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Many properties of nest algebras are actually valid for
reflexive operator algebras with a commutative subspace
lattice. In this paper we collect a number of such results
related to the carrier space of the algebra. Included among
these results are a generalization of Ringrose's criterion, a
description of the partial correspondence between lattice
homomorphisms of the carrier space and projections in the
lattice, the construction of isometric representations of
certain quotient algebras, and a direct sum decomposition
of the commutant of the core modulo the intersection of
the spectral ideals.

Let J ^ = Alg ^ where i f is a commutative subspace lattice
and let ^ be the intersection of all the spectral ideals in Jzf. (See
§1 for definitions.) In §1 we generalize Ringrose's criterion to the
commutative subspace lattice case: A e ^ if, and only if, for each
e > 0 there is a finite family {Et} of mutually orthogonal intervals
from & such that Σ ^ = l and WE.AE.W < ε, i = 1, . , n. We
also prove that ^ is the closed linear span of commutators of the
form AL — LA, where A e j y and L e £f. In § 2 we describe the
partial correspondence between certain projections in Sf and certain
lattice homomorphisms in the carrier space X. A necessary (but not
sufficient) condition for an operator A to be in the radical of *$/ is
given in §3. In §4 we exhibit isometric representations as algebras
of operators acting on Hubert space of each quotient algebra J^fjj^φ

and of the quotient *S%f\<J\ In the nest algebra case this was done
by Lance in [5]. Finally, in §5 we generalize somewhat a theorem
from [6] which identifies the ^"-commutant of the core of J ^ as
the direct sum of the diagonal of j& and

1* Let ^ be a commutative subspace lattice acting on a separable
Hubert space g(f, that is to say, £f is a lattice of commuting,
orthogonal projections on έ%f which contains 0 and 1 and is closed
in the strong operator topology. Let J ^ = Alg Sf, the algebra of
all operators leaving invariant each projection in £f. Then j y is
a reflexive operator algebra whose lattice of invariant subspaces is
just Sf [1]. Define the carrier space, X, of Sf to be the set of all
lattice homomorphisms of S^ onto the trivial lattice {0,1}. If the
carrier space is given the topology in which a net, φu, converges to
φ if, and only if, φv{L) —> φ(L) for each L e JZf, then it becomes a
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compact, Hausdorfϊ topological space.
A projection E in <$f is said to be an interval if E = L — M

for projections L, Me^f with M < L. If ^e X, we say that E is
a ίesί interval for ^ if 0(-2f) — 1 a n d 0(^0 — 0 (It is easy to
check that this is well-defined.) Let ^ φ — {E\E is a test interval
for φ}. jF'φ is a family of intervals which satisfies the finite in-
tersection property and is maximal with respect to this property.
Any family of intervals satisfying these conditions is called a basic
family; there is a one-to-one correspondence between elements of the
carrier space of £f and basic families of intervals from ^ [3].

For each φ in X, define a continuous semi-norm Nφ on J^f by
NΦ(T) = inf {\\ETE\\ | JSe J Q , for each Γ e j ^ This, in turn, permits
the definition of the spectral ideal, J^$, associated with φ: J^$ =
{Tej%f\Nφ(T) — 0}. The spectral ideals are closed two-sided ideals
in j ^ as is the intersection, Jf, of all the spectral ideals. Proofs
of these facts can be found in [3], as well as the fact that ^ is
contained in the radical, \^?, of the algebra Ĵ Γ It is known that
^ = & if j ^ is a nest algebra [7] and in a number of other cases,
and we conjecture that equality always holds. Should it occur that
^ need not equal ^?, it now appears clear that the role played
by ^ in the structure of j y is at least as important as the role
played by the radical. As evidence in favor of the conjecture, we
prove below that the Ringrose criterion for membership in the radical
of a nest algebra ([7], Theorem 5.4) is a criterion for membership
in ^ in the general case.

Each semi-norm Nφ on <$>/ can be identified with the quotient
norm on Jzfjjtfφ. Denote this quotient algebra by 3?φ and the can-
onical quotient map by qφ. Later, in §4, we shall exhibit an iso-
metric representation of &φ as an algebra of operators acting on
Hubert space.

PROPOSITION 1. For each Tej^,Nφ(T) = ||g,(T)||.

Proof. Let Γ e j ^ If E is a test interval for φ, then ETE-
Γ e j ^ . Hence \\qΦ{T) \\ £ \\ T + (ETE - Γ)| | - \\ETE\\. Thus,
\\qΦ(T)\\ ̂  inf {\\ETE\\ \Eej?~φ} - NΦ(T). For the opposite inequality,
let Se^fφ. Let ε be an arbitrary positive number and choose a test
interval E for φ such that \\ESE\\ < ε. Then

|| T + S\\ ̂  \\E(T + S)E\\ = \\ETE + ESE\\

^ H^ΪΈΊI - \\ESE\\

^ NΦ(T) - e .

Since ε is arbitrary, || T+ S\\ ^NΦ(T) for all Se j*fφ. Hence
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NΦ(T).
A similar result holds for the quotient algebra J^/^ where

^ == Γ\φex*Stfφ If & = J&Ί^ and if q\\Szf -> £& is the canonical
quotient map, then supiV^ ) = ||?( )ll Further, for each Γ e j ^
the supremum is attained. In the case of a nest algebra this is just
Lemma 1.6 of [6] expressed in terms of the carrier space of £f.
The ingredients needed for this result also yield the validity of the
Ringrose criterion as a description of the elements of ^ " a conse-
quence of this criterion is the identification of <J^ as the closed linear
span of all commutators AL — LA, with A e jzf and L e Sf. The
first preliminary result which we need is the assertion that each
such commutator lies in

LEMMA 2. J / 4 G J / and Le^f then AL — LAe

Proof. Let φeX. If φ(L) = 1 then L e J ^ and NΦ(AL - LA) ^
\\L(AL - LA)L\\ = 0. If φ(L) = 0 then 1 - L e &\ and NΦ(AL - LA) ̂
|| (1 - L)(AL - LA)(X - L) \\ = 0. Thus, AL - LA e J^$, for all φex;
i.e., AL —

LEMMA 3. If φeX and i e j / then NΦ{A) ^

Proof. Since ^ Q Jϊή,, we have || qφ(A) || ^ || g(A) ||, and the lemma
follows from Proposition 1.

