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ON THE AVERAGE NUMBER OF REAL ZEROS OF A
CLASS OF RANDOM ALGEBRAIC CURVES

M. SAMBANDHAM

Let a4, a,, -+, be a sequence of dependent normal random
variables with mean zero, variance one and the correlation
between any two random variables is p,0<p<1l. In this
paper the average number of real zeros of X 2, a.k?x,
0=p<oo is estimated for large n and this average is asymp-
totic to (27) Y [14(2p+1)/2log n.

1. Let @, @, --- be a sequence of dependent normal random
variables with mean zero, variance one and joint density function.

(1.1) | M|"*2m)"* exp [—(1/2)a’ Ma]

where M~ is the moment matrix with o,;,=p0, 1% 7, 0< 0 <1,
9, 3=1,2,---,n. We estimate in this paper the average number
of real zeros of

1.2) f@) = S adrzt, 0=p< e
k=1
and we state our result in the following theorem.

THEOREM. The average number of real zeros of (1.2) in —oco <
X = oo, when the random wvariables are dependent normal with
joimt density function (1.1) is 2x) ' [L+2p+1)"?}log =, for larger n.

When p = 0, that is, for the polynomial 3 e,x*, the average
number of real zeros is estimated in Sambandham [5] and this
average is w'log n. Since the maxima or minima of 3 a,2* is only
half of the average number of real zeros of 3 ka,z*"!, by giving
p =1 in the theorem we get the average number of maxima of
> az®. This average has been already estimated in Sambandham
and Bhatt [6] and its value is (47)7'[1 + 3“*] log n.

When the random variables are independent and normally distri-
buted Das [2] estimated the average number of real zeros of [1.2]
and this average is 771 + (2p + 1)*]log n. Under the same con-
dition the average number of maxima of 3 a.x* is (27)7'[1 + 3%
log » and the average number of real zeros of ) a,x* is (2/x)log n.
These two results are respectively in Das [1] and Kac [3].

We note that the average number of zeros and the average
number of maxima in the case when the random variables are in
dependent are twice that of the case when the random variables are
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dependent normal with a constant correlation.

This is because when the random variables are dependent with
a constant correlation o, most of the random variables have a
tendency to be of the same sign as they are interdependent. As
the most of the random variables preserve the same sign Y a,k’x*
has a tendency of behaving like =+ 3 |a,|k"2*. Under this condition
when z > 0, the consecutive terms have a tendency to cancel each
other and when z < 0 the cancellation does not become possible.
This fact reduces the average number of real zeros for x> 0 to
o(log n).

In view of the relation

f(x) e /npx'n.»}»l nz_aj an#k(l _ kn_l)pyk+l
k=0

1
x

i

= n’2""'P,(y) , Y

the number of roots of in (—oco, —1) U (1, o) equals with probability
one, the number of roots of the polynomial P,(y) in (—1,1). Pro-
ceeding the method here we can easily show that the number of
zeros of the polynomial Y7 ,a.x* in (—1,1) remain true for P, (y)
in (—1,1). Hence we get from Sambandham [5]

(1.3) M,(1, ) = o(log n)
and
(1.4) M,(— ,1)~ 2r)'logn .

Therefore our further discussion will be on the average number of
real zeros of (1.2) in (—1,1).
If we show that

(1.5) M, (—1,0) ~ 2r)'(2p + 1)"*log n
and
(1.6) M,(0,1) = o(log n)

in view of the relations (1.3) and (1.4) we get the proof of the
theorem. To prove (1.5) and (1.6) we proceed as follows:

2. Let M,(a,b) denote the average number of real zeros of
(1.2) in (a,b). Then following the method in Sambandham [5] we
get

(2.1) M@, )= | [(AC, — B4, lde

where
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A, = A@) = (1 — p) gkxk + p(i km")
B, = Byx) = (1 — 0) 3 k"5~ + o3 7
Gy = Cyla) = (L — ) F Ier = + p( 3, v )

