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Suppose f is an entire function of infinite order with
zeros restricted to a finite number of rays through the
origin. It is shown for p > 1 that N(», 0) = o(m}(r, f)) where
mi(r,f) is the L? norm of log* | f(re??)| and in addition that
N(r,0) = o(T(r, f)) as r tends to infinity omitting values in
an exceptional set £ of zero logarithmic density. The set
E is shown by example in general to be nonempty, even for
functions with zeros on a single ray and arbitrarily slow
infinite rate of growth. These results settle certain ques-
tions arising from previous work of Edrei, Fuchs, and
Hellerstein and of Hellerstein and Shea.

Introduction. In this paper we prove two theorems involving
the rate of growth of an entire function f, the angular distribution
of its zeros, and the Nevanlinna deficiency d(0, f) of zero, defined to
be

d(oy f) =1~ linlﬂsup N(’I', 0)/T(’}", f) ’

where N(r, 0) is the usual integrated counting function of the zeros
of f and T(r, f) is the Nevanlinna characteristic. Conditions on the
rate of growth of f and on the arguments of its zeros sufficient to
imply d(0, f) > 0 have been known for some time [1, Theorem 2].
Of particular interest here is the following result of Edrei, Fuchs,
and Hellerstein [3, Theorem 2].

THEOREM A. Suppose f 1is an entire function with zeros
restricted to the K distinct rays argz = a;, 1 < j < K. There exists
K = K'(a, -++, @y) and an absolute constant Ac(0,1) such that if
f has finite order N > K’ then d(0, f) > B, for some B; > A.

Later Hellerstein and Shea [7] showed that in Theorem A the
quantity B; can be chosen so that B;—1 as M — <, and in addition
obtained a sharp asymptotic bound for B; in the case that the zeros
of f are real. (For other related results, see [4], [5, Chapter 6],
[8], and [11].)

In view of Theorem A and the above result of Hellerstein and
Shea, it is natural to ask [6, Problem 1.12] if d(0, f) > 0 or even
d(0, f) = 1 for entire f of infinite order with zeros on only a finite
number of rays through the origin. We answer this question in the
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132 JOSEPH MILES

negative and explore certain related questions by proving the follow-
ing two theorems. (We recall that a nondecreasing function
@t (— oo, o) — [0, ) is strongly convex if it is convex and @(x)/x — oo
as & o0.)

THEOREM 1. Suppose f is entire of infinite order with zeros
restricted to a finite number of rays through the origin. Then

(1) lim S:’¢<%fg_?’l)de =

for every strongly convex function @ and in particular for p >1

N, 0) _
2 lim =" Y/ —
(2) e m(r, )

where

2r 1

my(r, ) = (—1—§ (log+|f(re“’)|)”d0> "
2 Jo

Furthermore there exists a set EE C[1, ) having logarithmic density

zero such that

. N(r, 0)
(3) lim =222 =0
roe T(r, f)

In general under the above hypotheses N(r, 0)/T(r, f) does not
tend to zero as » tends to infinity without restriction, even for
functions with zeros on a single ray and arbitrarily slow infinite
rate of growth, as is shown by

THEOREM 2. Suppose £: (0, ) — (0, ) i3 such that £(r) — « as
r— co, Associated with & there exists an entire f having infinite
lower order and positive zeros which satisfies d(0, f) = 0 and

(4) log T, ) o ()
log »

for sufficiently large r.

Our approach to both Theorem 1 and Theorem 2 is to study f
via the Fourier series of log |f(re?)). We prove (3) by in fact
showing that as 7 tends to infinity through values not in E, the
ratio of N(r,0) to the maximum term of the Fourier series of
log | f(re*)| tends to zero. In our proof of Theorem 2 we achieve
d(0, ) = 0 by constructing f so that, for an appropriate sequence
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7, tending to oo, the Fourier series of log |f(7.¢")| is approximated,
in a suitable sense, by the Fourier series of the product of N(r,, 0)
and a certain Poisson kernel. Because of the intricate nature of
this construction, we provide an overview of the proof of Theorem
2 at the beginning of §3.

We assume familiarity with the notation of Nevanlinna theory.
Throughout the remainder of the paper we abbreviate n(r, 0) by
n(r) and N(»,0) by N(r). It is not intended that the constant m,
have the same value with each occurrence.

1. Preliminaries., We recall for entire f the formulas, ap-
parently first noticed by F. Nevanlinna [10], for the Fourier coef-
ficients ¢,.(r, f) of log |f(re')|. If f(0) =1 and log f(2) = >, a,2™ near
0, then for m =1,2,8, ---

(L.1) enlr, £) = 2= [ log I tre] a0

2 Jo
= 1 o ((L)"” — <§_>"”>
2 2m 15rEr\ 2, r/ ]’

where {z,} denotes the sequence of zeros of f repeated according to
multiplicity. Clearly

Cm(’ry f) = c—m(’r’ f) y M= —'17 _2’ '—31 M

and ¢(r, f) = N(r). A proof of these identities can be found in many
places, including [9].

The following lemma is used in the proof of Theorem 1. Its
essential idea is due to Weyl [13] and it appears in a form similar
to that given below in [3, pp. 149-151]. We include its proof for
completeness.

LEMMA 1.1. Suppose a,, &, -+, &z are distinet elements of
[0, 27). For real x, let x* denote the unique number in [—r, 7)
congruent to x modulo 2n. There ewxists an increasing sequence
I = {n,} of positive integers such that I has positive density and

(L.2) (n;)* € (—Zé_, %)

for1j<Kand ¢q=12,8, ---.
Proof. Without loss of generality we assume no «; is zero.

