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M-IDEALS IN B(l,)

R. R. SmMITH AND J. D. WARD

This paper is concerned with the M-ideal structure of
the algebras B(l,) of bounded operators on the sequence
spaces [,, 1< p<oco. The M-summands are completely
determined, but the }M-ideals are only partially characterized.
However evidence is presented to support the conjecture
that the only nontrivial }M-ideal is the ideal C(l,) of compact
operators on [,.

1. Introduction. It has been observed by several authors that
various structure theorems for B(H), H a separable Hilbert space,
can be extended to the spaces B(l,), 1 < » < <. For instance, it is
known that the ideal C(l,) of compact operators in B(l,), L < p < o
is the only closed nontrivial two sided ideal [9], and Cac [5] has
shown that the second dual of this space is isometrically isomorphic
with B(l,). In another direction Hennefeld [10] proved that C({,) is
an M-ideal in B(l,), 1 < p < ¢. The notion of an M-ideal generalizes
the two sided ideals in a C*-algebra; due to the geometric characteri-
zation of the ideals in these special algebras the M-ideals have been
identified with the two sided ideals [13].

The present work arose from an attempt to extend the latter
result on M-ideals to B(l,), 1 < p < =o. Although the M-ideals in
B(l,) are not yet completely characterized, certain positive results
are obtained. For instance, in B(l,) the M-summands, a special
subelass of M-ideals, are described. Moreover, it is shown that C(l,)
is a minimal M-ideal in B(l,), 1 < » < <o, in the sense that every
nontrivial M-ideal in B(l,) contains the ideal of compact operators.
The techniques developed herein yield a new proof that the M-ideals
must be two sided ideals in a C*-algebra. In addition, certain
structure theorems on the state space of B(l,), 1 < p < < and on
the hermitian elements of B(l,)** are derived.

2. Preliminaries. A closed subspace N of a Banach space X
is said to be an L-ideal if there exists a closed subspace N’ such
that X = NP N and ||n + »/|] = ||n|| + ||n'|| for all w e N and %' e N".
A closed subspace J is said to be an M-ideal if the annihilator J- is
an L-ideal in X*. A closely related concept is that of an M-summand
which is defined to be an M-ideal J with a complementary closed
subspace J' such that |[j + j'|| = max {|[7]|, ||5’{]} for all jeJ and
4 e J’. It should be noted that M-ideals need not be M-summands.
The detailed properties of these objects have been studied in [2],
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228 R. R. SMITH AND J. D. WARD

and in particular the annihilator of an L-ideal is an M-summand,
while the dual statement is true for the annihilator of an M-
summand.

The M-ideal structure of Banach algebras was investigated in
[13] and the results relevant to this paper are summarized below.
Let A be a Banach algebra with identity ¢ and let J be an M-ideal
in A. Denote by S the state space of A defined to be {pc A*:||¢]| =
é(e) = 1}. Then J* and its complementary L-ideal, when intersected
with S, yield a pair of complementary split faces F and F” respec-
tively of S [13]. J** is an M-summand in A** with complementary
M-summand J**' and Pe =z is an hermitian projection in A**,
where P is the projection of A** onto J**. If z is regarded as a real
valued affine function on S then z|F =0 and z|F’ = 1. In general
z is not the identity on the algebra J** although if A4 is commuta-
tive then this is the case [12]. However the following relations
hold.

THEOREM 2.1. For an M-ideal J, zA**2CJ"* and (e—2)A**(e—2)C
J.L_.'_l.

If z is not the identity on J** then 2z does not commute with
every element of A**. However there is a class of elements for
which z is central, and this will be useful for later work.

LemMA 2.2. Let J be an M-ideal in A with associated projec-
tion z€ A**. Then z commutes with every hermitian element of A**,

Proof. Let ¢ be a state in F’ so that z(¢) = 1, and define a
linear functional ¢, € A* by
¢.(a) = ¢(za)

for all ac A. Since ¢,(¢) =1 it is clear that ¢,€S. If & is any
hermitian element of 4** then ¢,(h) € R and so

$(zh) = ¢, (h)e R .
For a state 4+ ¢ F, 4_,, €S and thus
¥(zh) = (k) — Y((e —2)h)e R .

