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THE IDEMPOTENTS OF A CLASS OF 0-SIMPLE
INVERSE SEMIGROUPS

JANET E. MILLS

An w-semigroup is a semigroup whose idempotents form
an w-chain ¢, > ¢, >e¢, > +--. In this paper we characterize
the semilattice of idempotents of a 0-simple inverse semigroup
whose nonzero Z-classes form w-semigroups.

A semilattice E is an interlaced wunion of w-chains C, =
{40 > €0, > -}, e A, if E=.,..C, and if o, Bc A, 1 =0, then
there exists a unique 7 = 0 such that

057 < €4, DUt e€5; L €ny -

It will be shown that Y is the semilattice of a 0-simple inverse
semigroup whose nonzero <7-classes form w-semigroups if and only
if Y is an interlaced union of w-chains, with zero adjoined. One such
0-simple inverse semigroup with semilattice ¥ will be explicitly
displayed.

In the semigroups under consideration, every nonzero <7-class is
an w-semigroup, that is, a bisimple w-semigroup. Since bisimple ®-
semigroups were described completely by N. R. Reilly, [8], our
semigroups are unions of well-known semigroups; it is the manner
in which the idempotents of these @w-semigroups relate to each other
that is of interest here. This class of semigroups includes several
which have already been explored, for example, simple @-semigroups,
[4] and [7], and certain simple inverse semigroups whose idempotents
form the ordinal product of a w-chain and a semilattice with identity,
[6]. Bisimple w-semigroups occur in abundance within most regular
semigroups (see [1]), so it is natural to consider, as a first step, those
semigroups whose <-classes are all w-semigroups.

1. Preliminaries. Let S be an inverse semigroup. For an
element a of S, ¢! denotes the unique element of S for which aa'a =
a and a7‘aat = a~'. For any subset D of S, F, is the set of idem-
potents of S contained in D. Equivalences &7 and _# denote the
usual Green’s relations.

For inverse semigroups, the property of being 0-simple is easily
seen to be equivalent to the condition: if ¢ and f are nonzero idem-
potents then there exists an idempotent g such that g < f and g Ze,
where < is the usual partial order on idempotents.

Let ¢ and f be idempotents with e f. Then there exists a in
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S such that aa™ = e¢ and a™'a = f. Furthermore, the mapping o,: z —
a~'xza is an isomorphism of Ege onto Ef, [3].

The following result is crucial to our development of the structure
of the semigroups under consideration.

LEMMA 1.1. Let S be an inverse semigroup in which every
nonzero Z-class i1s an w-semigroup. Then S is 0-simple if and only
if for any two distinct monzero F-classes D, D', if g, he E, with
g < h, then there exists d e E, such that d < h but d < g.

Proof. Let S be 0-simple and D, D' be two distinet nonzero
D-classes with g < h, g, h in E,. By 0-simplicity, there exists ec E,,
such that e < ¢g. Since K, is inversely well-ordered, ¢ can be picked to
be the maximal idempotent of D’ beneath g. Moreover, since there
is an idempotent of D below e, there are only a finite number above
e, so we let ¢’ be the minimal such one. That is,

e<g =g<h.

Since ¢'2h, there exists ¢ in S with aa™ = h, a7 'a = ¢’. Now
a'eaZe and a'ea < ¢’ < g. By maximality of e, it follows that
alea <e<¢g. If a'ea =e, then o,, as defined above, acts in the
following manner: o,(h) = ¢', 0.(e) = ¢ and o,(g) = g" for some g”" Zyg.
Since ¢ < g < h, then ¢ < ¢” < ¢’. But by minimality of ¢’, this is
impossible. Thus a™lea < e < ¢'.

Since o,-: is also an isomorphism, a'ea < ¢ < ¢’ implies

ala‘ea)a™ < aea™ < ag’'at.

That is, ¢ < aea™ < h. Consequently d = aea™ is <r-related to ¢ and
d satisfies the condition that d < h. Furthermore, since e¢ is the
maximal idempotent of D’ below g, d < g. .

The converse follows directly from the remark preceding Lemma
1.1.

An ideal I is called prime if abe ] implies ae or bel.

LEMMA 1.2. If S is a 0-simple inverse semigroup whose nonzero
T-classes are w-semigroups then 0 is a prime ideal, and S\0 is a
simple tnverse semigroup whose -classes are W-semigroups.