Let w; = a;/27 for1 < j < K. Let M(<K) be the maximum number
of the ®; which are linearly independent over the integers. Re-
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numbering if necessary, we assume @, ®,, +++, @, are linearly in-
dependent over the integers.

If M=K, we let B=1. If M < K, we define B as follows.
For M < p < K, there exists an integer ¢ > 0 and integers m,; such
that

M
(1.3) ow, = ; Mpi®;j «
Set
M
szjg*mpi,? M<p§K’
and

B = sup (0, By, Biysy =+, Bx) .

By a theorem of Weyl [13, Satz 16], since w, @,, -+, ®, are
linearly independent over the integers, there exists a sequence I’
of positive integers w, having positive density such that for
q _ 1’ 2’ 3, LR

1 .
1.4 w; — Ll <——, 1M,
(1.4) (U, ®; q|<12B JEM

for some integers L,;. Thus in the case that M = K, the proof is
finished by (1.4) upon setting I = I’ and n, = w,.
Suppose M < K. We note for all ¢ =1,2,8, ---

(1.5) 0U,®; — 6Ly < ~Z— < L

< = < 7L .
125 =13’ 1=i=M

If p > M, then for all ¢ by (1.3) and (1.4)
M M
oUW, = agl MypiUg@; = ;;; m:of(Lqi + qu)

for some d,; with [0,;] < (12B)™ for 1 <j<M and ¢=1,2,8, ---.
For M < p £ K and all q, we set

M
Cpq = %mpiqu
and notice that

M
ggquz’ - CPlll § Jzz‘.l lmp:i| iaqjl

B, -1
12B T 12°

(1.6)
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From (1.5) and (1.6), we see that I = {n,} with »n, = ou, satisfies all
requirements of the lemma.
Our proof of Theorem 1 also requires

LEMMA 1.2. If {n,} is an increasing sequence of positive integers
which has positive demsity, then there exists a subsequence n, = m,
such that

1.m (1) Myfm,—1

and
(i) S—t <o
Proof. The fact that {n,} has positive density implies n,,,/n, — 1.
We let
Ve = Max {N,,,/n,: P = ¢}

and note that v, —~1. For each ¢ and each a > 1 it follows that
there exists an integer p = ¢ such that

(1.8) a = n,/n, < av, .

We let n, = m, be arbitrary and see from (1.8) that there exists a
subsequence 7, = m, such that for ¥ =1,2,83, ---

(1.9) (1+3)= a5 1+ 2.

establishing (1.7i). Certainly (1.9) guarantees
log m;, > 3logk — 0(1) ,

which in conjunction with (1.9) yields
_ 1m< 1 3_1=o<_1_>,
k1 % mk+1<1 . (1 + ?> >

establishing (1.7ii).

2. Proof of Theorem 1. We begin with

LemMA 2.1. Suppose [ is entire of infinite order with zeros on
the distinct rays argz = ;€[0,27), L <j< K. Ifr,—  such that

e N(ra)
2.1 liminf =——2_ >0,
@1 wse T(ry, f)
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then there exists 7, My =+, g in [0,1] with 35, 7; =1 and there
exists a subsequence of v, (still denoted by r,) such that

m(’r'n’ f) —’L’m(!]
(2.2) lﬂg N JZ ;e

for all integers m.

Proof. Without loss of generality we suppose f(0) =1. Let
N,(t) be the integrated counting function of the zeros of f on the
ray argz = «;. By passing to a subsequence if necessary, we may
assume

(2.3) Nj(ra)[N(r,) — 7;€[0, 1]

with 35 »; = 1.
We write

ﬂ@=wmﬁﬁw
with

fie) = E(L»)

vy
where z,; is the sequence of zeros of f on argz = @; repeated ac-
cording to multiplicity and arranged in order of increasing modulus.
If nz) =3 a,2™ then for m =1,2,3, ---
en(r, ) = '"7"" + ZcmO i)
where by (1.1)
_ 1 r\* _ (Zs\") _ 1 (r)’"
on(r 1) 2m;z§§r<<zﬁ) < r > ) 2m »%'n z;/

Two integrations by parts yield

(2.4) ealry ) = '"'r"‘ + E e (g im(r) + Ni(r) + djmr™)

where
1 1

dim = ——

2m v<m ]zu.’f}m

1= 2T - () P

and
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We set
K
gn(r) = Z; Gin(1) .

Certainly the lower order of f is infinite. This fact (first
established in [2]) can be deduced as follows. If N(r) has finite
order, then f, an entire function of infinite order, can be represented
as the product of an entire function of finite order and a zero-free
entire function, trivially implying the lower order of f is infinite.
Suppose on the other hand that N(r) has infinite order and let I be
the sequence of integers of Lemma 1.1. By (2.4) for each fixed
mel we have as » — oo

(2.5) Re Cmif;; D> ‘/f(wmgm(r) + 7" N@)) + O1)

1%

mV 3 (2 N(t)
: |2t + o) .

By Nevanlinna’s First Fundamental Theorem,
(2.6) lea(r, N = 2T(r, 1)

for all m. Since N(r) has infinite order, we conclude from (2.5) and
(2.6) that f has infinite lower order.
From (2.1) we thus conclude

@.7) lim-2*_ =0, m=123,---.
woe N(1,)

We next establish
(2'8) gm(rn) = O<N(""n>) y M= 1, 27 3: crt .