The element zh is seen to take real values on F and F’ and it
follows then 2k is hermitian since S = conv (F'U F"). Similar argu-
ments imply that kz is also hermitian and so hz — zh is hermitian.
However i(hz — zh) is hermitian by [4, p. 47] and the only way to
reconcile these statements is to conclude that hz = zh.
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In [13] it was shown that if A is a C*-algebra then the M-ideals
are closed algebraic ideals. It is interesting to note that this is an
easy consequence of the preceding lemma.

COROLLARY 2.3. The M-ideals in a C*-algebra A are closed
algebraic i1deals.

Proof. The hermitian elements span 4 and so z is central in
A**, by Lemma 2.2. The result follows from Theorem 2.1.

3. M-summands in B(l,). Henceforth the study of M-ideals
will be concentrated on the classical Banach spaces of bounded
operators on the sequence spaces [,. The restrictions will be made
that 1 < p < « and that p = 2. For » =2, B(l,) is a C*-algebra
and so the results to be obtained in the general case are trivial
consequences of [13, §5] for this space. The spaces with indices 1
and o differ markedly from those considered here, and some indica-
tion of this will be given in a later section.

The first results concern M-summands in B(l,) and for these a
theorem due to Tam will be needed.

THEOREM 3.1 (Tam [15]). The hermitian operators in B(l,),
1< p< oo p+#2, are precisely the diagonal operators with respect
to the camonical basis {e;}i., possessing real entries.

THEOREM 38.2. There are no mnontrivial M-summands in B(l,),
1<p< oo,

Proof. The case p = 2 will be considered later and so suppose
that p = 2. Let J and J’ be complementary M-summands in B(l,),
let z € B(l,) be the hermitian projection associated with J, and denote
by F and F’ the pair of split faces in the state space of B(l,)
obtained from J and J'. The projection z takes the values 1 on F’
and 0 on F. The object is to show that z is the identity for .J.

Consider ¢ € F”, and suppose that ¢, # 0. Then there exists
an operator A€ B(l,) of norm less than or equal to one and there
exists 0 €(0, 1) such that ¢._,,(4) = 3. For each integer n define

X,=2z+ 0% —r)A.

From Theorem 3.1 the matrix of z consists only of zeros and ones
on the diagonal and so for any yel, the vectors zy and o*(e — 2)Ay
possess disjoint supporting sets from the canonical basis. Thus
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Xyl = (l2eyll” + [16*(e — 2)Ay|[")"
=@+ o)y llyll .
Hence
XLl = @ + o)
and, since ||¢|| = 1, this leads to the inequalities
L+ 0" z || X, = [¢(X,)| = 1 + o~**.
From the binomial expansion
1+ =0 +om)» =14 0"/p,
which is equivalent to
ER

since 0 > 0. However this inequality holds for all ». As = tends
to infinity 0"* ' tends to zero, since p > 1, and this gives a con-
tradiction. Thus ¢._,, = 0.

This relation implies that, for ¢ € F’ and A e B(l,),

#(2A) = ¢(A) ,

while similar reasoning shows that, for ¢ € F,

v((e — 2)A) = y(4) .
Now consider jeJ. If ¢ F’ then

#(23) = ¢(J) ,
while if o€ F then both

¥(J) =0 and (zj) = y((e —2)27) = 0.

Thus 7 = 25 and so JcCzB(l,). Similarly J'C (e — 2)B(l,) and, since
B(l,) = J@BJ, it is clear that equality holds in these inclusions.
Thus J and J’ are right sided ideals in B(l,).

The adjoint. is an isometric isomorphism between B(l,) and B(l,)
where 1/p + 1/¢ = 1, and so the image of J in B(l,) is an M-summand
and thus a right sided ideal in B(l,). However the adjoint reverses
multiplication and so J and J’' are also left sided ideals. This shows
that any M-summand in B(l,) is a two sided ideal. Now the only
two sided ideals in B(I,) are 0, B(l,) and C(l,) [9] and in order that
the condition B(l,) = J@ J’ be satisfied it is clear that J =0 or
J = B(l,). This completes the proof.