LEMMA 4. Let A e *s/. Then there exists an element φ e X such
that Nψ(A) ^ NΦ(A), for all ψeX.

Proof. In the remark on p. 379 of [3] it is shown that the
mapping ψ —> Nψ(A) of X into R is upper semi-continuous. Since X
is a compact Hausdorff space, this mapping achieves its supremum
at some point φ in X.

DEFINITION. A projection in Jzf is said to be simple if it is 0
or it is a finite sum of intervals from £f.

PROPOSITION 5. The set of simple projections is a complemented
lattice.

Proof. We must show that if E and F are simple, then E Λ F =
EF, E1 = I - E, and E V F = E + F - EF are simple.

First suppose that E and ί7 are intervals from JZf, say E—L — M
and F = N- P, where L, M, N, Pejϊf and M ̂  L and P ^ iSΓ.
Then
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E A F = L A N - ((L Λ P) V (N A M)) .

Since £? is a lattice, L A N and (L Λ P) V (N A M) both lie in £f\
further (L A P) V (N A M) <* L A N, so # Λ -P is an interval. Now
suppose that # = V?=i ̂  and i*7 = VJU ^ > where {JS'J and {Fd} are
each families of mutually orthogonal intervals from £f. Then E A F =
Vi,ί (Et A Fj) and {Ei A Fά) is a family of mutually orthogonal
intervals from £f\ thus E A F is simple.

Next observe that if E is an interval then E1 is the sum of
two orthogonal intervals and hence is simple. If E is merely simple,
then E = \f^1Ei1 where {Et} is a mutually orthogonal family of
intervals from £f. Since E1 — Λ?=i^i" a n d e a cl ] L ^ is simple, the
paragraph above implies that EL is simple.

It remains only to show that if E and F are simple, then EvF
is simple. When E and F are orthogonal, this is obvious; for the
general case use the facts that F A E1 is simple and E V F = E V
(F A E1).

For the following lemma, and for §2, recall that a subset
is said to be an ideal if it satisfies the two properties:

(a) K19K2e^Tlf =>K,V K2e^:
(b) K e JΓ19 L G j ^ L ^ K => L 6 J2ίς.
Similarly, a subset J ^ is said to be a co-ideal if it satisfies the

dual properties:
(a')
(b')

An ideal is prime if its complement is a co-ideal.

LEMMA 6. Every interval from £? is a test interval for some
lattice homomorphism in X.

Proof. Let E be an interval from £?. Then there exist projec-
tions L and M in Sf with M < L such that E = L - M. Let ^ =
{Re^f\R^ L} and STQ = {Se^f\S £ M}. It is routine to check
that Sέ^0 is an ideal in £f and that ^ is a co-ideal; it is obvious
that J ^ and ^ are disjoint. By a result of Stone, there exists an
ideal X 2 ^ and a co-ideal ^/ 2 ^ such that JT" Π ̂  = 0 and
^ U ̂  = oSf. (See [4], page 80.) Since J T is a prime ideal, there
is a lattice homomorphism φeX such that ^ ^ = ker^ ([2], p. 28).
Since φ(L) = 1 and ^(M) = 0, E is a test interval for ^.

LEMMA 7. Lβί £7 6e α^ interval from £f and let U = {̂ e
is α £βs£ interval for φ}. Then U is a nonempty open and closed
subset of X.
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Proof. The preceding proposition says that U is nonempty. To
see that U is closed, suppose φv e U and φv—>φ in X. If Έ—L—M, with
L, M 6 ̂  L < M, then &(L) = 1 and φu(M) = 0 for all ir, hence φ(L) = 1
and 0(Λf) = 0. Thus φ e U and E7" is closed. To see that U is open,
let φv 6 X — U and ̂  —> φ. Since ^ is convergent, the two nets φ»(L)
and φjjd) a r e e a c ^ eventually constant. For all v, φ£L) — ΦAM),
since E is not a test interval for φu; consequently φ(L) = φ(M) and
φeX — U. Thus X — U is closed and Z7 is open.

LEMMA 8. If E is a simple projection then, for any A e J%f,
EAE1 and ELAE lie in J?.

Proof. By Lemma 2, every projection in £f commutes with
every member of J ^ modulo ^ hence finite linear combinations of
such projections (and, in particular, simple projections) have this
property. Therefore EAE1 = E(EA) - (EA)Ee^ and ELAE =
(AE)E-

PROPOSITION 9. Let q be the canonical quotient map of όzf onto
Sf = j ^ / ^ : For each Aejzf, svpφexNΦ(A) = ||g(A)||. Further, the
supremum is attained by some lattice homomorphism (which depends
upon A).

Proof. Lemma 3 asserts that sup i\^(A) <£ ||g(A)||, while Lemma
4 asserts that the supremum is attained. Suppose that A is an
element of jzf for which a = supi\^(A) < ||#(A)||. Let β be such
that a < β < 11 <jf(A) 11. For each φ in X choose a test interval Eφ

such that 11EΦAEΦ \ \ < β. (This is possible since inf {11 EAE \\\EeJ^} =
NΦ(A) < β.) Let Uφ = (Ir eX\Eφe ^ } . Since φeUΦ for each 0, the
family {Uφ} is an open cover for X. But X is compact, so there
exist finitely many lattice homomorphisms φ19 " fφneX such that
UΦl9 •••, Z7̂  cover X.