If (2.8) were false, there would exist a positive integer m,, ¢ > 0,
and a subsequence of 7, (still denoted by »,) such that

Gn(Ta) > EN(1,)

for all n. Since g¢,(r)/m is an increasing function of m for each
fixed » > 0, for m > m, and m eI we have

gm</"n) > ﬂng(/"ﬂ) > meN(q'n) y N = 1) 29 3: et
My, My

and hence by (2.5) and (2.7)
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1/3

Rec,.(r,, ) =2 —=(gu(r,) + N(r,)) + O(ry)

@
2

V3
2

(2.9)

1\

(%5 + 1>N<m +O(m)

(”;f +14 0(1)>N(7 2 -

Il

Since m € I may be chosen arbitrarily large, (2.6) and (2.9) contradict
(2.1), establishing (2.8).

For an arbitrary positive integer m, we now set » = r, in (2.4),
divide by N(r,), and appeal to (2.3), (2.7), and (2.8) to deduce (2.2).
For negative indices, (2.2) is established by conjugation. Its truth
for m = 0 is obvious. This proves Lemma 2.1.

We now prove (1). If (1) were false, there would exist a strongly
convex @ and a sequence 7, - co such that ‘

2.10) sup S::¢<k’_g¥%ﬂ>da < oo

Thus (2.1) would hold for 7,, and by Lemma 2.1 we may consider a
subsequence (still denoted by r,) for which (2.2) holds. We seek a
contradiction.

Nevanlinna’s First Fundamental Theorem and (2.1) imply that
the sequence of measures on the unit circle T defined by

log |f (1.
2.11 ap, = == 2" Jigg
@.11) ! 2 N(r,)
is bounded in total variation norm, say by L. We show that the
measures (2.11) converge weakly to the measere on T with point
mass at ¢'* having weight 7;. Suppose g is a continuous function
on T and let P be a trigonometric polynomial. We have

= 17 1o 1O gy — &y e
= 2ﬂ§ BN g(o s — 307
_ L 7 log |f(r.e”) i i
= 5 | g — Plenas
1 i IOg ‘f(’r e )‘ 0 . iy
+ g | B penan - 3 pige)

=T, + Yn — jz:;ng(eiaf) 1
where
x| = Lllg — P,
and, by (2.2),
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K
}Lig} Yo = fg 7 P(e*5) .
Since >, 7n; = 1, these last two observations imply
fw, = (L + Dllg — Pll. +0o1), (m—>00).

Since the trigonometric polynomials are dense in the continuous
functions on 7T, the asserted weak convergence is established.

Without loss of generality we suppose 1, > 0. Let 6 > 0 be such
that the arc J = {¢’: |0 — «,| < 6} contains no point ¢ for 2 < j < K.
Let g: T— 10, 1] be a continuous function vanishing on T — J with
g(e”) =1. In view of the weak convergence of the measures dy,,
for n > my(g)

/A < 1 S:_ log lf("'”ew)ig(e“’)dﬁ

2 27 N(r,)
= |1 o 0 Dlgy
277 Jay—s N(r,)

Thus {log™ |f(r.e")|/N(r,)} is not a uniformly integrable family and
it follows by standard arguments [12, pp. 37-38] that (2.10) cannot
hold, giving the desired contradiction.

For p > 1 the choice in (1) of @(t) =¢* if ¢ = 0 and @(t) = 0 if
t < 0 establishes (2).

We now turn to the proof of (3) and again assume with no loss
in generality that f(0) =1. In view of Lemmas 1.1 and 1.2, we
may now let I = {m,} be an increasing sequence of positive integers
satisfying (1.7i and ii) and, in addition,

(2.12) (mys)* € <~-76£ %)

foril<j<Kand k=123, ---.

Since f has infinite lower order (note the discussion leading to
(2.5) does not use hypothesis (2.1)), we may assume N(r) has infinite
order. For m =1,2, 83, --- we define a nondecreasing unbounded

sequence s, by

s, = inf {t = e: log n(t)/log t = m/2} .
Thus
(2.13) n(t) <t*, e=<t<s,.

Again letting z,; be the zeros of f on argz = a; repeated according
to multiplicity, we represent f as
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&) = e 1 G4@)
where H(z) = >, B,2™ is entire and

2.14) @m:Hdz

vi

)

where ¢, = m if s, < |2,;] < Sn1y and ¢, =0 if |z, <s,. We show
the product (2.14) converges to an entire function by establishing

(2.15) ;Qlﬁ””<w

Izui|

for every r > 0. Letting #%;(t) be the number of zeros of G; in
2| < t, we have from (2.13) for m =1,2,8, ---

@1 3 (Izi.; ) =) e

- P (8 mrr) + (m + 1) S " <,,_>m Hn’(t)dt
- m-+1 Sm t

m—l

» m-+1 r m+1 r m+1
= < 1/2 > + 2( 12 =3 1/2 :
Smi1 Sm Sn

Thus if s,, > 4% then

r )\ o3
“w%smo ( ]z,,j| > —an ’
establishing (2.15).
Certainly for positive m
(2'17) m(" f) + Zcm(/' j) ’

where by (1.1)
Calr, Gi) = € m%{;n lzu;‘éf (<|z7w| >m B <—|2—:;J[—>m)
s ()

Since ¢, < m is equivalent to |z,;| < s,, integration by parts yields

ear,G;) = e “”"J{ ( 75(Sm) Nj(sm)>

2msn 2sh

0 - B M0+ B () M0

(2.18)

(2.19)