REMARK 1. The above result is strict in the sense that there
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are many M-summands in B(l,). The subspace of matrices in B(l,)
which have a prescribed set of column vectors identically zero is
a nontrivial M-summand.

REMARK 2. The proof of Theorem 3.2 was motivated by some
work of Prosser [11] who characterized the one sided ideals of a
C*-algebra.

REMARK 3. For p = 2 Theorem 3.1 fails and so the proof in
Theorem 3.2 is no longer valid. However the M-ideals in a C*-algebra
are the closed two sided ideals [13] and the argument of the last
paragraph is still true.

The ideal C(l,) of compact operators in B(l,) is known to be an
M-ideal [10] and a natural conjecture is that this is the only non-
trivial M-ideal, by analogy with the case p = 2. It has not proved
possible to obtain this result, but this ideal can at least be shown
to be contained in any nontrivial M-ideal.

LEMMA 38.8. Let J be an M-ideal in B(l,). Then either J N
C,) =0 or JNC{, = Cl,).

Proof. Suppose that the conclusion is false. Then there exists
an M-ideal J such that J N C(,) is a nontrivial M-ideal in C(I,).
The second dual C(l,)** is isometrically isomorphic to B(l,) [5], and
J N C(, induces a pair of nontrivial complementary M-summands
in B(l,). This contradicts Theorem 3.2.

THEOREM 3.4. Let J be a monzero M-ideal in B(l,). Then J
contains C(1,).

Proof. From Lemma 8.3, J N C(l,) is either 0 or C({,). In the
second case the theorem is proved, and so assume that J N C({,) = 0.

Let 2z be the hermitian projection associated with J, and for
each n let P, be the projection onto the span of the first n elements
of the canonical basis. Consider a net (e,)..4 from B(l,) which
converges in the w*-topology of B{l,)** to z. For each = it is clear
that

lim P,e, P, = P,zP,

in the w*-topology, while elements of the net (P,e.P,)... are compact
and all lie in a finite dimensional subspace of C(I,). Thus convergence
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takes place in the norm topology, and it follows that P,zP,e C(l,)
for all n.
From Lemma 2.2, P, and z commute, and so

2P,z = 2P, = P,z = P,2P,cC(l,) .

However zP,zcJ**, by Theorem 2.1, and thus zP,zeJ N C{,). By
hypothesis

2P, =P,z = 2P,z =0

for all n. Let K be a compact operator. Given ¢ > 0 there exists
n such that ||P,KP, — K|| < &, and the inequalities

IKz|| = [|[Kz — P,KPz|| < ||[K — P,KP,|l|lz]| <&
and

llzK]|| = |[eK — 2P,KP,|| < ||[K — P,KP,|||lz]| < e
show that

*K=Kz=0.
For every KeC(l,),
(e —2)K(e —2) = K,
and thus
C,) = (e — »)C(L,)(e — 2) (e — 2)B{l,)**(e — z) = J**'

by Theorem 2.1. Now it is clear that J and C(I,) lie in comple-
mentary M-summands in B(l,)** and so, for KeC(l,) and AeJ,

IIK + All = max {j|Kl}, [|A]]} .

Choose a nonzero element AeJ of unit norm. After multiplica-
tion by a suitable constant it may be assumed that the matrix of
A has a strictly positive entry 6 occuring in some position (7, 7).
Let K be the compact operator whose matrix has 1 in the (4, j)
position and zeros elsewhere. Then

4]l =1, [K[|=1 and [[K+All=1+9,

which contradicts the defining equation for M-summands. The
original assumption is seen to be incorrect, and this forces the con-
clusion that J contains C(l,).

REMARK. The behavior of C(l,) in the last theorem is un-
characteristic of that of M-ideals in general. For example the C*-
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algebra C[0, 3] of continuous function on [0, 3] possesses no nontrivial
minimal M-ideals. In this example the ideals of functions which
vanish on [0, 2] and [1, 3] respectively are nontrivial M-ideals which
have trivial intersection.