Observe that VJ=1 ̂ . = 1. Indeed, by Proposition 5, the com-
plement of V*=1 jE

r

ίiί is simple. If the complement is not 0, it must
contain an interval projection F. Let φ0 be a lattice homomorphism
for which F is a test interval. Since F A EΦi = 0 for i = 1, , n,
none of the 2?^ are test intervals for φ0. But this says that φo&
\J%=1 JJΦ. = X, a contradiction.

Now define ί\ = # # 1 and F, - EΦk A (F, V V Fk^)\ for k =
2, « ,^ . Then JPW > ,Fn are mutually orthogonal, each 2^ is a
sub-projection of EΦi, and ΣΓ=i ̂  = V?=i ̂  = V?=i E*t = l K follows
that I I ^ A F J H ^ ί | g ( ^ A ^ ) | | ^ \\EφAEΦi\\ < i9, for each i; by [6],
Lemma 1.1, \\q(Σί^FiAFi)\\ - max ί = 1,...,J|g(^A^)|| < ^ < \\q(A)\\.
Since A = Σ< f J FiAF3-, we will obtain a contradiction if we show
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that Wq^UF.AF^W = WqϊΣij-iFiAFύW. But this equality follows
from Lemma 8, the fact that each Ft is simple, and the observation
that Ft j_ F3 if i Φ j . This proves the proposition.

If jzf is a nest algebra, the following theorem is precisely the
Ringrose criterion ([7], Theorem 5.4).

THEOREM 10. Let A e j^f. Then A e ^ if, and only if, given
ε > 0 othere exists a finite family, {E^i=u...tk, of mutually orthogonal
intervals from S? such that YJLiEί = l and \\EiAEi\\<ε, for all i.

Proof. It is clear that any operator in ,jy which satisfies this
condition must lie in each j^J, and hence in <J^. For the converse,
suppose Ae^. Let ε > 0. For each φeX there is a test interval
Eφ in J ^ such that \\EΦAEΦ\\ < ε. Let Uφ = {ψe X\EφeJ^}. The
family {Uφ} is an open cover for X; let UΦι, , UΦn be a finite sub-
cover. Just as in the proof of Proposition 9, V?=1 Eφ. — 1. Since
the simple projections form a complemented lattice, there is a finite
sequence, {Ei}i=1,...fk, of mutually orthogonal intervals such that 1 =
ΣίU E% a n d, for each i and j , either Ei <Ξ Eφj or Et 1 Eφj. Conse-
quently, II^Γ^II < ε for all i and the theorem is proven.

If A G J / and Le^f then LA — AL = LALL; from this it is
clear that the linear span of such commutators is an ideal in >s*f.
As a corollory of Theorem 10 we can identify ^ as the closure of
this ideal.

THEOREM 11. The closure of the linear span of the set of com-
mutators of the form LA — AL, with A e J^ and L 6 Jΐf, is the
ideal ^J\

Proof. Lemma 2 shows that the closure is contained in J^. Let
KJ^ denote the linear span of commutators LA — AL, A e S^, L e J5f.
From Theorem 10 it is sufficient to prove that if {Et}i=u...tn is a
family of mutually orthogonal intervals such that Σ*=i Et = 1 and
if Ae^ then A — Σ?=iE t AEie^ . The argument in Lemma 8
shows that, for each i, EiA — ΈiAEi — EiAEt is in *J%. Hence
A - Σ?=i EtAEt = Σ?=i EtA - ΣΓ=i EiAEt - Σ?=i (E{A - EtAEt)

2. Although the carrier space appears in the literature on nest
algebras [5, 7], it does so in disguise. The reason for the disguise
is that the carrier space can be parameterized in a natural way by
the projections in the nest ^f. Each projection L Φ 0, 1 corresponds
to two lattice homomorphisms: define φi by the requirement that it
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map L and each subprojection of L to 0 and all other projections to
1; define φi by requiring that it map each proper subprojection of
L to 0 and all other projections to 1. The projections 0 and 1 each
correspond to a single lattice homomorphism, ψt and φΓ, respectively.
The lattice homomorphisms so obtained are all distinct except when
L is an immediate predecessor to M, in which case φi = ΦM It is
easy to see that each element of the carrier space arises in this
fashion. Given L Φ 1, the family of all intervals of the form M — L,
with M > L, is a "cofinaΓ subfamily of the basic family for φ\ and
is used in place of the basic family. A similar remark applies for
homomorphisms of the form φi.

In the general case, in which Sf is a commutative subspace
lattice, this correspondence partially breaks down. Not every pro-
jection in £f gives rise to a lattice homomorphism and not every
homomorphism is associated with a projection in £f. In this section
we describe that portion of the correspondence which remains valid.

Let L e i f , with L Φ 1. The set [0, L] = {M e £f \ M ^ L) is an
ideal in the lattice £έ>\ its complement, [0, L]c = {M e£f\M S L}
need not be a co-ideal. (Although it is true that if N e [0, L]c and
M^ N then Me[Q, L]% it is not necessarily the case that Nlf N2e
[0, L]c implies N, A N2e [0, L]c.) The mapping φ: Sf -» {0,1} which
maps each projection in [0, L] to 0 and each projection in [0, L]c to
1 is a lattice homomorphism if, and only if, [0, L]c is a co-ideal.
Similarly, if L Φ 0, the set [L, 1] = {M\M^ L) is automatically a
co-ideal while its complement, [L, l] c = {M\M Jέ L}9 need not be an
ideal. The mapping φ: Sf —> {0,1} which takes the value 1 on [L, 1]
and 0 on [L, l] c is a lattice homomorphism if, and only if, [L, l] c is
an ideal.