Since N(r) < n(r)log » + 0(1), for large m we have N(s,) < s by
(2.13). Combining (2.13), (2.17), and (2.19) we obtain
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K r . m
(2.20) ¢, (r, f) = V0™ + B.(r)N@) + _’Z’z__"'Z majs <%) @dt
for a sequence of constants v, with |v,|”™ — 0 and a function B,(r)
with |8.(r) <1 for all » >0 and al m =1,2,3, ---.
For v, # 0 we set v, = |[v,]e¥m, 0 < p,, < 27, and let V be the
set of meI with v, =0 or

(2.21)

__qz| T =1lorq=3.
Pm2<4 or q or q

For meV it follows from (2.12), (2.20), (2.21), and elementary
trigonometry that for » > 0
len(r, 1) — Bm(r)N(T)I

e (7

2.22) > <s1n1 ) 2 ~ima Sm <%)m%(—t)—dt‘
V'3 m( f—) o
o T (1) N0

For me V, we set b, =
For melI — V we set
0 N(it)y=10
Pu(t) = { 1

NG % ¢-imestom N(£)  N(£) > 0

and note that for N(¢) > 0 the continuous function ¢, satisfies
(2.23) sinl’l2 < |Rep,®) £1.

Thus from (2.20) for » > 0

Re (e7*m(cn(r, ) — Balr)N(7)))

= oo+ 2 Sm <—%>m(Re g)ma))ﬁgﬁdt .

(2.24)

Since N(t) has infinite order and [v,|”™ — 0, it follows from (2.23)
that for mel — V there exists a sequence b, — o such that
N(,) > 0 and

(2.25) vl = -2”3S Re @)Y 4

tm+1
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for m > m,. Thus by (2.23), (2.24), and (2.25) for m > m, and » > 0
len(r, ) — Bu(r)N(7)|

(2.26) z —7— IS (—?)m(Req)m@))l—\%th

m

(0.

bm

Without loss of generality we may suppose m, is so large that m, <
my, € I implies m,,,/m, < 2.

Let I, = I N (m,, ). From (2.6), (2.22), and (2.26) we see that
to prove (8), it is sufficient to demonstrate the existence of a set
F 1, ) with logarithmic density zero such that

2.27) lim N =0
sup [, (5) 504

as r tends to infinity through values not in E.
For

¢ = %, = min {b,,: m € I},
let
v(r) = max {m: mel, and b, <7} .

We denote by S the range of the nondecreasing integer-valued func-
tion v. For m =m,cS, we let m" = m,,,. From the definition of
Y we have

(2.28) Jn =vH{m}C[b,, b,) .
Furthermore
(2'29) [xoy OO) = U Jm )

mesS

where the right side is a union of disjoint intervals. For m e S we
define 0 < ¢, <1 by

(2.30) 1+e,=m'/m

and note by (1.7i) that ¢, — 0 as m tends to infinity through values
in S.

Letting m, denote logarithmic measure and letting S, be the set
of me S such that
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) < ——,
me,,

we see from (1.7ii) and (2.30) that if
El = U I s

mes,
then

1

’ < oo
m — m

(2.31) m(kE,) = Zg

For meS — S, we consider an arbitrary interval J, c J, with

1

(2.32) my(J,) = .
me,,

Since d(log N(t))/d(log t) = n(t)/N(t) assumes a given value (m) at
only a finite number of points in any bounded interval on which
n(t) > 0, we see that there exists a real y,, = ¥,(J,.) such that

A, = {ted,: log Nt) > mlogt + ¥}
satisfies

1
meL?

(2.33) my(4,) =
We note that reJ, — 4, and te A, imply
(2.34) N(t) > N(r)t/r)™ .
Given red, — A,, let
Ai(r)y =A% =A4,N 0, )

and

Ar¥(r) = AX* = A, N (7, o).
Thus either

1
m(A7) = ome

or

1
2mel?

m(ARY) 2

In the former case by (2.28) and (2.34)
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(2.35) m Sbm (-’tiyl\@dt >m SA% <—:->mﬁt@dt
> mN@)m(A2) = g’%’) :

In the latter case by (2.28), (2.30), and (2.34)

w ) Mz e ()7

r t r t
(2.36) > m/N()m,(A%*) min (i)—'“’”
tedm \ p
_ m'N(r) _ (L + e )N
= 2emel? 2ecll? ’

since for te AX*

log -%)wsm = —me,(log t — log 7)
> —me,m(J,) = —1.
From (2.82), (2.83), (2.85), and (2.36) we see there exists a set
B,chb,= U J.

meS§—8;
for which
my(E, N [, 7)) = o(m,(E; N [2,, 7)) = o(log )

and such that (2.27) holds as r tends to infinity through values in
E, — E,. Combined with (2.29) and (2.31), this establishes (2.27) with
E = E, U E, and thus proves (3).

3. Proof of Theorem 2. Due to the complicated nature of our
construction, we begin with a brief outline of the proof of Theorem
2. We first construct an entire g with zero counting function N(r)
having the property that log N(r) is approximately a piecewise-linear
convex function of log » (see (8.10)) such that, for a sequence 7,
tending to infinity, d(log N(t))/d(logt) evaluated at ¢ =7, is much larger
(approximately M7 than is log N(r,)/log r, (approximately M,). (See
(8.18) and the remarks immediately preceding it.) This key property
enables us to construct polynomials %, so that an initial segment of
the Fourier series of e*»g differs in L* norm from the corresponding
portion of the Fourier series of

<Re i_j*g:_zzj)N(m >0
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by o(N(r,). (See (3.26) and (3.28).) Because the sequence 7, is
sufficiently well spaced, from the polynomials %, we are able to
construct an entire h (see (3.38)) so that the Fourier series of
log |f] = log |e*g| behaves on |z| = », much like that of log |e*~g|,
leading to (3.53) and implying d(0, f) = 0.