4. Some structure theorems. In this section, a result on
singular states of B(l,) is derived which is reminiscent of some work
of Glimm [8]. This points out the similarity of the respective state
spaces of B(l,) and B(H). In addition, the hermitian elements of
the second dual of B(l,) are partially characterized. The fact that
the hermitian projections of B(l,) are exactly the diagonal operators
with only zero and one entries was central to the arguments used
in Theorem 3.2. Since determining the M-ideals of a space is
equivalent to characterizing the M-summands of its second dual it
is natural to investigate the hermitian elements of B(l,)**. By the
Goldstine density theorem H is an hermitian element of a dual space
X** if and only if H is real valued on the state space of X. This
fact coupled with Theorem 3.2 reformulates the problem to that of
determining the M-ideal structure of B(l,)/C(l,) = A(l,) and the cor-
responding state space of A(l,). A useful result along these lines is
Proposition 4.3 which generalizes a lemma of Glimm [8].

In the sequel Q will denote the closure of a set Q, conv @ will
be the closed, convex hull of @ and 0,K will designate the extreme
boundary of K.

LEMMA 4.1. Let K be a compact convex set and let @ be a sub-
set satisfying conv @ = K. Then Q contains 3.K.

Proof. Suppose that the coneclusion is false. Then there exists
x€d,K/Q. Let f be a continuous function such that

f@y=1, fl@=0
and consider the lower envelope f of f defined, for y€ K, by
fy) = sup {a(y): a € A(K) and a < f} .

Clearly fiQ <0, and f(x) = f(x) = 1 since z is an extreme point
[1, I.4.1]. Hence there exists a € A(K) such that a|Q < 0,a(z)=1/2,
and a Y((— o, 0]) is a closed convex set containing @ but not con-
taining 2. It follows that x ¢ conv @, which is a contradiction.

The above lemma is relevant in light of the following.

LemMA 4.2 (Stampfli, Williams [14]). Let B(X) denote the set
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of bounded linear operators on the Banach space X. Then the convex
hull of the set of wvector states is w*-demse im the state space of
B(X).

PROPOSITION 4.3. Let f be a state on A(l,). Then f is a w*-
limit of wvector states om B(l,).

Proof. By the Krein-Milman theorem f is the w*-limit of convex
combinations of pure states of A(l,)*. Therefore f is the w*-limit
of states of the form A\, f, + .-+ + A, f, where A, =0, D7 A, =1
and where f,, ---, f, are pure states of A(l,) which are regarded as
lying in B(l,)*. So it suffices to study the case where f has the
form M f, + --- + N, f, with the preceding properties. Letx, ---, x,
be elements of A(l,) and construct unit vectors &, ---,&, in [,
having finite support so that {(x&;, &) <e for 1 <7, E<n and
| fi(ws) — we ()] < 1for alliand j. Suppose that the £;’s have been
constructed for 5 < m. If E, =spfe, ---, e,}, pick Ej so that for
any unit vector v in Ej;,

<xzéi; ?J> < s/2

4.
@3 vy =¢/2, 1=4,5=m—1.

Let P, denote the projection onto E; and f. the singular state
given by

Jul(T) = fu(Pu TPy)

An easy argument shows that f,. remains a singular pure state.
Since f,. may be viewed as a pure state on the space P,.B(l,)P,.,
Lemmas 4.1 and 4.2 apply and one concludes that f,. is the w*-
limit of functionals w,, where the £, are unit vectors Ej. One thus
can find &, € Ej; of finite support such that

| (@) — 'me(xi)| <1 for 1=i=s.

In addition, &, must satisfy eondition (4.3). This construction of the
&; can thus proceed by induction. This completed, set

§= MG e N

Since the ¢, have disjoint supports, & is a unit vector. Since condi-
tions (4.8) hold for 1 < j, k < n, then

Il

nMs iM*

Nfi@) = 5

J

30 ) — @85 N8|

1

M) — S s £)

§=t

+ n’e.
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Since 7 is fixed, ¢ may be chosen so that the latter expression is
less than one. This proves that > \;f; is the w*-limit of vector
states which in turn completes the proof.