Proof. Let e and f be nonzero idempotents of S with ef = 0.
Then ¢ and f must be in distinet <r-classes, since each <7-class is
closed. By 0-simplicity, there exists an idempotent g such that g <e
and g=Zf. Since f and ¢ are in an w-semigroup, either ¢ < f or
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f<g. But if f<g, then f <e and ef 0. Hence g < f and
g < e. But this implies that g < ef = 0. But g +# 0, and thus ef = 0.
Therefore, 0 is a prime ideal of Ej, and thus of S.

2. The idempotent structure. In light of Lemma 1.2, we now
restrict ourselves to simple inverse semigroups whose <7-classes are
w-semigroups. In such a semigroup, we now show that the semilattice
of idempotents is an interlaced union of w-chains.

LEMMA 2.1. Let S be a simple inverse semigroup whose -
classes are w-semigroups D, a€ A, and K, = {e,, > €4, > ++-}. The
following properties hold in Eg.

(1) If e,; < es; then © = j.

(ii) For a,Be A, 1, 7=0, and for all n such that —j=n<+ oo,

€ai < €55 > Caipn < €p,54n -

(i) If e, €5 ;=€ then €. 485 i1n="0r1in, JOr all m=—min{i, j}.
@iv) For acA, if aa™ =e,, a7'a =e,; then o, Fe,, — FEe, ;
defined by xo, = a‘za, is an isomorphism such that if e;, < e,,, then

(1) €800 = €p,1t(i—0) -

Proof. (i) Let e,; < e;;. Consider the set
M = (ke < €s0 o L €55} -

Then if k is in M, k < 1 since e,; < e;;. On the other hand, by
Lemma 1.1, for all p < j, there exists p’ such that e, , < €5, €4, €
€5 p41; €ach p' is in M and they are all distinet. Consequently j —1<
IM|<1,80%>].

We know from [3] that o, is an isomorphism and thus preserves
<r-classes. Therefore, if ¢;, < e,,; then e;,0, =e¢;, for some m.
In addition it is clear that for e,, < €. €. 0. = €a1rij—1), Since there
must be a one-to-one correspondence between the sets {e,,,<---<e,;}
and {e,,,0,< ++- <e,;}. The proof of (1) for arbitrary 8 will be made
after (ii) and (iii) are proved.

(ii) Let e,; <es;. It will first be shown that e,,,, < e; ;...
Either e, ; < es;.;, and thus e, < €,:; < €511, OF €u; £ €50. We
may assume the latter. By simplicity, there exists ¢;, < e,;, so let
r = min {k|es,; < ¢,,}. That is, using 1.1

s, < € < €55 and es. £ €aipy -
Let aa™ =¢;; and a'a = e; ;,,. Then

a_]eﬂ,ra < aﬁlea,ia < a—leﬁy.ia’ ’
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where the strict inequalities hold since o, is an isomorphism. That is,

(2) i1 < Q00,0 < €554,

since e;,0, = ¢€;,,., a8 we have seen earlier. Now a'¢, ,0ZFe,; and
thus a'e,.a < e.; since ¢,; £ €5,.,.. If a’'e,.a < e,,;., then by 1.1,
there exists p such that e;, < e,y €5, € a7¢,;,0. By definition
of 7,p=1r and in fact p > » since ¢;, < ¢,,,,. But then by (2)
s = €5, < 07 'e,,a, contrary to the assumption. Hence a'e,.,a =
€aiy and thus e, < e,

That e, ., < €5, for all n = 0 follows by induction.

Now consider the case n = —1. Let 7 >0. Then <> j>0 by
(i). Either ¢, is the maximal idempotent of D, less than ¢, ; or
Cai < iy < €55 < €5;_,. Thus we may assume that the former holds.
By 1.1, there exists m such that e, ., < €5, €sn & €55 Since e, <
¢s,;, it follows that m <7 — 1. Hence e,, , < ¢, . < €s:;_,. The proof
for » such that —7 <% < —1 is by induection.

(iii) The proof of (iii) is made using repeated applications of (ii).

To see that (1) holds for arbitrary B, let ¢, be defined as in (iv).
Then, as we have stated, fore,, < ¢,,, a7'¢; @ = ¢;, for some p. By
(i), ep < €4 if and only if es,rion < €uiniimn = €45, Since o, is

one-to-one and preserves Z-classes, €;,0, = €5 1.0

THEOREM 2.2. If S s a simple inverse semigroup whose -
classes are w-semigroups, then Es is an interlaced union of w-chains.