It would seem a fair observation that the essential difference
between the infinite order and finite order situations is that in the
former case infinitely many coefficients of h(z) = > a,2™ are at our
disposal, subject only to the condition la,/”™ — 0, and that they may
in fact be so chosen as to achieve N(»,)/T(r,, f/)—1 on a widely spaced
sequence; on the other hand, for f of finite order, only finitely many
nonzero a, are at our disposal and the approach employed below is
clearly unavailable. Finally, we remark that much of the intricacy
of the construction is a result of the requirement that f grow slowly
in the sense of (4).

We now turn to the details of the proof and begin with

LEMMA 3.1. Suppose v: (0, =) — (0, «) is a nondecreasing func-
tion with v(x)/x — o as x — . For x >4, let v (x) = v((x — 4)/4).
There exist sequences of positive integers M, and z, tending to
infinity, a positive sequence B, tending wupward to 1, and a
piecewise-linear convex fumnction @:[x, o) —[1, ) such that

(3'1) (1) Mn+1g'n‘M;y %:1,2,3,"‘;

e Bi‘”n-&‘l 1 n .
11 L <= m=1,23, -
(iif) Zet =167, j, = integer, n =1,2,8, -++;
Ly,

(iv) 1—pBr . <em= M, . Em<2M,., =123, .-
(v) @) =7.®), 2= 2
(vi) @ 18 convex on [%,, ,.], linear on [z, 8x,], and linear
on each segment [8x, + 4k, 8z, + 4(k + 1)] contained in
(%, Zuinl, k= integer, n =1,2,8, «-;
(vil) @'(x) < (p'(x — b)), x = x, + 4, where @' denotes the right
derivative of @; '
(Vlil) M, = ¢'(xn) = @'(%) =M, e, 20 <2y, =128, -
(ix) %%l <M on=1,28,
(x) @,) + Mi(x — x,) + ML — 2,10) < V(%) for @ = x,,,,
n=1238, ---;
and
xi) 4M,x <7 (x), x2=2, =128, -,

Proof of Lemma 3.1. Welet M, = 2 and let M, be an arbitrary
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integer greater than M;. Let 0 < B8, < 1 be such that (3.1 ii) holds
with » = 1. Let x, be an integer greater than 4 so large that (8.1 xi)
holds with # =1. Such an =z, exists since ~v,(x)/x — . Define
@(x,) = 1. We note (8.11), (8.11i), (8.11ix), and (3.1 xi) are satisfied
for » = 1 and (3.1 v) holds with = = z,.

We now suppose for some positive integer p that we have a
sequence of positive integers M,, M,, ---, M,,,, a second sequence of
positive integers =z, x,, +++, x,, an increasing sequence B, B, ***, B,
of positive numbers less than 1, and a function ¢: [z, ,] — [1, o).
In addition we suppose (3.1 i), (3.1 ii), (8.1 ix), and (8.1 xi) hold for
n < p, (8.1 iii), (8.1 iv), (8.1 vi), (3.1 viii), (8.1 x) hold for positive
n < p — 1, that (3.1 v) holds for », <z < «,, and that (3.1 vii) holds
for ¢, + 4 < x < z,. These hypotheses are satisfied in the case p =1,
vacuously in the case of (8.1 iii), (3.11iv), (3.1 vi), (8.1 viii), (3.1 x),
and (3.1 vii).

We define numbers 3,,,, M,,,, and x,,, and extend the definition
of ¢ to (x,, £,;,.] in the following manner. We choose B,., € (B, 1)
such that (8.1 iv) holds with # = p. We then let M,,, be an integer
such that (3.1 i) and (3.1 ii) hold with » = p + 1. We next choose

(3.2) %, > 8z, + 8<% log M,,, — 2log M,,)

such that (8.1 iii) and (8.1 x) hold with » = p and (8.1 xi) holds with
n=7p+ 1

We now define ¢ on (x,, #,,,]. Recalling that ¢’ denotes the
right derivative, we specify

(3.3) P'(x,) = M,
and
(8.4) P8, -+ 4k) = 2*M:, k=0,1,2, ---,k,,

where [, is the largest integer % such that
(3.5) 2 MR < MR
We note from (3.2) and (3.5) that

8, + 4(k, + 1) < 8z, + s(é_ log M,,, — 2log M,,) <@y

We define @ on (x,, ©,,,] to be the unique function satisfying (3.1 vi)
with n = p, 8.3), (3.4), and

(3.6) P'(x) = My, 8x, + 4k, + 1) =x <2,y .
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Thus (3.1 viii) holds with % = p and (8.1 ix) holds with % = p» + 1.

In the case p = 1, we observe that (3.1 v) holds for z, < z < z,,,
by virtue of (8.1 xi) with » =1 and (3.1 viii) with n = 1, since
2, < £ 2, implies

P@) =1+ M@ — ) = 4Mx < 7,(w) .
If p=2, (8.1 viii) with n = p — 1 implies
@(x:n) é @(x?—-l) =+ sz/z(xp - xp—l) ’

which in conjunction with (3.1 x) with n=p—1 and (3.1 viii) with
n = p implies (3.1 v) holds for z, <z < x,.,.

Finally we observe that (8.1 vii) holds for «, +4 <2 < ®,,.
If p =1, this is a result of (8.4) and (8.6) with p =1. For »p = 2,
inequality (8.1 vii) holds for z, <z < %,., by (3.4) and (8.6), with
equality holding for z, <z < 2, + 4.