It can be shown that if the set of hermitian elements of B(l,)
is w*-dense in the set of hermitian elements of B(l,)** then the M-
ideals in B(l,) are necessarily two sided ideals. This, in turn, would
imply that C(l,) is the only nontrivial M-ideal in B(l,). This appears
to be a difficult question. For instance, in a C*-algebra the set of
hermitian elements is w*-dense in the set of hermitian elements
of the second dual space.” The result is also true, rather trivially,
for C(l,) and its second dual space B(l,). On the other hand, the
assertion is false for the disk algebra A(D). The hermitian elements
of A(D) are just the real multiples of the constant function 1 [6],
whereas A(D)** contains all the hermitian projections associated
with M-ideals of A(D) (ef. [7] and [12]). The following two proposi-
tions lend evidence that the assertion is indeed true for B(l,).

In the sequel, P will denote any projection whose range is
spanned by some subset of the canonical basis vectors.

ProposiTiON 4.4. If H 1is hermitian in B(l,)**, then PHP is
also hermitian.

Proof. Let ®w be a vector state and consider the functional w,
defined by
o (T) = @(PTP) = (PTPx, x') = (TPx, (Px)) .

Clearly w, is a real multiple of a state. Since this reasoning remains
true for convex combinations of vector states, it also holds for any
state ¢. Thus there exists e R, s€ S(B(,)) so that ¢, = ns. Thus

#(PHP) = ¢(H) = Ans(H)e R

so PHP is hermitian. This concludes the proof.
If the hermitian elements in B(l,) are dense in those of the
second dual, then these sets can be identified with the self-adjoint
parts of the C*-algebras l.. and l%* respectively. In this case the

hermitian elements form a commutative algebra, and thus the
following two results point positively in this direction.

PROPOSITION 4.5. Let He B(l,)** be hermitian and let P be an
hermitian projection in B(l,). Then P"HP = 0 on wector states.

Proof. This follows immediately from Lemma 1 of [3].
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COROLLARY 4.6. If P is a finite dimensional projection then
P*HP = 0 for all hermitian elements of B(l,)**.

Proof. It suffices to consider the case where P is the projection
onto the span of the first » basis elements. Consider the vector
subspace V of B(l,)* spanned by functionals of the form

T +—— (Te,, y3)

for ¢=1,2, ---,n, and each ¥, in the closed span of {e..., €nss *°*}-
It is easy to check that V is w*-closed.
For any state ¢ define a linear functional ¢* by

¢*(T) = ¢(P*TP)

for all Te B(l,). In the particular case of a vector state @ defined
by a unit veetor xz€l,,

w*(T) = (P TPz, ') = (TPz, P'a') .

From the nature of P it is clear that w* € V. This conclusion applies
equally to any combination of vector states, and the w*-continuity
of this operation together with Theorem 4.2 implies that ¢* € V for
every state ¢. Hence there exist vectors

Yiy Yy =", Yu €SPaAN {en+1: Cutar °° '}

such that

n

¢*(T) = 3. (Te,, y1) -

1=1

For each i, ¢;,, and y, have disjoint supports, and so from these two
vectors a unit vector x; may be constructed so that

(Te,, y:) = a(TPx,, P'xi),

where «, is a constant. If w, is the vector state associated with
x, then

”
¢* = Zaza)i* .
=t

If H is an hermitian element of B(l,)** then w}(H) = 0, by the
preceding proposition, and so

¢*(H) = ¢(P*HP) = 0
for all states ¢. Thus P*HP = 0.
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PROPOSITION 4.7. FKEach hermitian element in B(l,)** commutes
with every compact diagonal operator.

Proof. If Pis a finite dimensional projection and H is hermitian
then, from above, P*HP = 0. Similar techniques yield PHP* =0
and thus

PH = HP .

The result is now clear.

Added in proof. The authors have established that C(l,) is the
only nontrivial M-ideal in B(l,). This result will appear elsewhere.
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