An interval E in a nest algebra can be written in the form
E = L — M f or a unique choice of L, Me^f with M < L. While
this is not necessarily true in the general commutative case, it is
possible to define upper and lower endpoints for E.

DEFINITION. Let E be an interval from j*f. Define the upper
endpoίnt of E to be the projection P = A {Le Sf \E <: L] and define
the lower endpoίnt of E to be the projection Q = \/{Lec£f\E± L}.

In general it is not necessarily true that Q <̂  P. However, we
do have E = PvQ-Q = P-PΛQ

We can now single out a class of projections in Jϊf, the funda-
mental projections, which give rise to lattice homomorphisms in X.

DEFINITION. A projection L Φ 1 in £f is said to be upper fun-
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damental if L is the lower endpoint of every interval of the form
M — L, with Me^f, M > L. A projection L Φ 0 is said to be lower
fundamental if L is the upper endpoint of every interval of the
form L - M, with Me^f, M < L.

LEMMA 12. (a) L is upper fundamental *=» [0, L]c is a co-ideal.
(b) L is lower fundamental <=> [L, l] c is an ideal.

Proof, (a) Assume L is upper fundamental. Suppose [0, L]c is
not a co-ideal: then there exist Mlf M2 e [0, L]c such that M\ A M2 ^ L.
Since Λfi ^ L, L V -MΊ — L V (Mi. Λ Λfa) = L V Λfi — L is a nonzero
interval. Further, since Mί Λ Λf2 S L, Λf2 J_ (L V M"x — L). Since L
is the lower endpoint of L V M1 — L, M2 ^ L, a contradiction. Thus
[0, L]c is a co-ideal.

Now suppose [0, L]c is a co-ideal. Let Me J^ with M>L. To
prove that L is lower fundamental, we must show that if N l (M — L)
then JV ^ L. But N ± (Af - L) implies that NΛM = LΛN^L,
i.e., JVΛMί[0,L] c. Since ikfe[O, L]c and [0, L]c is a co-ideal, we
cannot have Ne[0, L]c. Thus N ^ L as desired.

(b) The proof is just the dual of the argument in (a).

For each L Φ 1, define a mapping φi: £f —> {0,1} by requiring ^ί
to take the value 0 on [0, L] and the value 1 on [0, L]c. For each
L Φ 0, define φ~L: Jΐ? —> {0,1} by requiring ^i to take the value 1 on
[L, 1] and the value 0 on [L, l]c. We then have the following
corollary:

COROLLARY 13. (a) φ\eX<=>L is upper fundamental.
(b) φ~L€X<=>L is lower fundamental.

In order to describe which lattice homomorphisms are associated
with fundamental projections, we recapitulate the classification of
points in X in [3]. Fix an element φeX and define

K0(φ) = V {Lejϊ?\φ(L) = 0} = V
Kx{φ) = A {Lej5?\φ(L) - 1} = A coker^ .

When φ is understood, we write Ko and Iζ in place of ULO(̂ ) and

DEFINITION. If Φ(K0) = 0, we say that ^ is upper adjacent to
JSLQ- If ^(^i) = 1, we say that φ is Zower adjacent to i^.

It is easy to check that if φ is upper adjacent to Ko, then [0, Koγ
is a co-ideal and ϋΓ0 is upper fundamental. Similarly, if φ is lower
adjacent to Klf then [Kίf l] c is an ideal and Kx is lower fundamental.
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In general the four possibilities Ko = Kίt Ko < Ku Ko> Kίf and Ko

and Kx not comparable will each occur. The four further possibilities
arising from the fact that each of Ko, Kx may be in either ker φ
or in coker^ also occur. Of the 16 a priori combinations, precisely
7 can occur. (See [3] for proofs and examples.) These 7 differenf
types of lattice homomorphisms are described as follows:

DEFINITION, φ is said to be atomic if Φ(K0) = 0 and ψ{Kx) = 1.

If φ is atomic we may have either Ko < Kx or Ko not comparable
with Kx; if either of these two conditions hold, then φ must be atomic.
If φ is atomic then φ is both upper adjacent to Ko and lower adjacent
to Kx. The atomic lattice homomorphisms are the only ones which
arise from two distinct fundamental projections. When φ is atomic,
Kx — Ko A K± is a minimal projection in the basic family

DEFINITION, φ is said to be local if Ko = Kx. If Φ is local we
may have either φ(K0) = φ(Kt) = 0 (in which case φ is upper adjacent
to Ko) or φ(KQ) = φ(Kt) = 1 (in which case φ is lower adjacent to Kx).
These two types and the atomic case in which Ko < Kx are the only
types which occur when £f is a nest.

DEFINITION, φ is said to be semi-local if Kλ < Ko and Φ(Kλ) =
Φ(K0).

If φ is semi-local and the common value of φ is 0 then φ is upper
adjacent to KQ; if the common value is 1 then φ is lower adjacent
to Kλ. While these two types cannot occur in nest algebras, they
are reasonably similar to the nest algebra types.

DEFINITION, φ is said to be diffuse if Kx < KQ, φ(Kx) = 0, and
Φ(K0) = 1.

This is the one remaining type. The diffuse homomorphisms are
the only ones which do not arise from a fundamental projection.

It might be tempting to suspect that Π {J^J | φ is not diffuse},
rather than ^ is equal to the radical. That this is not so can be
seen by considering the case in which j ^ is a maximal abelian von
Neumann algebra with no atoms. It is not difficult to see that in
this case every lattice homomorphism on Jίf = Lat jzf is diffuse.

