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We prove that if V is any infinite-dimensional vector
space over any uncountable field F, then the congruence
lattice (=subspace lattice) of ¥V cannot be represented as a
congruence lattice (of any algebra) without using at least | F'|
operations. This refutes a long-standing conjecture—that
one binary operation would always suffice.

Our result implies that the natural representation of Sub V as
a congruence lattice is the best one, i.e., uses the minimum number
of operations. This result is easy to obtain—see § 1.

In the remainder of the paper we find further necessary condi-
tions for the representability of an algebraic lattice L with <«
operations. Necessary and sufficient conditions seem impossible at
this stage of knowledge. Part II of this paper (by W.A. Lampe)
gives some interesting sufficient conditions for representability of L
with one binary operation, for instance: the unit element of L is
compact.

The conjecture which we have refuted dates back at least to 1959
and the theorem of Gratzer and Schmidt ([6], [3], [14]) that every
algebraic lattice can be represented as the congruence lattice Con 4
of some unary algebra A; the hope was to use say a single binary
operation -- to code the unary operations j(z) as z + a (with ac A
depending on f). (See e.g., [9], [8, p. 209].)

By some results of §3 and Part II, every algebraic lattice can
be embedded as a principal ideal in an algebraic lattice which is
representable with one binary operation, and also in one requiring &
operations. This may partly explain why the conjecture resisted
settlement for so long.

§ 1 contains the main result. §§2 and 3 contain refinements and
variations on the ideas of §1, and §4 contains some open problems,
Some of these results were announced in [12], [13], and [18].

The authors thank B. Joénsson, A. Day, and E. Nelson for many
helpful comments, and acknowledge support from the National Science
Foundation and support (for W. A. Lampe) from the Institute for
Advanced Study during 1974-75. The other two authors heartily
thank William Lampe for so successfully initiating this investigation,
and especially for his crucial Lemma 1, which made everything here
possible.
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1. The main result., All our results depend on the following
lattice-theoretic property:

(#) For every compact ¥, there exist compact O, @ such that
OVO=V and OANT =0 ANT =0.

It is easy to see that our subspace lattice obeys (x) (see the proof of
Theorem 1); in fact all examples in this article will obey (x).

LEmMMA 1. If Con A satisfies (+), then A satisfies

x(t(x, p) = t(x, q)) — Va(t(z, p) = t(z, q))

(for x demoting (x, +--, x,), , ¢ €A™ and t any (n + m)-ary term,
i.¢., polynomial).

REMARKS. (x) is somewhat elusive—every algebraic lattice can
be embedded as a principal ideal in an algebraic lattice obeying (x),
and also in one where (x) fails. And so perhaps it is not surprising
that Lemma 1 was overlooked for so long. It arose from a study of
the lattices L,, of §2.

Proof. We will assume that i(a, p) = t(a, q) for some a € A*, and
prove that ¢(b, p) = t(b, q) for any be A". To see this, we will apply
(x) to the compact congruence ¥ = @(a, b)\V/ O(p, q) (i.e., the congruence
generated by {(a,, b)), - -+, (@,, b.), (D1, 01, ** 5 (P> ¢u)})- Taking @ and
# as supplied by (), we have

Ole, b)) ¥< o Vo,
and so
a = $,08,08,08,D «-+5,=Db.
Now since s,0s,, we have
t(s1, DIOU(se, D) = (80, IOy, Q)

and thus (s, p)Oi(s, q¢). Since p¥q, we also have (s, p)¥i(s, q).
Finally, since ® N ¥ = 0, we have t(s, ») = t(s;, ¢). A similar argu-
ment (with @ in place of @) yields i(s,, ») = (s,, q¢). Proceeding by
induction, we obtain (b, p) = t(s,, ») = t(8s, ¢) = (b, q@).

DEFINITION. # A denotes the number of nonnullary operations
of A.

LemmaA 2. If Con A obeys (x), then every block of every compact
congruence of A has power < £A4 + N,
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Proof. Let S be a block of a compact congruence ©; thus 6 =
O(a, b) for some a, b € A*. Fixing ¢ € S and considering arbitrary d ¢ S,
we have (¢, d)e6(a,d), and hence, for some terms ¢, ---,¢, and
Dy, v+, P, €A™, we have

¢ = t(a, b, p,)
tl(b7 a, px) = tz(a'y b’ pz)

tn—l(bi a’ pn~1> = tn(a” b’ p'n) = d

(as follows from well known and easy descriptions of compact con-
gruences—see e.g., [3, Theorem 10.4]).

To see our upper bound on | S|, it is clearly enough (by elementary
cardinal arithmetic) to see that d depends only on the sequence
(t, -+-,t,), and not on (p, ++-, p,). To see this we suppose we also
have

¢ = t1(a; b: pi)
t.(b, a, p1) = t,(a, b, p3)

boi(by @, D) = tu(a, b, p1) = d .