Proof. We know that Es is a union of w-chains E, = {e,,>
e, > +++},xc A, where D, is a Z-class. Let a,Bc4,i=0. We
must find a unique 7 = 0 such that e;; <e,, €5; < €44~ Consider
the set

K ={jles; < €a} -

By Lemma 1.1, K is nonempty, and thus K must have a least element,
call it m. Then e;, < é€,;. If e;, < €,:.:, then by Lemma 2.1 (ii),
esmo < €airn_1- That is, e;, ., < e,,. By minimality of m, this is
impossible. Thus e, < €4.i41-

Since e, ;Z¢,,.4,, there exists a € S such that aa™ =e,,;, a'a=e,,,.,
and ¢, defined by e, ,0, = ¢4, iS an isomorphism of FEe,, onto E, .,
by Lemma 2.1(iv). Now e€;,, < €: SO €5,0, = €5 n1; < €q,:1,. Hence
s, < €qr, for all k>m. From this and minimality of m, it follows
that ¢;, is the unique idempotent in D, such that e;, <e,. and
€s,m % €xi+1. Therefore, Ej is an interlaced union of w-chains E, , @€ A.

3. An interlaced union of ®w-chains. Given an interlaced union
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of w-chains, we now construct a simple inverse semigroup associated
with it.

Let E be an interlaced union of ®-chains e,, >e,, > +--, @ € A.
Recall that this means that for all @, g€ A,¢ =0, there exists a
unique j = 0 such that e;; < €. €5,5 € €ayitre

LEMMA 3.1. For E as described, the following hold.
(i) If e,; =< es; then i = j.

(ii) If €. = e5; them euiin < €551, for all m = —J.

(i) If eqi€si = €1 then €u 1485510 = €ruin for all m = 0.

Proof. First we prove (ii) for all » = —min {¢, j}. Assume that
e < €55. Let m =0 and assume e€,,., < €5 10 If €400 < €550,
then e, 011 < €ayivn = €5,51nr, and the result holds. If e,.., < €5 in
then e, .., is the unique element below e;;,, which is not below
€s,i4nie  Consider e, ;,,,,. We Know e, ini < €540 SiNCE €4 4444 <
€.,.1n; therefore, by uniqueness of 7 + m, we have e, ., =< €5 ...
By induction, (ii) holds for all » = 0.

Now let # > —min {7, 5} and let e,,_, < ¢3;_,. Either ¢,,,_, <
€s,in < €35-n, O else e,; ,_, € €5;_,. There exists a unique %k =0
such that e, ,<es; ., and e, £ €z n If €4 ., ¥ €s;_, then it must
be that k<7 —n —1and e, ,_, < €., < €s;-n,. Consequently, for
all » such that —min {4, j} < n < + o, (ii) holds.

(i) Let e,; <es; and assume ¢ < j. Then by the above par-
agraph, e,, ;< e;;_,. That is, e,, < e;;_;, < €s, Since E is an
interlaced union of ®-chains, there exists & = 0 such that e,, < ¢;,
and e,, < e;,. But j—¢=1 and e¢,, €5, =¢€;,; ;= ¢€s,. This is
impossible. Therefore ¢ = j. This also shows that (ii) is true for all
n = —Jj = —min{i, j}.

(iii) Let e,.e;; =e€,,. Then ¢, , < e,, and ¢;, < e;;, so that by
(i), €11 = €xitnr €riss = €554, That s,

€t = €ay141€8,i41 < €4,i€8,5 = @i -

Let €,,1051, = €,,. Then e,, < e,.., €, = €;;, S0 by (i), ¢, <
€ariy €5.p—1 = €3;. That is, e;,_, < e,.63; = €, Consequently, e, ,,, <
€, < €, = €. But then by uniqueness in the definition of £, both
e;, and e; ,_, can not be strictly between e¢,,,, and e, ,. Thus ¢;, =
€. and €, = €,,..€s;.,. By induction, (iii) holds for all » = 0.

THEOREM 8.2 Let E be an interlaced union of w-chains {e,, >
Gy, > vl A, ForacA,m,n=0,let Tupan be the mapping from
Ee,,, onto Ee,, defined by

€58,3T tmyatyn) = ©€3,5+(n—m) *
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Then W =A{Timamlae A, m, n = 0}, under composition, is a simple
inverse semigroup whose Z-classes are w-semigroups, and E, = K.

Proof. By Theorem 3.2 of [5], to see that W is a simple inverse
semigroup, it suffices to show that W is a subtransitive inverse sub-
semigroup of T, the set of isomorphisms of principal ideals of E.
Using (ii) and (iii) of 3.1, it is not difficult to show that 7, ,,., is an
isomorphism of Fe,, onto FEe,,, and thus W is contained in T,.

