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Let < be a class of spaces in the category of Tychonoff
spaces and let co(%”) be its coreflective hull in that category,
with coreflector c.

Let 7 be the topology of uniform convergence on the set
of continuous maps C(X, Y).

For ¢« = &, let S“(x) be the collection of all Tychonoff
spaces which are pseudo-z- compact and m-discrete for every
m < k.

THEOREM. The following are equivalent:

(a) co(5”) is cartesian-closed and the exponential objects
for Se¢& and Y eco(%”) are the spaces ¢zC(S, Y).

(b) The projection 7:¢(S X T)— S is z-closed for each
S, Te%

(¢) Either co(5”) is the category of discrete spaces, or
there exists «= X, and a finitely productive subfamily >
of (k) such that &< 7 < co(&).

Furthermore, if < is map-invariant, then (a) implies that
all spaces in & are pseudocompact.

Several examples are given.

0. Introduction. Coreflective hulls of families of Tychonoff
spaces are examined to characterize those which are cartesian-closed,
that is, have an exponential law Z*¥ = (Z*)¥, especially where the
exponential spaces are defined in a natural way using topologies of
uniform convergence on the hom-sets C(X, Y). The main result
implies that if the coreflective hull of a class is cartesian-closed in
this way, then that class must be a subclass of either the pseudo-
compact spaces or the \,-discrete spaces. Hence, the most important
examples of such subcategories are contained in the pseudocompactly-
generated class of spaces. Other equivalent conditions, involving
finite productivity and fine uniform structures, are given for these
subcategories.

I would like to thank Professor A. W. Hager of Wesleyan
University for his help and encouragement in the preparation of
this paper.

1. Background. The reader is referred to [8], [9], [12], and
[13] for the material in this section. All subcategories are assumed
to be full, isomorphism-closed, and to contain a nonempty space.
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DEFINITION. A category % having finite products is cartesian-
closed if, for each object Xe <%, the product functor Py: % — &
defined by P,(Y) = X X Y has a right adjoint Ey: & — &, written
E.(Y) =

The Z-objects X* are called exponentials, and they satisfy the
condition on hom-sets:

(Zx X,Y)=%(Z, Y

for all X, Y, Ze&.

Another characterization is more useful. The existence of a
right adjoint to P, is equivalent to the existence of &-objects Y~,
for each Y, and Z-morphisms ¢;: Y* X X — Y such that:

(1) {ey: Ye %} is natural in Y, and

(2) given Ze % and morphism f: Z x X— Y, there exists a
unique morphism ¢: Z — Y* which makes the following diagram
commute:

Y"x X -2 Y

/!

gxiN S
Z x X

(¢ is the identity map on X.)

Any topological category, such as the category of Tychonoff
spaces (Tych) and its coreflective subcategories, is cartesian-closed if
and only if its product preserves sums and quotients, by a theorem
of Herrlich in [8]. The product in Tych preserves sums, but not
quotients, so Tych is not cartesian-closed. A more explicit reason
for this is given by Arens in [1]: if X is a Tychonoff space for
which there is a weakest topology on C(X, [0, 1]) making the evalua-
tion map e: X x C(X, [0,1]) - [0, 1] continuous, then X must be
locally compact.

Now if & is a coreflective subcategory of Twych, then it has
finite products, denoted by X® Y. These are the coreflections of
the usual topological products X X Y. Again, the products X&® Y
preserve sums.

Let C(X, Y) be the set of continuous maps from X into Y. It
is easy to verify that, in a cartesian-closed coreflective subcategory
of Tych, each exponential space Y* must have the same cardinality
as C(X, Y). Therefore, one may assume without loss of generality
that the underlying set of Y* is C(X, Y) and that the map ¢y: Y* R
X — Y is the ordinary evaluation map e(f, ) = f(x).
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If &7 is a subfamily of Tych, let co(S”) denote its coreflective
hull in Tych, consisting of all quotients of sums of members of &~

DerFiNiTION 1. (i) For X, Ye Tych let 7C(X, Y) be the funec-
tion space equipped with the topology of uniform convergence on X
with respect to the fine uniformity on Y.