This finishes the inductive step of the proof. We have (3.1 i),
(8.1 ii), (8.1 ix), and (8.1 xi) holding with # = + 1 and (3.1 iii),
3.1 iv), (3.1 vi), (8.1 viii), and (8.1 x) holding with n =». In
addition (8.1 v) holds for 2, <z <x,, and (3.1 vii) holds for
%, +4 =% <=z, Finally we notice that the convexity of @ follows
from (3.1 vi) and (3.1 viii), and that 8, — 1 by (3.1 iv). This com-
pletes the proof of Lemma 3.1. In what follows we shall make no
use of (8.1 x). It is included only as an aid in the inductive step
of the proof of the lemma.

We now use the lemma to prove the theorem. It is elementary
that corresponding to k£ of Theorem 2, there exists a nondecreasing
7:(0, o©) — (0, ) and 2’ > 0 such that
3.7) Z;ﬂ <K@, x>,
and v(x)/x — > as & — . We apply Lemma 8.1 to this v and define

0 0t <em
o=l
[eesdp (log £)] e <t .

We note that n(f) is nondecreasing and continuous from the right
on [0, ). We shall construct an entire f with positive zeros and

n(t, 1/f) = n(t). ,
We define N(7) = S (n(t)/t)dt and note for log » > x, that

3.8) N(r) = (1 — 0(r)) exp (¢(log 7))

for some 0 < (r) < 1 with 6(s) - 0 as r — . It follows immediate-
ly from (3.8) and the definition of n(t) that
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d(log N(t)) _ n(t) _ ,
(3.9) dogt) ~ N@) 1 + o(1))P'(log t)
and
(3.10) ®(log t) = log N(t) + o(1) .

From (8.1 vii) and the convexity of ® we thus obtain

n(@)/N(t) = (1 + o(1)P'(log t) = (1 + o(1))(#'(—1 + log 1))*
= (1 + o)) (e(log £))* = (1 + o(1))(log N())* .

Let a(x) = @(x)/x. The convexity of ¢ together with ¢'(z,) >
a(x,) implies « is continuous and strictly increasing on [z, ). By
(8.1 viii) certainly a is unbounded on [x,, ). Thus, for m =
1,28, ---, we may define a strictly increasing, unbounded sequence
s, by specifying s, to be the unique solution of

(3.11)

(8.12) a(logt) = m/2 .
From (3.8) and (3.12) it follows that
(3.13) Nty <t, 0<t=<s,.
In view of (3.11) and (3.13)
n(sn) = (1 + 0(1))N(s,)(log N(s,))* = o(sw) ,
implying the existence of A > 0 such that for m =1,2,8, ---

(3.14) N(Sm) + N(8n) ~ A
Sm S/t
Welet 0<2 <2, <2 < --- be the nondecreasing sequence of

positive numbers with counting function n(t). For z, <s,, we let
q,=0. For m>=2, welet g =m —1if s,_, <z <s, We define

9) = I E(zi qy) .

In view of (8.11), (3.13), and the choice of ¢,, an argument (with
n(t) replacing 7%;(t)) virtually identical to that leading to (2.15) shows
g to be entire.

We now define a sequence #, tending to infinity. For n =1 we
select

(3.15) Ty € (2, 22,)
satisfying
(8.16) aey) = M, .
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Since

a(2w,) > w Loy = Mi
1. 9

by (8.1 vi) and (8.1 viii), we see from (3.1 ix) and the continuity of
« that such an z, exists.
We let

(8.17) P, = exXp X, .

For notational convenience we let p, = ®'(x,) and note by (3.1 vi)
and (8.1 viii) that o, = M.. From (3.8), (3.16), and (3.17) we have

(3.18) N(r,) =1 — o(1))ri .

For each n=1,2,8, ---, we now define a finite sequence a,,,
1<mgM,,, as follows. For 1 < m £ 2M,, let

(3.19) G = P8n)  Na) | N gn 4y
ms,, Sm Yn
For 2M, < m = M,,,, define
amn — In’(s'r:b) + N('Zm) ZN(’rfn)/B )
ms,, Sm 7'11.
(3.20) N ., ’”N
+m§"’ N® gt 1 m S (—t—) Ny, .
tm+1 0 7'31, t

We note that s,, > r, if and only if m > 2M,. This is a consequence
of the monotonicity of a and the fact that a(logs,) = m/2 and
a(log r,) = M,

We now estimate the size of a,, for n=22. For 1<m < M,
by (8.1 iv) and (3.14)

A 2N ('r,,) a

m/4

A 2N(Irn> ~4m9:,,, 1
Sm/¢ ’I',,, °

(3.21)
<=
For M, < m < 2M,, from (3.1 iv), (8.14), and (3.18)

(3.22) lan, < A Lo —gry < A 4 gpmea

""»/4 m/4

For 2M, < m £ M,,, (3.18) implies

(3.23) N — g1 < riwm <o
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Elementary integration and (3.13) imply

= N(t) S "NO) gr < 8w
(3.24) m | 2Wat 4 m (q) Bt < Sime.