B:> 0 in (a,b) which is easily seen to hold as in Sam-

i)

if 4,C, —
bandham [5].
Since
L C R
2.2) el )

we can sum the values of A, B, and C,. This calculations show
that for large » and 0 < 2 <1 — (log log n/n)

AC, ~ B! AC,— B . AC, — B2 Lz, p)
AOCO —’ ‘Bo2 A101 - 312 Ap—lcp—i - p 1 (1 - m)w
and
A4, A, A4 > Lz, p)
A A A, (L—uz)P
since each
AC, — B! < Lyz, p)
Ai—LCi—1 - Bi2—1 (1 - (1?)4
and
Az 4(x) p)
A > 1 —az)?
Here and in the following L(z, p) with subscripts are bounded posi-
tive values of z and all of them are greater than zero. Therefore
we find
(A,,C,, — B)\® L (AoCo — BH)? Lg(x, p)
< Ly, p) A, < 1 — z) .

4,

Therefore (2.1) reduces to
(2.3) M,,(o, 1— M) = 0(1) .
n
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Since always

(Apcp — Bﬁ)‘”

a, <

(2.4) M,.<1 — 1_‘1’51_:’:3_”, 1) — 0(log log n)

(2.3) and (2.4) proves (1.6). Now we proceed to prove (1.5).
When —1 <2 <0 we find that in 4,, B, and C, the first terms
in the right hand side are dominant and in this case we get
(4,C, — B . (AC, — B L

L2, Loz, p)
A 3 7 p)<1_x2

Therefore for — 1 + 7 <2 <0, where n = exp[ — (log n)"/’] we get
(2.5) M. (—1 + 5, 0) = 0(log n)/*
For -1 <2< — 1+ é/n, where ¢ = (log »)"%, we have

(Arcp - B;)lﬂ

4, <

and therefore

(2.6) M,.(—l, 14+ %) = 0(log n)"* .

For z in the interval (— 1+ d/n,1 — ) we follow the method
suggested by Logan and Shepp [4], which was used by Das [2]
also.

3. We put

rEy=1 if —e<a<e
= 0 otherwise.

From Kac[3] we get
3.0) M,(a, ) = lim )| B{p(£(@) | £'(@) o .

The combined variable (f(x), f’(x)) has characteristic function,
P(2, w) = Elexp [t f(x)z + /' (@)w]} .
The probability density p(&, %) for f(x) = & and f'(x) = 7 is given by

p(e, ) = (||

exp [—i¢z — inwle(z, w)dzdw .
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Therefore the chance that v < f(x) < % + du and u < f'(x) < v+ dv
hold together in p(u, v)du du. As the z’s very both f and f’ assume
values from — oo to oo independently to one another so that

Bl = |7 pwoidudo.

Let us write

F(u) = S_wlvlp(u, v)dv .
Then F(u) is continuous and therefore we get

lim (2¢)Ble(£)] £']] = lim (2e)™| " Fludu
= F(0) .

Since @ and b are finite and (Zs)ﬂsb,us(f)]f'}dx is bounded from (3.1)
we get the Kac — Rice formula.

M,(a, b) = lim (26)| Bl(6) /"1
(3.2) = "FOs = ar|" 17100, Dy

We put f(z) = 3%, ab, and f'(x) = 3,7, a,¢, so that

#e w) = exp| (— 2N~ 0) 5 0uz + cuwy

+ p< kz (b2 + c,,w))2”

and

33 00,9 = o dw|” exp(iywptz, wis .
Then for ¢ > 0 we have

[ 191 exp (~e120p0, Dy

N Pp(z, w)dz

~oo

(3.4) — Rez™ ST@%S

where Re stands for the real part. We need the following identity,
valid for non zero P and @,
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L dw ® 1Y, .
3.5 Renzg—g ex[— e Z:ld:O.
(3.5) ok G0 p (2(z+Qw) 2
One way to see this is to allow b, and ¢, to be arbitrary in (8.4). If
we take them each to be constant in % then the probability density
(&, ) corresponding to & = 3, a,b, = PZ and 7 = 3 a,¢, = QY dege-
nerates and (8.5) follows. Further given P and @, the constants Z
and ¥ can be chosen such that ¥ and ¥ are normally distributed.
We choose P and @ such that
2
b,,)

o))

M=

(8.6) P =1~ p)ébi + p(

k

i
-

M=

PQZ(l"P)ébkck“"p

i

From (3.4) and (3.5) we get
a1 |7 nis0 pay = = Le|" exp— ()P + Quy

—exp{ — (£) @ — 0 D buz + ey

+ p( S (b + cm))j”dz .