(ii) If S is a family of Tychonoff spaces, let 7.C(X, Y) be
the funetion space equipped with the topology projectively generated
by all functions f defined as follows: given Se.%” and a continuous
map f: S — X, define f: C(X, Y)—7C(S, Y) by f(9) = go f.

The topologies 7 defined in (i) are Tychonoff since they are
associated with Hausdorff uniformities. The topologies in (ii) are
also well-defined Tychonoff structures if . contains a nonempty
space. In general, 7., is weaker than z. If % is map-invariant,
then 7.C(X, Y) has the topology of uniform convergence on .S~
subspaces of X.

For example, let 2" be the class of all compact spaces in Tych.
The result of Steenrod in [17], translated to Tyckh, is that co(%")
is cartesian-closed and, for X, Yeco (%), Y*¥ = kr.,(C(X, Y), where
k: Tych — co (2¢7) is the coreflector. Other examples of cartesian-
closed coreflective subcategories of Tych having similar exponential
spaces are given in [3] and [18]. These examples are all contained
in co (%").

2. Cartesian-closed subcategories of Tych. The main problem
of this paper is to characterize the coreflective, cartesian-closed sub-
categories of Tych in which topologies of uniform convergence are
used to form the exponentials. Specifically, we want to characterize
the coreflections ¢: Tych — & such that:

(a) % 1is cartesian-closed, and

(b) theclass (Xe & :¢ertC(X, Y) = Y* for all Ye &'} inductively
generates & .

We first show that if co (%) is cartesian-closed, then the ex-
ponentials Y5, for Se€.% and Yeco(S”), determine all other ex-
ponentials Y* in co ($7).

LEMMA 1. Let ¢: Tych — % be a coreflection and let & = co (7).
Suppose that for each Se€.& the functor SR _: € — % has a
right adjoint, denoted by Y+ YS. Then & 1is cartesian-closed and,
for X, Ye <&, theexponential Y* is given as follows: let o be the topology
on C(X, Y) projectively gemerated by all functions f: C(X, Y)— Y5,
for Se.% arising from a continuous map f: S— X by flg) =gof.
Then Y* = coC(X, Y).
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Proof. Since & contains a nonempty space, the functions f
separate the points of C(X, Y), so ¢ is a well-defined Tychonoff
topology and Y*e &

It suffices to show that the sets C(Z ® X, Y) and C(Z, Y¥) are
in bijective correspondence in a natural way, for X, Y, Zec%.

(a) First, suppose h: Z R X-— Y is continuous. For each ze Z
the restriction of h to {2} x X is continuous, so we may define a
function 2": Z — Y* by W' (z)(x) = h(z, x) for ze Z, x€ X. (We have
used the fact that the underlying set of Y* is C(X, Y).) To show
that »’ is continuous, we must show that, given Se¢.% and a
continuous map f:S— X, the composition foh': Z— Y — Y* is
continuous. Let i: Z — Z be the identity map. Then i X /1 Z® S —
Z @ X is continuous, so the map j =ho(t X f): Z& S— Y is con-
tinuous. Since the functor S __: & — & has a right adjoint, the
associated map j': Z — Y* is continuous, where j'(z)(s) = j(z, s). But
j' = foh', so k' is continuous. This defines a one-to-one function
h—h' from C(Z ® X, Y) into C(Z, Y*).

(b) Now suppose that g¢’: Z--» ¥Y* is continuous, and let g:
Z @ X —Y be the function g(z, ) = ¢g'(z)(x). We must show that
¢ is continuous.

Since & generates %  there exists a quotient map ¢: XS, —
Z X X, where XS, is a sum of spaces S, in .4 It suffices to show
that goq is continuous. Let S =S, for some a. Let 7, and =, be
the projections of X® Z onto X and Z, respectively. Let ¢, =
Tyeq:S— X and ¢, =7,0q: S — Z.

Now the map Gy: Y* — Y* is continuous by definition of Y?*.
So, we have the continuous composition:

S— Z— Y5 — V%,
qz g9 ax

Let 9: S — Y* be this composition. Then by the assumption on
Sc.%% the map »: SQ S — Y defined by »(s, t) = 7'(s)(¥) is continuous.
Let d: S— S&® S be the injection onto the diagonal. Then d is con-
tinyous, and red=goq|s. So, the restriction of geq to each summand
S = S, is continuous, so ¢ is continuous since ¢ is a quotient map.