3* A sufficient condition for an operator A in j y to belong to
the radical of J ^ is that A e κj\ In this section we give a necessary
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condition for A to be in the radical. This condition will not, in
general, be sufficient; the set of operators which satisfy this condition
forms a closed, two-sided ideal which may properly contain ̂ ?.

DEFINITION. If Eίf E2 are nonzero orthogonal intervals from
such that Ev^{Sίf)E2 £ όzf, we say E19 E2 is strictly ordered and
write Ex < E2

LEMMA 14. The relation < is transitive.

Proof. Assume E < F and F < G. We must show that E j_ G
and E&(£έf)G £ Ĵ C Let P be the upper endpoint of G, viz the
smallest projection in £f which contains G. Then G — P — JV, for
some Ne £f with N ^ P. Since F < G, we have ί7 ^ P and F i G,
hence F <L N. Since E <C F, we have that 2? is contained in the
upper endpoint for F, which is a subprojection of N. But the fact
that N 1 G now implies E ± G.

Now suppose that A e E&(<%?)G, s o i = EAG. We must show
that A leaves invariant each member of j*f. Fix L e Jίf. If GL = 0
then AL = 0 and A leaves L invariant. Assume GL Φ 0 and let x
be a vector in GL. Let ]/ be an arbitrary vector in E and let z be
any nonzero vector in F. By the assumption that E <C F and .F < G,
there exist operators S, T e jzf such that Sz — y and Γx = z. Thus
7/ = STx. Since L is invariant under Stf and a? 6L, we have | /eL
for all y e E, i.e., # ^ L. But A = EAG, hence AL = LAL and

DEFINITION. A mutually orthogonal family of intervals is said
to be strictly ordered if it is linearly ordered by the relation <.
The length of such a family is its cardinality.

DEFINITION. If A e J^f and ε > 0 we define the e-order of A to
be the number Rε(A) = sup {n | there exists a strictly ordered family

of length w with ||JE7AE7|| ^ ε for all

REMARK. It is clear that if ε2 > ε1 > 0 then i2ei(A) ^ i2βJί(A).

LEMMA 15. // A, £, Ce J ^ α^ώ ε > 0, *&ew i2e(A + 5) ^ i2β/2(A) +
Rε/2(B), and Rε(BAC) £ Rδ(A), where δ = e/||J5|| | | C | | .

Proof. The first assertion follows from the observation that if
\\E(A + B)E\\ ̂  ε, then either \\EAE\\ ̂  ε/2 or \\EBE\\ ^ ε/2. The
second follows from the fact that for an interval E we have
\\E(BAC)E\\ = \\EBEAECE\\^\\B\\ \\C\\ \\EAE\\, so that if \\E(BAC)E\\^
ε, then \\EAE\\ ̂  ε/\\B\\ \\C\\.
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DEFINITION. Let ̂  = { i e j / | Re(A) < «> for every ε > 0}.

LEMMA 16. ^ is a closed 2-sided ideal in

Proof. By Lemma 15 it is sufficient to show that ^ is closed.
Suppose An 6 ̂  and An —> A. Fix ε > 0 and choose n so that
|| A - An||< ε/2. If E is an interval then \\EAE\\ ̂  ε implies \\EAnE\\ ^
I \\EAE\\ - \\E(A - AJJ57H | ^ ε/2. So i\Γε(A) ^ Nε/2(An) < oo. Since ε
is arbitrary, A e ^ "

REMARK. In some cases, ^ may have nonzero intersection with
the diagonal J ^ Π J ^ * . For example, if E is an atom for the lattice
£f (for each projection L e ^ , either L^ E or L ± E) and if A =

then Rβ(A) ^ 1 for every ε.

LEMMA 17. Let Aejzf and suppose that A = LAL1, for some
L e £;?. If {E19 E2} is a strictly ordered pair of intervals then either
E,AEX - 0 or E2AE2 = 0.

Proof. We may suppose E2 < Elf so that Er^{Sίf)E1 C J*ί If
E1AE1 Φ 0 we have J^L ̂  0. Let x be a vector in JS^L. Since 2£2 <
J5Ί, £?2 is contained in any projection which is invariant under s$?
and which contains x; in particular, E2 ^ L. But then E2AE2 = 0.

LEMMA 18. Let At e J < L t e £ f , i = l, ---,n. Let A=
If El9 , -E'fc is α strictly ordered set with E5AEό Φ 0 for all j, then
k ^ n.

Proof. This follows from Lemma 17.

REMARK. Lemma 18 shows already that ^ £ ^ We shall prove
below that &

LEMMA 19. Let A e J ^ and assume that Rε(A) = oo for some
ε > 0. Let Elf , En be a finite set of mutually orthogonal simple
projections with Σ£=i Et = 1. Then Rε(EtAE%) = oo for at least one
i.

Proof. It suffices to prove the assertion for n — 2. Suppose Ex

and E2 are simple with E, ± E2, Έx + E2 = 1. Let β = JSΊAEΊ + J02ilJ&a

and C = E1AE2 + E2AEX. We claim first that C can be expressed as
a finite sum C = ΣS=i L^Lt, for appropriate Ĉ  6 J*f, Lt 6 ̂ i Indeed,
C is a sum of terms of the form FAG, where F and G are orthogonal
intervals. If F^M-N with M>N, M, Ne^f then FAG =

1 = MN^AG(ML + N) = M(NλAG)MK
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Let k be an arbitrary positive integer and let {Fj} be a strictly
ordered family of length k + m such that \\FjAFj\\ ^ ε, for all j .
Since A = B + C, Lemma 18 and the transitivity of < imply that
there is a strictly ordered subfamily {F}} of length k such that
\\F)BF}\\ ^ ε for all j . Since \\F)BF)\\ = m^xisslΛ\\F)EiAEiF)\\ and
& is arbitrary, either R^E^AE^ = °o or Rε{E2AE2) = oo.