We put z = w'u, w = — zw’ and use Frullani’s theorem to integrate
on w'. The right hand side of (8.7) reduces to
3.8) 0.(2) = 2| log h(z, Wi
2t ) -
where
b (2, )

_ @ = o) + on]w’ — 2[d — PN + ONJu + [ — PN, + ONs]}

— - (1 _ (0)7\'2 _ 40)\'3
(@ — o) + onl [ﬂ A= 0 T on ]

where
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We put a = —14+d/n, b= —1+7, x = — exp(— t/2n), u = nv/t.
Therefore

st 2 ea) = o

(3.9) = (4z%)" S L" log W.(t, vidv

where

T, = ——2nlog(1 — %) ,

0, = —2log (1 —7),

W.(t, ©) = ‘U["g’ Z; ’

Un(t) v) = [(1 - P) + 107\'11]'02 - 2[(1 — 10)7\'21 + P7\:31]7J
+ [(1 - p)7\'41 + 407\'51] ’

— — — (1 _ 40))"21 + 407\'31 :
Yty = [ = ) + pl| w— Gl ko T,

[Z( 1)¥k? exp (—%)]

o= et

[Zkz exp( 'n,)]
Mo = ) = & | Seren (3]
) ) " [Zk”exp( I‘;f)] ’
Ny = Nyy(t)

s [Z( 1)kk? exp J Z( 1)kk+exp< ;‘;:L)]
" [Zk exp( l:f):l
Mo = () = £ [Sexn(-2)]
n?

[zk exp ( — ’f;)] ’

and
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v
R 1 22n
Ny = Ay(b) = ")

n

3o (<)

From Das[2] we get
Ay = (2p + 1) + O(te_tlz) ’
My = (2p + 1)(2p + 2) + 0™,

and’using the idea in (2.2) we get

Now

(L} — 2L + p)(L* + 2AL + p)
(L — 20 + (P + 20 + )

(L* — AL + p)(I* + 2\L + o)
(L* — 2ML + A(LF + 20L + N)

S log W, (v, t)dv = Llog
|»I>L

+ Nlog

+ A= )VZ)S': (v* (:)—2 ;)f—)-thW
where
N = ae) = L= O + 0N
1 = 0) + ong
and

— — (1 _ p)Nu + p7\'51
t = u(t) = .
! #( ) (1 - (0) + 107\'11

For (1/2)(logn)"* <t < ndé and when n is large, we find that A,
A, and A, are tending to zero, )\, and )\, are respectively asympto-
tic to 2p + 1) and (2p + 1)(2p + 2) and

dv = o(%logn) .

310) 7| " log L 2WEE

o ¢t J-1L v — 200 + A

Further we note that
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Loy — 2rv + s 2
dv =0(s — s") + 0(* — 7’
go VP — 270 + 8 ( ) ( )

for large L. This makes

(4%2)—1§M°ﬂ8L log ————————0: — 2M + #Zdv
Ty I V2 — 2\ + Y
_ (4ﬂ2>_1g“0@g” log v’ —202p + v + 2p + 1)(2p + 2>dv
N AR VP —22p + v + 2p + 1)

+ 7.

Where |7| < elogn and ¢ is infinitely small. Taking L large we
obtain from (3.9), (3.10) and (3.11)

0

M,,(—l + P -1+ n) = (27)7'(2p + 1)"*log n + o(log n) .

Hence we have proved (1.5) combining this with the discussion
in §§1 and 2 we get the proof of the theorem.
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