From (3.14), (3.23), and (3.24) we conclude for 2M, < m £ M,,, that

=T

Our choice of «,, is motivated by the fact that if
My oy
ha(2) = 3, @pa2™
m=1 .
then
BuNw,) + A,, 1=m=Z2M,

3.26 (70 €'79) =
( ) CnlTns €"79) {BZLN(“> 2M, < m =M,

where for 1 < m < 2M,

= 2 ) M 2 (4 M

In fact if F(z) = ¢"*g(z) where H(z) = >, b,2", then, since ¢, < m is
equivalent to x, < s,, calculations similar to those involved in (2.18)

and (2.19) show that

C oy — o (Om  N(s,)  N(sa)
ey, F) =1 {2 ———_stl,,”, Bsn } + N(7)

gl () SR L) e

(3.27)

In view of (8.19) and (3.20), (3.26) is a special case of (3.27).
We now show

(3.28) <z 4, > — o(N(r)) .

We begin by recalling, from the remarks following (3.20), that
1<m<2M, is equivalent to s, < »,. From (3.1 vi), (3.1 viii), (3.10),
and (3.15) it follows that uniformly on the interval e <t < », we
have as n tends to infinity

(3.29) N{) = (1 + o(L))N(r,)(t/r,) = .

First suppose m < 2M, is such that e <s, <, We write
A,, = B,, + C,, where

B = ) () S 3V G e
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and

Elementary integration and (8.29) imply uniformly for the values of
m under consideration

(8.30) —(@1+ 0(1))2—(—-)N(m) =B, =1+ 0(1))——<p——ﬂ1—%N(1‘n) .

In addition, uniformly in m
(3.31) Col = i"—(;—l < + oL))N(r,)"

where the last inequality is a result of (8.1 ix), (3.10), (3.15), (3.17),
and (3.18). Since p, = M?, (3.18), (3.30), and (3.31) imply

12 179
@32 (2 4an) =(, 3 B +(. 5 o)

2M oy

= (5 + o)(Z (52— No) + A+ o) @MNG- )

m=1

n

= 0(%2)/}(1',,) + o(N(7,)) = o(N(r,)) .

n

For m such that s, < ¢”», we write 4, = B,,, + C,.,, where

m = 3 () e - 1 () e
and
o= -2 (420
From (3.29) we have uniformly in m
(3.33) 0= B,, = ;’LSM ( t) N(;’”%) gt
+ g (L) ar < MEE 4 1 4 o<1>)-2—(-'”%0—>.

We note that m = 2M;? implies by (8.1 ix)
(3.34) a(x,) = M,* < m/2 = a(log s,,) .

Thus for s, < e*» we have m < 2M;?, and hence by (8.18) and the
right half of (3.31)

(3.35) N(e™)ry = o(N(r,))** .
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As before,

(3.36) IChl < NL;l < (1 + o(L)N(r,)" .
As in (8.32), the combination of (8.33), (3.35), and (8.36) yields

(3, 45)" = o),

which in conjunction with (3.32) establishes (3.28).
We note that the combination of (3.26) and (3.28) gives

@3 (3 leatrs, rg) — GENGIP)” = o) -

We now define f. We let

b, 1l=m =M,

3.38 =
( ) ¢ {amn Mu<m§Mn+1, n=2.

Letting h(z) = > a,2™, we note from (3.22) and (3.25) that k is entire.
We define
f(z) = et g(z) .

In order to show N(»,)/T(r., f)— 1, and hence d(0, f) =0, we
need an additional property of g, namely

1/2
(3.39) (3 leatra o))" = o) -

m>My 41

We first note from (3.1 iii), (3.15), and (3.34) that m > M,,, implies
(8.40) Sut > gFarit > 2

We consider (3.27) with b, =0 and » = #,. From (3.14) and (3.40)
we have for m > M, ,

(8.41) 1'2(—”—(8—’”)— + N—(f;”—)> < A(ﬁ)m <A,

2msm 2s™ ) sl am

In addition by (3.9), (8.10), and the convexity of @ there exists a
positive constant ¢, independent of » such that as n —

N(t) = N(m)( ;g )pmm

n

uniformly for ¢, £ ¢ < »,. Consequently, uniformly for m > M,,, as

n — oo
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o5 M- 2 (40

2 " t
N(r,)  mN(r,) S’ﬂ t \mtoattoun gy
.42 < _ t dt
342 T2 2 to <'r,n> t

<1 + (1))2(0(n(N("'n))) + = =

where we have used (3.18).
For m > M,,,, we have s, > ¢+ by (3.1 iii) and (3.34), and
consequently by (8.13) and (3.15)

ﬁ Sm mN(t) < m _1'
(3.43) o () M < (F2)" < o5
Uniformly for m > M,,., we have by (3.1 vi), (3.9), and (8.15) as
n— oo
_’nl 8%n r mN(t)
2 S"’n <t> t dt
_ mN(@,) Hon ﬁm—-pn(1+o(1))—d_z§
(3.44) = ) S (t) t
mN{(r,) 1
= + o =) .
2(m — p,(L + o(1)) ()

Combining (3.43) and (3.44), we obtain uniformly for m > M, .,

(3.45) |% - %g"‘ (%.)”N_g@dt! <+ o(1) (pnN(m)) + 21}_1 _

The combination of (3.42) and (3.45) yields uniformly for m > M, ,,
_m{m(r\"N@) g m (™ E\"NE) ’
IN(”> Sw<t> t at 2 So <¢n> t dt

, N (m)/ P 00 1
< 1 1)) -+ -+ .
( 0( ) pn n pn> 2m~—2

Since p, = M., we see from (3.1 i), (3.27), (3.41), (8.46) and the
Schwarz inequality that as n — o

(3.46)

(3 leatra o)) = O(52-N(r)) + 0(1) = o(Nr) ,

1/2
m>Mp iy M‘A+1

establishing (3.39).
We next observe that

1 + neiﬂ 2
[tog 177, — Re 3TN |
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12
2

= [tog 7r,e)f — Re 2 BT NGr,)

(3.47) 1-8
Moyt
=2 'm;l Icm(’rm f) - B;EN(rn)Iz + 2 m>; |cm('rm f) - IB;n‘N(rﬂ)lz
= 2I, + 211, .