LEMMA 20. Lei A δe cm element of Szf for which R£A) = oo,
/or some ε > 0. Then there exist infinite sequences Eni Kn of in-
tervals such that En l Knf En+1 < Kw Kn+1 < Kn, Rε(EnAEn) ^ n, and
Rε(KnAKn) = oo, for all n.

Proof. Let En < JE?12 be strictly ordered intervals with 11 EuAElt \ | ^
ε, for i = 1,2. If EnAEn has finite ε-order, let E1 = En and let Kx

be an interval in Et such that i^CZ^AZ;) = oo. If EnAEn has infinite
ε-order, let Eλ = Eί2 and Kx = JS^. In either case, 2^ ± ί^, RJβ1AE^) ^
1, and ^ ( ^ A i f , ) = oo.

Now assume inductively that intervals Ei9 Kif i = 1, , n have
been constructed such that Et+ί < Kt and Ki+1 < Ku for i = 1, •••,
w - 1 and Et ± Kίf RJJStAEt) ^ i, R^K^K,) = oo, for i = 1, , n.
Since Rε(KnAKn) = oo, there exist strictly ordered intervals En+U1 <
^+i,2 < ••• < En+i,2n+2 contained in X% with ]|ί?% + 1, ίA^+ 1, i | | ^ ε for
all i. Let L be the upper endpoint of En+1>n+1 and let i*\ = L Λ if%,
F2 = L1 A Kn. Then ί7! is an interval which contains each of En+1,lf
mm*fEn+Un+1 while F 2 is an interval containing En+1,n+2, , En+1,2n+2.
Therefore, R^F.AF,) ^ n + 1, for i = 1, 2. If ^ A J F 7 ! has finite ε-order
let En+1 = F1 and let Kn+1 be an interval contained in Kn — JSΛ+1 for
which Rε(Kn+1AKn+1) = oo. If ^ A ^ has infinite ε-order, let En+1 = F 2

and ίΓu+1 = i^ie In either case En+1 and ίΓΛ+1 are orthogonal intervals,
both contained in Kn, with Rε(En+ιAEn+1) ^ n + 1 and i ? ε ( ^ + 1 A ^ + 1 ) =
oo. Induction completes the proof.

LEMMA 21. Lei Exy E2y --- y En be, a strictly ordered set of
intervals and let A be an operator in <$/ for which \\EiAEi\\ > 1,
i — 1, , n. Then there exists a contraction S in Szf with support
and range contained in E — Σ i^ such that SA is nilpotent of index
n and \\E(SA)kE\\ ^ 1, for k = 1, , n - 1.

Proof. For each i, let xt be a unit vector in Et such that
11 EiAEixt H ^ l . Let yt = E.Ax, and let S - Σ?=ί I |y< 11 ~2Vi ® xi+1. (The
operator y (x) sc is defined by # 0 x(z) — (z, y)x, for all z e ^f.) Since
the Ei are mutually orthogonal, \\S\\ = maXi 11yt\|"211yt (x) a?<+111 —
maXi Hi/ill"1 ^ 1. The fact that the Et are strictly ordered guarantees
that S G J / Observe also that (SB)n=0, for all B e *$/. If fc = l, ,
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n — 1, then (SA)kXj_ = xk+1 + z, for some vector z orthogonal to xk+ί;
hence \\E(SA)kE\\ ;> 1. Thus S satisfies the requirements of the
lemma.

PROPOSITION 22. // A is in the radical of j y then the ε-order
of A is finite for all e > 0; i.e., &

Proof. We must show that if A e Jzf and Rε(A) = oo for some
ε > 0, then A & &. We may assume ε > 1 by multiplying by a scalar,
if necessary. By Lemma 20 there exists a sequence (En) of mutually
orthogonal intervals such that Rε(EnAEn) ^ n, for all n. For each
n there exists a strictly ordered family Enί < EnΛ < < J57nn con-
tained in En such that \\EniAEni\\ ^ ε > 1, i = 1, , w. By Lemma
21 there exists a contraction SΛ in j^f with SΛ = EnSnEn such that
H J K ^ S ^ ) " - 1 ^ ! ! > 1. Let S == S?=iSw, the sum converging strongly.
We have, for each n ^ 2,

Hence SA is not quasinilpotent and A

4* If J ^ is a nest algebra, then by a result of Lance [5], there
is an isometric representation of each quotient algebra, ^ = J^l^fφf

as an algebra of operators on a Hilbert space. Propositions 1 and
9 permit us to exhibit similar isometric representations of <2fφ and
<3ί = szfl^F as algebras of operators on a Hilbert space in the
general case in which J ^ is a reflexive operator algebra with com-
mutative subspace lattice ^ acting on the Hilbert space

THEOREM 23. For each φ e X, there is an isometric representation
of 2$φ as an algebra of operators on Hilbert space.

Proof. If φ is atomic, let E be the minimal projection in
It is easy to see that 3T+ is isometrically isomorphic to
(See [3], p. 381.) Assume henceforth that φ is not atomic. Let
B(^φ) denote the set of all bounded, complex valued functions defined
on J^φ. With the usual pointwise algebraic operations, complex
conjugation as an involution, and the supremum norm, || IU, 5(^5)
forms an abelian unital C*-algebra. If / e B(^Q, let us say lim / = p
provided that, for each ε > 0 there is an element E e J^φ, such that
if Fz^φ and F ^ E then \f(F) - p\ < ε. The set of all / in B{.βQ
for which lim/ exists is a unital C*-subalgebra of B{^φ)\ lim is a
pure state on this sub-algebra. Let LIM be a pure state on
which extends lim.
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LIM is a multiplicative, positive linear functional on
Further, if f{E) ^ 0 for all E ^ F, for some fixed F e ΰ ^ ) , then
LIM (/) ^ 0. Indeed, if /x is defined by fλ(E) = 0 when E ^ F and
f,(E) = f(E) otherwise, then LIM/X - lim/, = 0 and LIM / - LIM / -
LIM/, = LIM (/-Λ) ^ 0, since / - / L ^ 0 . From this it follows that if
/, geB(jQ and f{E) <> g(E), for all E ^ F, for some fixed F, then
LIM / ^ LIM (/. For convenience, we frequently write LIM# f(E) in
place of LIM/.