Therefore, the natural correspondence h — &’ is a bijection from
C(Z® X, Y) onto C(Z, Y*). So, for each Xe <, the functor X&) __:
% — % has a right adjoint Y+ Y* with Y* = coC(X, Y).

Lemma 1 may be applied to the topologies = and 7. given in
Definition 1:

COROLLARY 1. Let ¢: Tych — & be a coreflection. Suppose that
there exists & & & such that:
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(i) & =co(S), and

(ii) for each Se.& the functor SR _: &€ — % has a right
adjoint Yi+— Y5 where YS = ¢tC(S, V).

Then & is cartesian-closed and Y* = ¢t ,C(X, Y) for all X, Ye&.

If & is cartesian-closed, the exponential Y* must be the coarsest
space in & for which the evaluation map e: Y* ® X — Y is continu-
ous. It is known that e: 7C((X, Y)) X X — Y is continuous for X, Y e
Tych. (Theorem 10 (e), Chapter 7 of [11].)

LEMMA 2. Let c¢: Tych — % be a cartesian closed coreflection.
Let &7 be a subclass of & which inductively generates <. Then
ct.C(X, Y) is finer than Y%, for all X, Ye&.

Proof. For Se¢.& 7C(S, Y) =7.C(S, Y), and by the remark
above, e:¢tC(S, Y)®S— Y is continuous, so ¢zC(S, Y)— Y5 is
continuous.

For Xe %, an argument similar to the one given in Lemma 1
to show that the evaluation map is continuous may be used here
to show that e: ¢z, C(X, Y) Q® X — Y is continuous. Hence ¢z, C(X, Y)
is finer than Y~* for all X, Ye&.

It should be stressed that the topology 7. depends on the
generating family &4 so that the upper bound for Y* in Lemma 2
is sharper for smaller families .54

DEFINITION 2. Let ¢: Tych — & be a cartesian-closed coreflection.
Define the subclass .7 of & by
F={Xew: Y =ctCX,Y)VYe®}.
LEMMA 3. Let ¢: Tych — & be a cartesian-closed coreflection. If

Sec.Z and T is a continuous image of S, then ¢T € .&~. In particu-
lar, &% is quotient-invariant.

Proof. Let f: S— T be a continuous map onto 7. Then f: S — ¢T
is continuous. Let Ye&. Since & is cartesian-closed, the natural
map f: Y — Y* is continuous, and Y* = ¢zC(S, Y) since Se .2

Let V be a fine uniform neighborhood of the diagonal in Y.
For he Y, it suffices to show that the set

U,={ge Y: (g(t), h(t) e V VtecT}
is open in Y**. Now the set

Uy ={1e Y (s), hof(s))e V VseS}
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belongs to 7, so it is open in Y®. Therefore f(U,,) is open in Y*,
But

T Uip) ={ge YT (go f(3), hof(s) e V Vse S},

and this set is just U,, since f is onto. Hence U, is open, so
YT - erCeT, Y) is continuous. By Lemma 2 the inverse is also
continuous, so YY" = ¢zC(cT, Y), and therefore ¢T ¢ .&~.

We will show that the class .57 is also finitely productive in
Tych.

DerFINITION 3. A function f: X — Y is z-closed if f(Z) is closed
in Y for any zero set Z in X.

If Xe Tych, let aX be the (topologically) fine uniform space
associated with X.

THEOREM 1. Let c: Tych — & be a cartesian-closed coreflection.
Let &~ be the subclass of & given im Definition 2. Then:

(i) Al uniform products aS X aT are topologically fine for
S, Te. ..

(ii) The projections w: SQ S — T are z-closed for all S, Te .

(ii1) .~ is finitely productive in Tych.

Proof. We first show that if S, Te.% and Ze& and if f:
S®XR T—Z%Z 1is continuous, then f:aS x aT—aZ is uniformly
continuous.

