A CONSTRUCTIVE PROOF OF THE INFINITE VERSION OF THE BELLUCE-KIRK THEOREM

Teck Cheong Lim
A CONSTRUCTIVE PROOF OF THE INFINITE VERSION OF THE BELLUCE-KIRK THEOREM

TECK-CHEONG LIM

In [5], we proved the following infinite version of the Belluce-Kirk theorem [1]:

Theorem 1 [5]. Let K be a nonempty weakly compact convex subset of a Banach space and assume that K possesses normal structure. Let F be a commutative family of nonexpansive self-mappings of K. Then \mathcal{F} has a common fixed point.

Fuchssteiner [3] recently proved an iteration theorem on partially ordered sets and derived several known fixed point theorems as consequences. This note is to respond to a final remark in [3]. We show that Theorem 1, indeed a more general one, can be proved without making use of the axiom of choice. We shall make use of the following theorem which can be proved constructively [2, Theorem I.2.5].

Theorem 2 (Zermelo [7]). Let $f: E \to E$ have the property that $f(x) \preceq x$ where (E, \preceq) is a nonempty partially ordered set with the additional properties:

(i) If $a \preceq b$ and $b \preceq a$ then $a = b$;
(ii) Every chain in E has a least upper bound. Then f has a fixed point in E.

Let (X, d) be a metric space and let $\{B_{\alpha}: \alpha \in \Lambda\}$ be a decreasing net of bounded subsets of X, i.e., Λ is a directed set and $B_{\alpha} \subseteq B_{\beta}$ if $\alpha \geq \beta$. For each $x \in X$, let

$$r(x) = \lim_{\alpha} \sup_{a} d(x, y): y \in B_{\alpha} = \inf_{a} \sup_{a} d(x, y): y \in B_{\alpha}$$

and

$$r = \inf\{r(x): x \in X\}.$$

The set $\{x \in X: r(x) = r\}$ (the number r) will be called the asymptotic center (asymptotic radius) of $\{B_{\alpha}: \alpha \in \Lambda\}$ w.r.t. X. For a set C in a topological space, $\text{cl}(C)$ will denote its closure. A topological semigroup S is said to be left reversible if any two nonempty closed right ideals of S have a nonvoid intersection (cf. [4]). An action of a topological semigroup S on X is a mapping ψ from $S \times X$ into X denoted by $\psi(s, x) = s(x)$ such that $(s_{1}s_{2})(x) = s_{1}(s_{2}(x))$ for all $s_{1}, s_{2} \in S$.

467
The action is separately continuous if ψ is continuous in each of the variables when the other is held fixed. An action of S on X is nonexpansive if for each $s \in S$, the mapping from X into X defined by $x \to s(x)$ is nonexpansive. If S is a left reversible topological semigroup, and we put $s \geq t$ if $sS \subseteq \text{cl}(tS)$, then (S, \geq) becomes a directed set (see [4]).

The proof of the next lemma makes use of Theorem 1 in [6]. Note that this theorem was proved constructively.

Lemma 1. Let K be defined as in Theorem 1 and let S be a left reversible topological semigroup of nonexpansive, separately continuous actions on K. For each $s \in S$, let $W_s = \text{cl}(sS(K)) = \text{cl}\{st(x) : t \in S, x \in K\}$. If K contains more than one point, then the family $W = \{W_s : s \in S\}$ is a decreasing net of subsets in K whose asymptotic center in K is a closed convex S-invariant proper subset of K.

Proof. If $s \geq t$, then by making use of the continuity of $s \to s(x)$ for a fixed x, one can easily show that $sS(x) \subseteq \text{cl}(tS(x))$ and hence $W_s \subseteq W_t$. Thus $\{W_s : s \in S\}$ forms a decreasing net of sets in K. By Theorem 1 in [6], the asymptotic center C of W w.r.t. K is a closed convex proper subset of K. Assume that r is the asymptotic radius and that x is in the asymptotic center. If $||x - y|| \leq r + \varepsilon$ for every $y \in W_s$, then for each $s \in S$, $||s(x) - z|| \leq r + \varepsilon$ for all $z \in W_s$ by the nonexpansiveness of s. It follows that C is an S-invariant set.

Theorem 3 [6]. Let K and S be defined as in Lemma 1. Then S has a common fixed point.

Proof. Let $X = \{Y \subseteq K : \phi \neq Y = \overline{\text{Co}(Y)}, S(Y) \subseteq Y\}$. Order X by putting $Y_1 \leq Y_2$ if and only if $Y_1 \supseteq Y_2$. (X, \leq) satisfies the conditions in Theorem 2. For each $Y \in X$, let $f(Y)$ be the asymptotic center of $\{W_s : s \in S\}$ w.r.t. Y, where $W_s = \text{cl}(sS(Y))$. Since $f(Y) \geq Y$ for $Y \in X$, it follows from Theorem 2 that f has fixed point, i.e., there exists $Y_0 \in X$ such that $f(Y_0) = Y_0$. By Lemma 1, Y_0 is a singleton. Therefore, Y_0 consists of one common fixed point of S.

Remark. Obviously, Theorem 3 can also be proved by the iteration theorem in [3]. Theorem 1 is a special case of Theorem 3 when S is a discrete commutative semigroup generated by \mathcal{F}.
References

Received March 13, 1978 and in revised form November 7, 1978.

University of Chicago

Chicago, IL 60637
Ersan Akyildiz, **Vector fields and equivariant bundles** 283
Ehrhard Behrends, **The centralizer of tensor products of Banach spaces (a function space representation)** 291
Geoffrey R. Burton, **Congruent sections of a convex body** 303
John Warnock Carlson, **H-closed and countably compact extensions** 317
Robert Charles Carlson, **Eigenfunction expansions for selfadjoint integro-differential operators** ... 327
Robert Damiano, **Coflat rings and modules** 349
Eric Karel van Douwen and Washek (Vaclav) Frantisek Pfeffer, **Some properties of the Sorgenfrey line and related spaces** 371
Uri Elias, **Necessary conditions and sufficient conditions for disfocality and disconjugacy of a differential equation** 379
V. L. (Vagn Lundsgaard) Hansen, **Polynomial covering spaces and homomorphisms into the braid groups** 399
Paul Hess, **Dedekind's problem: monotone Boolean functions on the lattice of divisors of an integer** .. 411
Alan Hopenwasser and David Royal Larson, **The carrier space of a reflexive operator algebra** .. 417
Kyung Bai Lee, **Spaces in which compacta are uniformly regular \(G_\delta\)** ... 435
Claude Levesque, **A class of fundamental units and some classes of Jacobi-Perron algorithms in pure cubic fields** 447
Teck Cheong Lim, **A constructive proof of the infinite version of the Belluce-Kirk theorem** .. 467
Dorothy Maharam and A. H. Stone, **Borel boxes** 471
Roger McCann, **Asymptotically stable dynamical systems are linear** 475
Peter A. McCoy, **Approximation and harmonic continuation of axially symmetric potentials in \(E^3\)** .. 481
Takahiko Nakazi, **Extended weak-*Dirichlet algebras** 493
Carl L. Prather, **On the zeros of derivatives of balanced trigonometric polynomials** .. 515
Iain Raeburn, **An implicit function theorem in Banach spaces** 525
Louis Jackson Ratliff, Jr., **Two theorems on the prime divisors of zeros in completions of local domains** 537
Gloria Jean Tashjian, **Cartesian-closed coreflective subcategories of Tychonoff spaces** ... 547
Stephen Edwin Wilson, **Operators over regular maps** 559