To see that W is closed, let T(m,an) Tus5 be in W. Certainly
TimamTi,p,4) 18 an isomorphism from one subset of E to another. We
need to show its domain is Fe,, and its range is Fe,, for some d¢
A, p,q=0.

Now, e, €domain of 7, . mTus if and only if

b= Com AN €4y = €5,
which by Lemma 3.1 (ii) is equivalent to

e = €, and e, < €8,i(n—m) *

This is equivalent to

e?’,k é ea,meﬂyi—-(n—m) .
Thus the domain of 7, .umTus 1S Elunls i inem-
Now, ¢,, is in the range of 7., .. Tu s if and only if

€, = €55 and €5—i—1) = Carn »

which is equivalent to

€. é €s.i a‘nd €s,s é Co,nt(i—1) «

This in turn is equivalent to
€56 = Corniii—i1C5,5 -

Therefore, the range of 7, .mTusi 1S e ni_ils -
If n—m)+ (7 —1) =0, and €, .85 (n-m = €,, fOr some J€ A,
p = 0, then by Lemma 3.1 (iii),

Co,mt(n—m+(i—i)€8, i~ (n—m) -+ (n—m)+(G—i) — €5, p+(n—m)+(F—1) *
That is,
Co,nt(i—11€8,5 = €5, pt(n—m)+(i—1) = €i,q »

for some ¢ =0, and T .wTusih = Tipsge 1L B —m)+ (J —1) =0,
a similar argument works for e, , ;_;€;;. Thus W is closed and is
a subsemigroup of T,.. It is clearly an inverse semigroup since

— —1
Timpaym) — T (mocrym) »
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In order that W be subtransitive, it must satisfy the condition:
for e, f in E, there exists # € W such that domain of § = Ee, range
of 6 < Ef. For e, e;; in E, there exists & = 0 such thate,, < e;;,
since FE is interlaced. Thus 0§ = 7, satisfies the necessary condition.

Since idempotents of W are of the form 7, Ey is an interlaced
union of w-chains, isomorphic to E under the map: ¢,; — Ty By
Lemma 1.2 of [5], it is clear the 7,427, if and only if @ = B,
so the <-classes of W are w-semigroups.

THEOREM 3.3. A semilattice K is the semilattice of idempotents
of a 0-simple inverse semigroup whose nonzero Z-classes are -
semigroups if and only if E is an interlaced union of w-chains
with 0 adjoined.

Proof. This follows immediately from Corollary 1.2, Theorem
2.2 and Theorem 3.2.

4, An application. The simplest example of an interlaced union
of w-chains is that of an w-chain itself. The inverse semigroups
correspending are simple w-semigroups, the structure of which was
determined by Kochin [4] and Munn [7]. The following result
demonstrates the strength of the condition imposed on an interlaced
union of @-chains.

THEOREM 4.1. If S is a simple inverse semigroup with exactly
two -classes, each of which is an w-semigroup, then S is itself an
W-Semigroup.

Proof. Let {e, >e, > ---} and {f, > f, > ---} be the idempotents
of the two <-classes. Since E; must be an interlaced union of w-
chains by Theorem 2.2, there exists unique ¢ = 0, 5 = 0 such that

e; < fo € £ f1, and fi<e,fisLe.

Now e,f, € Eg so e,f, = e, or f, for some k. Without loss of generality
we may assume e,f, = ¢,. Then ¢, <f,. Bute,<f, implies that ¢, =
e, < e f, = e, 0 1=k. But if ¢;<e,, then e, £ f, since e, < f,. Thus
by uniqueness, k = i and ¢,f, = ¢, Now f; < e, 80 f; < e,f, = e;. Since
fi £ ey, it follows that ¢« = 0. Hence ¢,f, = e, i.e., ¢, = f,. By Lemma
3.1(ii), e, < f, for all n.

We need to show that f, < e, Since e, < f; and e, < f;,, then

e, S efi<ef,=¢.

If e, = e,f, then f;<e, and f; <L e, implies that f; = f;f,<e.f, =e,. But
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this is impossible, so e, < ef, <e,. Thus ¢f, = f;, by uniqueness,
and e, < f; < e,. By property (i) of Lemma 3.1, j <1,s0j =1, and
e, < f, < e, <f,. By property (ii), this means that E; is an w-chain.

To see that Theorem 4.1 does not hold for more than two <r-
classes, consider the following semilattice E.

This semilattice £ is the interlaced union of three w-chains, each
chain being a column, but E is not an w-chain itself. For more than
three <-classes, one may add to E w-chains each of whose elements is
put between two elements of one of the columns in the semilattice E.
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