To analyze II,, we first note from (3.15), (3.22), (3.25), (8.38), and
(3.40) that

(3.48) la.] < B@2r,)™

for some constant B > 0 independent of n for all m > M,,,. Thus
by (8.1 ii), (3.39), and (3.48)

= (3 featra o)

m> My g

(3.49) fB( s e (5 ar) Ne = o)

2 \m>M, 1 m> My iy

From the definitions of %, and I, we have

Mut1

nr=(3

m=1

Cn(T, €'ng) — BEN(r,) + <&”;2“—%>4;"

2)1/2
By (8.37) and (3.38) we have
1 My 1/2 1 Moy 1/2

12 < el 2 pa2m = 2 pe2m
350 L < o) + 33 lawrer)” + 23 lanrir)
From (3.18) and (3.21) we have

My 1/2

(3 lamrin)

m=1

Mp/2

. 'rim 1/2 My ,’,im 1/2
(3.51) < oNGr) + A( S s:ﬂ) + A<m=% ) s:ﬂ)
= o(N(7,)) + OM; ri»") + o(N(r,)) = o(N(r,)) -

Similarly
My 1/2
(3 lauiri)” < 00
(3.52) R, i
+ (m s ]am|2> s = o(N(r,)) .
The combination of (3.47), (8.49), (8.50), (3.51), and (8.52) yields

353  |loglfre)| — Re LN )| = o)

! l - Bnew i1

trivially implying m(»,, 1/f) = o(N(r,)) and hence d(0, f) = 0.
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For the remainder of the proof, we reserve the letter » for a
value satisfying
(3.54) z, Zlogr=w, +4¢ £ x,.,/4
for some integers ¢ and n. We must show
(3.55) log T(%, ) < v(log #) , ¥>R,,
which in conjunction with (3.7) establishes (4).

We consider c¢,(r, f) given by (8.27) with b, =a,. For m =<
2M,.,, from (3.14) and the fact that a, — 0 we conclude

(3.56) rm(“—m _ lse) _ M)l = O(™) = Q@) ,

2 2mso 2sm

Noting

2 (2) 20 <

by (8.13), we see from (3.10), (38.18), and the monotonicity of a that
for 1 =<m < 2M,,,

s o 2] - ()M 2 () N0
S r"N(r) e,

By (8.1 xi), (3.56), and (3.57)

(3.58) (3 leatr, F) " = ol ) = ofentsm)

fm!S2Mpy

From the definition of a,, (3.1 iv), (3.23), (3.24), and (3.54) we

have for m > 2M,
anf Qm _ N(Sw) _ N(s,) 5< r\" 1
’I(—— _— ) <—§—7‘—:;li) <2m+1.

S, > e'nit > gly

2 2msm 2sm
for m >2M, , by (3.34). By (3.1 vi), (3.1 viii), (3.9), and (3.54)
uniformly for m > 2M, .,

Ne) _ m Se"(T)’"_N.@dt
t

2 2 t

(3.60) — __]!gr_)(l —m Sj%(%)m—pr(woun%)

(3.59)

We have

r

=1+ o(1>)~—————2(m”; SN+ o J:;(:) )=—a+ o(1))~_-_"rgy(&”
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where o, = ¢'(log 1) < (m/2)"2.
Since ¢'r < t < e"»+ implies

N() < N(etr)(t/e r)M;‘j_lquo(m

by (8.1 viii) and (8.9), we conclude by elementary integration

(3.61) m S“( )Nty < Nen

2 Jetr gitmit—olL)

uniformly for m > 2M,,, as r tends to infinity through values
satisfying (8.54). Finally from (3.13) and (3.54), for m > 2M,,,

(3.62) —’@-S’” (Jti)mN(”dK 1

2 Jemnt1 t e™Tat)z " gm "

Combining (8.60), (3.61), and (3.62), we conclude from (8.1 viii)

(3.63) <lml>2_»1n+1 J_Vg)' - %7' Ssm (%)mygdt 2>1/z

= O(N(1)) + o(N(e'r)) = o(N(e'r)) .

r

Since N(r) < ™* for m > 2M,,,, a calculation similar to (3.42)
shows uniformly for m > 2M,,

0= 50 -], <§>w@dt
= (1 o(l))prN("') + 1 2m ,
implying
(3.64) <1m,>wn+l % -5 S <%>"‘yt@ it z>1/2

= O(N()) = o(N(e")) .

Combining (3.27), (3.59), (3.63), and (3. 64) with the Schwarz inequality,
we conclude

3.65 (3 lear NF) = o) = ofernsny

Im|>2Mp 4y

where we use (8.10) in the second equality.
From (3.1 v), (3.58), and (3.65) we have

(8.66) log mi(r, f) < v,(4 + log )

for sufficiently large » satisfying (8.54). For sufficiently large 7
there thus exists » with
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log » €[log ¥, 4 log 7]
for which (3.66) holds. Thus for all ¥ > R,
T, f) £ T(r, 1) £ mi(r, 1)

(4t+log ) — ,r(llogr)/e) (log7)
sen = e’ =eé )

establishing (8.55) and hence (4). It is clear that the lower order
of f is infinite because the lower order of N(¢) is infinite. This
finishes the proof of Theorem 2.
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