, Sec. V.3]). The situa-
tion is different here, as Example 8.1 shows that the generating
subspace does not uniquely determine the shift, and so ®M () can
be different from H?*(<”). Indeed, the vector h in Example 7.3 has

o

@) = 200 =1 -NM7",

and clearly @h ¢ H¥ .&).

If V is unitary, we can also discuss the Fourier representation
? of M(). If he M((¥) and {l,})7-_.. is the sequence of Fourier
coefficients of h in M(<”), then @Oh is the function pair (u, v), where

w(y) = 3, A,
and v(\) is defined by the right hand side of (11.1) (ef. [10, Sec. IV.4}).
The function » is defined on some neighborhood of infinity, and v is
defined on some neighborhood of zero.

In Hilbert space, the Fourier representation is taken so that @
is a unitary map from M(<”) onto L*( &), the space of all measurable
functions defined on the unit circle, taking values in <#, and having
square integrable norms (ef. [5], [11, Sec. V.3]). As with the Fourier
representation of M (<), this is not valid in general. However, if
<~ is normed and separable, and if we have, for each he M(%”)

5 i< e, and [hh]= 3 [k, L],

then we do obtain a representation of M(.<”) as the space LY .&),
with inner product

£, g1 = 2 | (A€, gteat .

This can be done by replacing % and v by their radial limits (a.e.)
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w(e®) = lim u(re®) and #(e*) = lim v(re*)
r-l+ r1-
and identifying the pair (v, ») with the L* function

u(e'it) _+_ ,v(elt) — i e’i’ntln

Because the spaces M.(<”) and M(%) can not always be repres-
ented as H* or L? spaces, Fourier representations are not as powerful
a tool in studying shifts as they are in Hilbert space. One approach
is to restrict our attention to shifts for which it is known that @ is
a unitary operator from M, (&) to H¥( <) (or from M(¥) to L*(¥)).
This is done in [3] and [10, Chapter IV], where dilations of operators
with bounded characteristic function are studied.

Another approach is to try to determine the types of function
spaces that can occur if @ is to be unitary. This is done in [10,
Chapter VI], where dilations of some operators with unbounded char-
acteristic function are studied. The situation is complicated by the
fact that the inner product on the function space @M, (&) need not
be given by (11.2). This can be seen by considering the vector A in
Example 7.3, which has [, 2] = 1, whereas (11.2) would assign the
value zero to the inner product [®h, ®h] (see the remark following
Example 7.3).
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