Let BtJ^φ, Sίf) be the linear space of all bounded functions on
j^~φ with values in £%?. For all x, yeB(^>, ^f), the function E~>
(Ex(E), y(E)) is in B(J^Φ), hence we can define a sesquilinear form
on £ ( j ^ , 3(f) by

(x, y) = LIM (Ex(E), y(E)) .

Let .yf^ = {xe B(^φ, Sίf) \ LIM^ \\Ex{β)\\ = ϋ\. .Λ" is a linear subspace
of B{Sr

Φ, £έf)] let J^Γ1 be the quotient space. Observe that if x e Λ^
and y e B(jη>, 3lf) then (x, y) = 0. Indeed, | (x, y) \ £ (x, x}1/2(y, y)1/2

and (x, x) = LIME (Ex(E)f x(E)) - LIM^ \\Ex{E)\\2 = 0. This implies
that the sesquilinear form on B{^φ, Sίf) induces an inner product
on the quotient space JΓ"1. For any x e B(^φ, £ίf), let x denote the
image of x in the quotient J2Γx. The inner product on ^ίί1 is given
by (x, y) = LIM^ (Ex(E), y(E)). Let SίT be the completion of JT 1 ;
Jϊ^ is the Hubert space on which we construct a representation of

For each operator A in j ^ define a linear mapping ΠQ(A) on
Sίf) by (Π0(A)x)(E) - EAEx(E), for all EeJ^φ. Observe first

that Π0(A) leaves ^ ^ invariant. Let x e ,̂ /? Then

0 ^ LIM \\EΠ0(A)x(E)\\ = LIM \\EAEx(E)\\ ^ | |A|| LIM \\Ex(E)\\
E E E

= o ,
hence ΠQ(A)x e ^V\ From this it follows that Π0(A) induces an operator
Π(A) acting on the quotient space J ^ 1 . Note that Π(A) is determined
by the condition

(Π(A)x, y) = UME (EAEx(E)f y(E)) .

Since Πo is an algebra homomorphism on J ^ so is Π. (This uses
the fact that for any interval E, the mapping A —> EAE is multipli-
cative on J^O

We now compute the norm of Π(A) as an operator on the pre-
Hilbert space Sί^\ Let x and y be unit vectors in 3ίΓx. Let F be
an arbitrary interval in ^ J . Then, for any Ee^φ with E <: F,
we have \\EAE\\ ^ \\FAF\\, and hence
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\(EAEx(E), y(E))\ ^ \\FAF\\ \\Ex{E)\\ \\Ey(E)\\ .

Consequently,

\(Π(A)x,y}\ = LIM (EAEx(E), y{E)}

^ LIM I (EAEx(E), y(E)} \
E

^ \\FAF\\ LIM \\Ex(E)\\ LIM \\Ey(E)\\
E E

S \\FAF\\ .

Since F is arbitrary, \\Π(A)\\ ̂  inf {\\FAF\\ | FejQ = NΦ(A).
In fact, we actually have equality. Let ε > 0 be arbitrary. For

each Eejz~φ, there is a vector x{E)zE£έf such that \\x(E)\\ = 1 and
11 EAEx{E) 11 ^ NΦ(A) - ε. Then,

\\Π(A)x\\* = <Π(A)x,Π(A)x)
= LIM (EAEx(E), EAEx(E))

E

= LIM \\EAEx(E)\\*
E

^ (NΦ(A) ~ ε)2

Since \\x\\ = 1, we have \\Π(A)\\ ̂  NΦ(A) — ε, and since ε is arbitrary,
\\Π(A)\\=NΦ(A).

For each A e S$ζ Π(A) has a unique extension to a bounded linear
operator, which we also denote by Π(A), acting on the Hilbert space
^ ^ Thus Π is a representation of Szf acting on 3ίΓ for which
11Π (A) 11 = NΦ(A), for all Aejzf. From Proposition 1 it is clear that
Π induces an isometric representation of 3fφ acting on

COROLLARY 24. There is an isometric representation of
as an algebra of operators acting on Hilbert space.

Proof. For each φe X, let Πφ be an isometric representation of
<&φ acting on a Hilbert space ^fφ. Let qφ: όzf -> 3fΦ and q\ J%? —> 2$
be the canonical quotient maps. Let 3$f = Σ®ex SίfΦ* Define Πo: jzf —>

by Π0(A) = ΣιfeχΠφ(qφ(A)). Then ΠQ is a representation of
For each A e J ^ 11 ΠQ(A) \ | = sup, 11 Πφqφ(A) \ \ = sup, NΦ(A) = \ \ q(A) 11,

by Proposition 9. Hence Πo induces an isometric representation, 77,
of 3f acting on

5* Let S^f be a reflexive operator algebra with commutative sub-
space lattice ^f. Recall that the diagonal of J ^ is defined to be the
von Neumann algebra ^f Π Szf* and the core of J ^ is defined to be the
von Neumann algebra generated by £f. We shall denote the diagonal
and core of sf by J ^ and J*fc respectively. Observe that
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i.e., the diagonal is the commutant of the core. As before,

DEFINITION. We define the ^"-commutant of the core to be the
algebra

, for all B e

REMARK. It is clear that ^ £ j^S and j*ζ = J*fc' £ j^>, hence
+ ^ £ J^>. Since J ^ is a C*-algebra, it is semi-simple; since

J? £ ^ , it follows that ^ Π J ^ = (0), s o j ^ + J ^ = j ^ 0 / It
is proven in [6] (Theorem 2.4) that if £? is a nest then Ssfd © ^ =
J^>. We prove below that the same result holds for commutative
subspace lattices which satisfy certain additional hypotheses. It seems
quite possible that the result holds in the general case, but we have
not been able to prove it.