The proof will be complete when we have shown d = d'. From
tla, b, p) = ¢ = t,(a, b, p1) we obtain

t(a, b, »;) = (b, a, p,) = t,(b, a, p7) = t,(a, b, ) ,

(using Lemma 1 for the middle equality). Thus we have obtained
t.(a, b, p,) = t,(a, b, p;); proceeding by induction yields d = d’.

The above lemma tells us that blocks cannot be too big. The
next lemma says that sometimes there must be a large block.

LEMMA 3. Suppose that ¥ eCon A, XZ Con A is infinite, and
Jor distinet ©,0c X, OND =0and O\ © =T, Then each nontrivial
block of ¥ has power =|X|.

Proof. Let Il be any partition of X into two-element sets, and
take (¢, e> e ¥ with ¢ = e. For each Bell, VB =¥, and so we have

¢0,d0O, - -- B¢ (each 6,¢ B) .

Of course we may assume that d == ¢. It will be enough to see that
distinct B’s yield distinet d’s (for then the set of all d’s has power
=|Il| =|X|, and certainly ¢¥'d holds for each d). But this is easy,
since if we also had ¢@;d with ;¢ B’ == B, then we would have ¢ = d,
since O, N O; = 0.
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THEOREM 1. If V 1is an infinite-dimensional vector space over
an uncountable field F', them Con A = ConV implies that A has at
least | F'| operations.

Proof. We will see that ConV (hence Con A4) satisfies the hy-
potheses of Lemma 3, with ¥ actually compact. Fix one 2-dimensional
subspace W and |F'| one-dimensional subspaces U, S W (a < |F)).
With the usual identification of subspaces with congruences, we take
U=Wand X ={U,a<|F|}. Clearly U,V Uy =W for a + 8, and
so Lemma 3 yields a compact congruence with a block of power | F'|.

To see that Con V' (=Sub V') obeys (x), let U be any finite-dimen-
sional subspace of V with basis {v,, ---, v,}. Extend this to a linearly
independent subset {v,, ---, v,,} of V. Now take U’ to be spanned by
{v, + Vysey =+, v, + v, and U” to be spanned by {v,.,, *--, v,,}. Then
certainly UC U + U” and UNU =UNU" = {0}.

And so Lemma 2 tells us that |F| <24 + W, =2 A4.

2. Refinements. In this section we present further means of
finding large congruence blocks and thus seeing (via Lemma 2) that
certain algebraic lattices obeying (x) require many operations in their
congruence representations. Lemma 4 below may be proved in a
manner similar to Lemma 3. Lemma 5 is far more general than
Lemma 4, but also more complicated. Lemma 6 below produces large
congruence blocks in an entirely different manner.

LeEMMA 4. Suppose that ¥ e Con A, X< Con 4 and a partition I1
of X obey these conditions:

(1) for each Bell, T < VB;

(2) for distinct B, B'elIl, ®c B and
QeB,OND=0.
Then every nontrivial block of VX has power =|II].

In what follows, £ is an infinite cardinal. We say that a poset
Pis k-directed if and only if each SC P with | S| < £ has an upper
bound in P.

THEOREM 2. If Con A satisfies (x) and the compact elements of
Con A are k*-directed, then £ < £ A4 + W,

Proof. By Lemma 2, it will be enough to produce a compact
congruence with one block of power =x£. For this, we use (x) and
k*-directedness. For a <k we recursively define compact congruences
v, o0, o, as follows:
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U, ="y 0 @ (@>pB)
ONC, =0, NT,=0

(the first condition is possible by £*-directedness, the last two by (x)).
It is clear that if we take X = {4,, @,: @ < k} and I = {{O,, 0.}: @ < &},
then the hypotheses of Lemma 4 are fulfilled, and moreover VX ¥,.
Thus ¥, is a compact congruence with a block of power =«k.

To illustrate Theorem 2, we suppose V is a vector space of dimen-
sion £* over some field. We let S be the lattice of all subspaces of
V of dimension =<k, and let L be the lattice of all ideals of S.
Theorem 2 says that £ A = £ whenever L = Con 4.

LemMMA 5. Suppose that ¥, ZcCon A and o family P of finite
subsets of Con A obey these conditions:

(1) 1UP]| is regular and infinite;

(2) ¥ is compact and ¥ £ Z;

(8) VBeP, ¥ =(VB)V Z;

(4) each Be P is minimal for condition (3);

(5) YIS UP, of |T|=|UP/|, then ANT £ Z.
Then V(UP)V Z has a block of power =|U P|.