To do this, it suffices to show that the families {f,: ye T} and
{f.: x€ S} are equi-uniform on S and aT, respectively, where f,(x) =
f.(y) = flz, y). Clearly, the functions f, and f, are uniformly con-
tinuous on aS and aT since they are the restrictions of f to the
subspaces S x {y} and {x} X T of SR T.

The family {f,: y € T} will be equi-uniform on the fine space aS
if it is equi-continuous at each point of S, by Theorem 38, Chapter
8 of [10]. So, let z,€S and let V be a uniform neighborhood of
the diagonal for aZ. The funection f: S — Z7 is continuous. Let U
be the basic neighborhood of f(x,) in Z” associated with V:

U={geZ" (g(), fw)¥y) eV YyeT}.

Then f(U) = {z e 8: (f,(), fy(x,)) € V Yy e T}, and this set is a neigh-
borhood of x, by continuity of f. It follows that {f,: v T} is equi-
continuous at x,. Hence, the family is equi-uniform on o.S.
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By symmetry of the product S 7, it follows that {f,:xc S}
is equi-uniform on aT. Therefore, f:aS X aT — aZ is uniformly
continuous.

For (i), we simply note that if S, Te.&, Ze Tych, and if f:
S x T— Z is continuous, then f:SQ T — ¢Z is continuous, so it
follows from the argument above that f: aS X aT — acZ is uniform-
ly continuous. Therefore, aS x aT is topologically fine.

It also follows from the argument above that SR T =S x T
for S, Te .S

For (ii), we use a result of Hager ([7]) and Noble ([15]): if
aX x aY is topologically fine, then the projections from the topologi-
cal product X x Y onto X and Y are both z-closed. For S, Te.&~,
we know that SX T'=SQ® T, and aS x aT is fine by (i), so the
projections from S ® T onto S and T are z-closed.

For (iii), let S, Te &2 and Ye%. We must show that Y57 =
¢ctC(S X T, Y). Let F: Y — (Y®)" be the natural correspondence;
by the exponential law, F' is a homeomorphism.

Let fe YS*" and let U, be a basic r-neighborhood of f associat-
ed with some uniform cover % of @Y. We will show that U, is
a neighborhood of f in YS*7. Let 7" star-refine ZZ. Now 7" and
7 determine covers 75 and % of Y® belonging to the uniformity
of uniform convergence, and 73 star-refines %. Since the topology
on Y* contains 7z, for Se .94, the covers 75 and % belong to the
fine uniformity associated with Y%, so %; in turn determines a
cover 75 of (Y*®)” belonging to the uniformity of uniform conver-
gence. Since T e .9, the members of 75, are open sets in (Y*5)7.

Now, returning to the set U,, we have

U, ={je Y5 j(s, t) e st(f(s, ), Z) V(s,t)eS x T}.
Let g = F(f) and let V, be the basic neighborhood of g in 73, so
V,={je (Y jt)estgt), 75) Vite T} .
Let U, be the basic neighborhood of g(¢) from the cover %7, so
Uy, = {he Y5 h(s) e st(g(t)s), ZZ) Vse S} .
Now % star-refines %/, so that
VoS {e (Y5 5t)e U,, VteT}.

Hence V, < {7 e (Y5): j(t)(s) € st(g(t)(s), Z) Vse S, te T}.

Therefore, F~(V,) < Uy, so the continuity of F' implies that U,
is a neighborhood of f in Y**7, Hence, the topology of Y*5*7
contains 7, so using Lemma 2 it follows that S x Te . ¢2. This
shows that the subeclass &7 of & is finitely productive in Tych.
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DEFINITION 4. Let £ be an infinite cardinal.

(a) A space X is pseudo-k-compact if each locally finite family
of open subsets of X has power less than «.

(b) A space X is k-discrete if every intersection of £ or fewer
open subsets of X is open.

For £ = W, let .“(k) be the class of all Tychonoff spaces which
are pseudo-x-compact and p-discrete for every p < k. For example,
(W, is the class of all pseudocompact spaces. If £ is singular
then .&“(k) consists of the discrete spaces of power less than &, but
if k£ is regular then 5”(k) contains nondiscrete spaces.