We sketch briefly some of the tools needed for the theorem. Full
details, proofs, and/or references can be found in [6]. Let M be an
invariant mean on the (abelian) group, ^ , of unitary operators in
j^<. If sr is a bounded, complex valued function on ^f we frequently
write Mvg(U) in place of Mg. Let ^ denote the ideal of trace
class operators in Biβίf) and identify B{S$f) as the dual of ^ via
the pairing (T, /) = Tr(Tf), for TeB{£ϊf), f e <tfx. Define a mapping
ψ on B(^T) by the formula (f (T), /) = Mv(U*TU, / ) , for
f 6 ̂  The translation invariance of M implies that ψ maps
into J*fe' = J^5; one can verify that f is a norm 1 projection of
&{£$?) onto <X which satisfies ψ(AB) = Aψ(B), ψ(BA) = ψ(B)A, for
all Aej*fd,Be^(^). If Γ e ^ ( ^ r ) , define δΓ: j ^ - > J5(^T) by
δT(A) = AT - TA. If D: J^<-> J5(^") is any derivation (i.e., D is
linear and D(AB) = AD(B) + D(A)JS, for all A, J3e JK) then D = δΓf

where T is defined by (Γ, /) - Mu{U*D(U), /), / 6 ^ . If D = δΓx,
for some other T^^i^), then Γ = Γx -

Each of the following two hypotheses is satisfied by every nest
on a separable Hubert space and by some, but not all, nontotally
ordered commutative subspace lattices. (Hypothesis A is actually
satisfied by every nest regardless of the dimension of the Hubert
space.)

Hypothesis A. If (Fn) is an infinite sequence of mutually ortho-
gonal intervals from iSf then there exists an element ψ in X such
that if Eejtjr then Fn ^ E, for some n..

Hypothesis B. For each φeX, there is a countable family {Fn}
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of intervals in ^ J , totally ordered by inclusion, such that, for each

ΦI Fn <: E, for some n.

THEOREM 25. If ,$/ satisfies either Hypothesis A or Hypothesis
B then the ^-commutant of the core of *S*f is equal to the direct
sum of the diagonal of *$f and ^\ i.e.,

Proof. From the remark at the beginning of this section, it
suffices to prove that if B e Jtf and if AB - BAeJ^f for all A e
then B e <Wd + J ί For this, it suffices to show that B — ψ(B) e
Let T = B - ψ(B) and let D = dB = 3T. If T$ *J\ then there exists
an element φe X such that NΦ{T) > 0. Note that φ cannot be atomic,
for otherwise JΓ^ has a minimal projection EQf for which EQTEQ e <Ssfd.
But then E0TEQ = ψ(E0TE0) = EQf(T)E, = 0 and NΦ(T) = 0, a contradic-
tion. Thus «J*> is a directed family of projections whose strong limit
is 0.

Let Ee^,. The lower semi-continuity of norm and the fact that
\\ETE\\ ^ NΦ(T) > (1/2)NΦ(T) allows us to find a projection Ef ^ E , Ef e
JTΦ such that || (E - E')T(E - E')\\ > (l/2)iSΓ,(Γ). Since ί - £ ί ' ί s a
simple projection, it contains an interval F for which \\FTF\\ >
(1/2)NΦ(T). By repeating this argument, we may obtain inductively
a mutually orthogonal sequence of intervals (Fn) such that \\FnTFn\\>
(1/2)NΦ(T), all n. If Hypothesis B is satisfied we can also arrange
to choose the (Fn) so that any projection E in ^ contains some Fn.
If Hypothesis A is satisfied then there is an element ψ in X such
that every projection in j^+ contains some Fn.

We next claim that for each n, there is an operator An e J^ζ
such that 114.11 = 1 and \\FnD(An)Fn\\ > (1/2)NΦ(T). Suppose the
contrary, namely that there is an integer n such that \\FnD(A)Fn\\ <̂
(1/2)NΦ(T), for all Aejzζ with | | A | | ^ 1 . Then for any unitary
operator U in J%ζ we have

, f)\ ^ ll/lli \\U*FnD(U)Fn\\

for all

Since (Jf.ΓF., /) = Mσ(FnU*D(U)Fn, f) = Mu{U*FnD{U)Fn, f), we
obtain \(FnTFn, f)\ £(ll2)Nt(T)\\f\\u for all / e ^ . This implies
that Hi^ΓFJI ^ (1/2)NΦ(T), a contradiction. Thus the claim is es-
tablished.

Since An e J^c, AnFn = FnAn for all n. The fact that the (Fn)
are mutually orthogonal implies that "ΣinAnFn converges strongly in

let A = Σ Λ Λ Observe that FnD(A)FΛ = FM(AΓ - Γii)f. =
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Fn{AnT - TAn)Fn = FnD(An)Fn, for all n. Hence \\FnD(A)Fn\\ ̂
(1/2)NΦ(T). For any projection E in ̂ ψ (if Hypothesis A is satisfied)
or j^φ (if Hypothesis B is satisfied), we must therefore have
\\ED(A)E\\ ̂  (1/2)NΦ(T). Since NΦ{T) > 0, this implies that D(A)$
*J\ But D(A) = AS — BA e ̂  by hypothesis, a contradiction. Thus
we must have Γ e ^ " and the theorem is proven.
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