REMARKS. Of course the finiteness of the sets B e P follows from
(2) and (4). This lemma is more versatile than Lemma 4 since, firstly,
P need not be a partition, secondly, the disjointness condition (5) has
been weakened considerably, and thirdly, 0 has been replace by an
arbitrary Z # ¥. Obviously the new assumption (1) makes no differ-
ence for our applications in conjunction with Lemma 2, because each
singular cardinal is the supremum of all smaller regular cardinals.

Proof. By (2) we have a, bc 4™ with
¥ =06(a,b) =06(a,b)V -V 6(a,bd,) .
Since each (a,, b)) e ¥, (8) says that for each Be P

a; = 9(70@1951@2552 e Xy = bz

for some x,, x,, --- € A and some 6, 60,, --- ¢ BU{Z}. For each i we
form @, A as follows: take one such sequence for each Be P, and
then let @, be the set of all x,, ,, - -- occurring in all these sequences.

Obviously each @, is contained in a single V(UP)V Z block, and
so it will be enough to see that some |Q,| = | UP]|.
Clearly it is enough to show that @=@, U .- U@, has power =| X|,
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where X = UP. To see this we define
7:(Q X Q@ — Z) —— power set of X
viQ
(p, @) —— {0 € X: pBq} .

We will clearly be done if we can show that [Rangez| = |X|. Con-
dition (5) implies that each |z(p, ¢)| < | X |, and so by the regularity
of | X| it will be enough to see that | URangez| = |X|. We will in
fact show that URanger = X.

For each 8¢ X = UP, we have Be P and

a; = 2,0,2,0,2, -+ x, = b, Agi1=n)

(as above) with @ € B and each @;¢ BU {Z}. Now among these rela-
tions must occur x,0x;,, with (z;, z;,,) ¢ Z, for otherwise we could
eliminate © in favor of Z, contradicting the minimality of B in (4).
But clearly 6 e z(x;, 2;.,), and hence X< Range .

LEMMA 6. Suppose that C is the set of compact elements of
Con A, XS Cond and X is infinite. If VX =1 and | X|<|C|,
then some congruence in X has a block of power =k, for each regular
£ satisfying | X| <k £ |C|. (In paerticular, for £ = | X|*.)

Proof. Fixing such a regular k£, we let Y be the set of finite
joins of congruences from X. Thus Y is directed and | Y| <k. Fixing
any a € A, we have, since A is the unique block of 1,

A=lal = Ulale.

One easily checks that [C| < |A|[, and so the regularity of £ yields
[{a]e| = £ for some Oc Y.

By definition of Y, we have ® =0, VV --- vV 6, with each 0, ¢ X.
Let

Q, = {a} and @, = {x¢Q: (3AyecQ)3NxO0,y}.

Since [a]o = U:ico @: and £ is regular, there exists ¢ with |Q,,,| = «;
taking the least such 4, we also have |Q,] < k. For be@, and each
j, let Ry; = {xe@,,:00;x2}. By the regularity of £, we may choose b
and j with |R,;| = £, and clearly |[b]o, | = «.

To illustrate how Lemmate 5 and 6 may be applied, we will
present several algebraic lattices, all of the same general form, namely:
L, x is the ideal lattice of
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Jfor a limit ordinal a and a join-semilattice K which we will specify
Sfurther below. Obviously the lattices L,  satisfy (x), and so we may
apply Lemma 2 to them.

We first note that if a = 8 -+ v with ¥ < |8]| + | K|, then Lem-
mate 2 and 6 immediately yield #4 = |8| + | K| for Con A = L, 4.
An example where neither Lemma 4 nor Lemma 5 is useful is obtained
by taking ¢ = ® and K = @,.

By way of historical comment, we should remark that Lampe’s
pioneering example [12] was precisely L, with a = 0, + 0, K = @.
(He actually used Lemmate 2 and 4, which apply equally well to this
example.)

The lattices L, s arose quite naturally during Lampe’s attempts
to represent each algebraic lattice as the congruence lattice of a
groupoid. It is possible to view L, s as a partial lattice in such a
way that a lattice L obeys () if and only if for every compact a
there is a zero-preserving embedding ¢ of L, s into L with e in the
range of ¢. Each of Lampe’s attempts foundered on a lattice which
had some L, s as a partial sublattice.

Next we give three examples using various features of Lemma
5, where neither Lemma 4 nor Lemma 6 can be applied. These
examples have a = w, and | K| = ®,. In each case we will see that
2A>=w, for L, =Con A (and of course #A4 = w, is possible, by
Gratzer-Schmidt).

For our first example we take K = @} (w, upside down), and we
apply Lemma 5 with Z =0, ¥ =¢ and P = {{b, a}: ac K}. In this
example P is not a partition, and only a weak disjointness assump-
tion (5) holds.