Let &7 be the collection of all discrete spaces. Any coreflective
subeategory of Tych contains 7.

THEOREM 2. Let ¢: Tych — & be a cartestan-closed coreflection.
Suppose that there exists a subfamily & of & such that:

(1) YS=1¢C(S,Y) for all Se¢.&% Ye %, and

(2) & inductively generates &
Then either & = & or there exists £ = W, such that & < (k).
If & is map-invariant in Tych, then &~ < (W), the pseudo-
compact spaces.

Proof. Suppose & contains a nondiscrete space X. By Theorem
1, aX x a«X is fine. By a result of Isbell (Theorem 32, Chapter 7
of [10]), this implies that there exists £ = W, such that Xe (k).
Now if Ye.&” and Y # X, then aX X aY is fine, so by the same
theorem in [10], Ye (k) also. Therefore & = (k).

Now suppose that .&° is map-invariant, and suppose that there
exists a nonpseudocompact space Xe€.5% By the first part, either
X is discrete or there exists £ > ¥, such that Xe .%(k). In either
case, X admits W,. Also, X is infinite, so the countable discrete
space N is a continuous image of X. Since . is map-invariant, N
and all other countable spaces belong to &% However, if N* is the
one-point compactification of N, then the projection 7: N x N* — N*
is not z-closed, and this contradicts Theorem 1 (ii). Therefore
& < L (R)-

The only possibilities for a subcategory & satisfying the hypo-
theses of Theorem 2 are the subcategories of either the pseudo-
compactly-generated spaces or the W, -discrete spaces.

We now consider sufficient conditions for cartesian-closedness.

THEOREM 3. Let ¢: Tych — E be a coreflection and let & be a
generating family for &. If the projections m: S® T — S are z-
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closed for all S, T e .&% then & 1is cartesian-closed and its exponenti-
als are defined by Y* = ct,C(X, Y) for X, Ye&.

Proof. By Corollary 1 it suffices to show that for each Se¢.&”
the functor S __ has a right adjoint Y+ Y* defined by Y* =
¢rC(S, Y). By Lemma 2, it is enough to show that for X, Ye¥
and Se.&; if /1 X® S— Y is continuous, then the associated map
f: X— Y* is also continuous.

First, suppose Xe.&% Letx,¢ X and let U be a basic neighbor-
hood of f(x,) in zC(S, Y). Then U is associated with a continuous
pseudometric d on Y, so that

U ={ge Y5 d(g(s), fla)s) <1 vseS}.
Now f(m,)(s) = f(@,, 8), 80

FU) = {we X: d(f(x, 5), flxy, 8)) <1 VseS).
Then X — f{(U) = {we X: 3s€ S3d(f(, 5), f(x, 8) = 1}.

We will show that X — fY(U) is closed, using the following
composition of maps:

X@S—Gf—)SX YT Y& YTR'

Here G/, the graph of f, is the map (x, s) — (s, f(x, s)); the map jJ
is the product of f(x, with the identity map on Y. Let F be the
above composition. Since all maps involved are continuous, so is F.
Also, X — fYU) = nx(F[1, «))). Now F~Y([1, <)) is a zero set in
X, so its projection onto X is closed if Xe .54 by assumption. So,
FHU) is open, so f: X—C(S, Y) is continuous. Then if Y5 =
¢tC(S, Y), f: X — Y* is continuous.

In general, for Xe¢ &, there exists a subfamily {7T,} of % and
a quotient map ¢q: 3T, — X. Let H be the composition:

AT.®)— CLIQS =7 XRS— ¥,

where j is the natural bijection and < is the identity map on S.
Then H is continuous. Let H, be the restriction of H to T, ® S.
Then H,: T, ® S — Y is continuous, so by the first part, the associated
map H,:T,— Y* is continuous. Taking sums, the map XH,:
3T.— Y is continuous, and it is not hard to verify that SH, =
foq. Therefore f is continuous since ¢ is a quotient map.

We now summarize these results.

THEOREM 4. Let &7 be a family of Tychonoff spaces. The follow-
mg are equivalent:
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(a) co(S”) is cartesian-closed and Y5 = oetC(S, Y) for Se.&”
Yeco ().

(b) ¢o0(S”) is cartesian-closed and Y* = ¢r.C(X, Y) for X, Ye
co (7).

(¢) The projections ©#: SQR T — S are z-closed for S, Te A

(d) Either co(S”) = 2 or there exists k = W, such that all
JSinite products of spaces in & belong to (k) N co ().
Furthermore, if & is map-invariant, then conditions (a)-(d) are
equivalent to:

(e) All finite products of members of S belong to (W) N
co ().

Proof. We have already seen that conditions (a), (b) and (c)
are equivalent.

Suppose & satisfies (d) or (e). If co () = <, then clearly &
is cartesian-closed, so (a) holds. Otherwise, & & (k) for some
£E=W, and if X, Ye.& then X x Ye.%”(k). This implies that the
uniform produet aX X a¢Y is topologically fine, by a result in
Chapter 7 of [10]. Then, by a result in [7] and [15], the projections
from X X Y onto X and Y are z-closed. Since X X Y= X® Y for
X, Ye &% condition (¢) follows.

Now suppose that &7 satisfies (a). Let .52 be the subfamily of
co (&) given in Definition 2. Then & < &%, so ¢o (&) = co ().
By Theorem 2, either co (&) = & or there exists £ = ¥, such that
< (k). Suppose co () #= 2. By Theorem 1 &7 is finitely
productive, so if X, Ye.&” then X X Ye.2C co ()N (k). Hence
(d) holds.

If ¥ is map-invariant, then & & (W, by Theorem 2, and
also &2 & () for some » = W,. If co (&) = =, then 5 contains
an infinite pseudocompact space, and any such space is not g-discrete
for any infinite cardinal &, so it cannot belong to .&”(x) for any
£ > W,. Hence A = W, so &2 < (N,)- The rest of condition (e)
follows from the finite productivity of .&~2.

This result may be stated as follows: co (&) = & is cartesian-
closed with exponentials obtained from z. if and only if there exists
£ = W, and a finitely productive family & (k) such that F
S Ceo(S).

ExAMPLES. (1) Let .77 be the collection of all pseudocompact
spaces which have pseudocompact product with any other pseudo-
compact space. (This class is characterized by Frolik in [4].) It is
easy to see that .7~ is finitely productive; in fact, .7 is productive
by a result of Noble in [14]. In any event, co(9") is cartesian-closed.
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(2) If co(S”) is cartesian-closed and & & S7(W,), it does not
follow that & < .. In [5] a space X is constructed so that its
finite, but not infinite, powers are pseudocompact. If S is the set
of all finite powers of X, then co ($”) is cartesian-closed. Because
.7 is productive, & N .9 = @. (This space X is similar to spaces
constructed in [2]; all are subspaces of BN.)

(8) Let £ be an uncountable regular cardinal. Let .27°(k) be
the collection of all spaces which are k-compact (every open cover
has a subcover of power less than &) and p-discrete for all p < k.
Then % (k) & (), and 7% (k) is finitely productive, so its coreflec-
tive hull is cartesian-closed.

COROLLARY 2. Let ¢: Tych — & be a cartesian-closed coreflection.
If Y* =¢tC(X, Y) for all X, Ye &, then & = <.

Proof. If & == =7, then by Theorem 4 there exists £ = W, such
that & < .“(k). This is impossible since % contains all discrete
spaces, but no discrete space of power & or greater belongs to (k).

We conclude with some problems which appear to be unsettled:

(1) 1Isco(S(k)) cartesian-closed for any £ = R,? For £ = W,
the class (W, is not finitely productive: there exists a pseudo-
compact space X such that X x X is not pseudocompact. (This
example is due to Novak in [16], and it also appears in Chapter 9
of [6].) Therefore, if co (S (W,) is cartesian-closed, then there
exists a space Y in co (¥ (W,)) such that Y* == ¢rC(X, Y).

(2) If ¥ =+ 2 and & is coreflective and cartesian-closed, is
& < co (S (k) for some £ = W,? This question can probably be
answered in the negative by a counterexample.
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