For our next example we take K = K, U {p, ¢}, with K, = the
lattice of all finite or co-countable subsets of w,, and p and ¢ two
new points. The natural order of K, is extended to K by letting
z < ¢ for all x € K, and letting « < p if and only if # is a finite subset
of w,, Let ¥ =¢, P={{p, x}: x a coatom of K,} and Z = the join in
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L, x of all the atoms in K,. Then one may easily check that ¥, P, Z
satisfy the hypotheses of Lemma 5 (whenever L, . is identified with
Con A). We could not have Z any smaller and still satisfy (5), for
if Y< Z, then Y% some atom ec K,, but clearly e = AT for a
suitable set T of coatoms.

For our third example we let X = {x,: @ < w,} and let FL(X) be
the free lattice generated by X, and then we take K to be the lattice
of dual ideals of F'L(X), ordered by reverse set inclusion. Let e K
be the dual ideal of FL(X) generated by the set {z, V 2,: 0 < @ < ®,}.
We will think of FIL(X) as a sublattice of K (i.e., K is a special kind
of completion of FIL(X)). Straightforward calculation shows that the
hypotheses of Lemma 5 hold for ¥, P = {x,, 2.,}: 0 < @ < @0} and Z =
the ideal of K generated by {AT: TS X, |T| = @} (whenever L,
is identified with Con A4). Note that in this example ¥ and Z are
not comparable.

Of course, further examples could be obtained by embedding the
ideals of K into other lattices obeying (x), e.g., a subspace lattice.
Incidentally, we are unable to decide whether L, » or L, . can be
represented with Y, operations.

3. Further speculations. We first remark that obviously (*)
can be weakened without harm to

(xx) For every compact ¥ there exist compact 6, «--, @, such that
O,V -+ VO,ZTand O ANV = =0, NT =0.
Notice also that if some principal dual ideal D of L requires £ oper-
ations for a representation, then the same is true of L, since Con A=L
implies Con 4/0 = D for some 6. (And so one easily sees that every
algebraic lattice L is embeddable in one which requires £ operations.)
Thus in searching for a characterization of “L is representable with
<k operations” we need to examine all principal dual ideals of L.
Define C(L) to be the set of compact elements of L and then define

o(L)=3{UP|:(3¥, Ze L)P, ¥ and Z are as in Lemma 5, and
there exists a compact element =V (UP)VZ}.

_ (16| if IXSC(L) with | X[ <|C(L)| and VX =1;

“ | 0 otherwise.

o(L) = Z{o(D) + z(D): D a principal dual ideal of L obeying (x*)} .

(L)

Clearly all our previous results combine to show that £ .4 + &, =
©0(Con A). This last inequality summarizes all our available informa-
tion on this topic. Thus, for example, we see that o(L)< W, is a
necessary condition for congruence representability with ¥, operations;
but we would hardly conjecture that it is a sufficient condition.
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4. Problems.

(1) Is the inequality #4 + ¥, = 0(Con 4) sharp, in the sense
that every algebraic lattice is isomorphic to some Con 4 with £4 +
W, = o(Con 4) + W,? (See §3 just above.)

(2) If no principal dual ideal of L obeys (xx) of §38, is L
representable with <Y, operations? (See §3.)

(8) Is every distributive algebraic lattice L representable with
¥, operations? ... one operation? ... as Con (some lattice)? This last
property holds for L finite [1, p. 83] [4, p. 95]. (See also [2], [5],
[15]-[17] for further information.) A groupoid representation exists
if L is the ideal lattice of a distributive lattice (see Part II of this
paper).

Notice that if 1 is true, then so is 2, and if 2 is true, then so
is the first part of 8. We would be surprised if 1 is true.

(4) If the set of compact elements of L is countable, then is
L representable with <\, operations?

(5) If below each compact element of L there are <, compact
elements, then is L representable with ¥%, operations? ... <}, oper-
ations? ... one operation? (W. Hanf showed [7] (see also [8, p. 106])
that the corresponding assertions hold for representations as subalgebra
lattices.)

(6) If A has countable similarity type, must there exist B of
finite similarity type with Con B = Con A?

(7) If A has finite similarity type, must there exist a groupoid
B with Con B = Con A? (Lampe conjectures yes.) Note that Hanf
[7] proved the corresponding assertion for subalgebra lattices, and
MecXKenzie has proved a slightly weaker assertion for Con: there exists
B of type (2,1) with Con B = Con 4 (see Lampe’s survey paper in the
Proceedings of the 1977 Esztergom Colloguium).

(8) Characterize the class of lattices isomorphic to congruence
lattices of groupoids. ... of algebras with <« operations.
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