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SOME RELATIONSHIPS BETWEEN MEASURES

Roy A. JOHNSON

Suppose 2 and v are (nonnegative, countably additive)
measures on the same sigma-ring. We say that » is quasi-
dominant with respect to 2 if each measurable set contains
a subset with the same »-measure, where x is absolutely
continuous with respect to v on that subset. In particular,
v is quasi-dominant with respect to 2 if ¢ is sigma-finite.
We say that v is sirongly recessive with respect to p if the
zero measure is the only measure that is quasi-dominant
with respect to # and less than or equal to ». Properties
of these relationships are investigated, and applications are
given to purely atomic measures, to the Radon-Nikodjym
theorem and to a decomposition of product measures.

1. Weak singularity and absolute continuity. Let g and v
be (nonnegative, countably additive) measures on a sigma-ring .&°.
Recall that v is absolutely continuous with respect to y, denoted
vy p, if W(E) =0 whenever u(E)=0. If y< g and g < vy, then g
and v are said to be equivalent and we write #~y. We say that v
is weakly singular with respect to p¢, denoted vSy, if given E in
&7, there exists F' in & such that v(E) =y(E N F) and p(F) = 0.

We shall make use of the following form of the Lebesgue De-
composition Theorem [3, Theorem 2.1 or 6, Theorem 1.1]:

THEOREM 1.1. (Lebesgue Decomposition Theorem). Suppose p¢
and Y are measures on a sigma-ring . Then there exist measures
v, and v, such that (1) v =y, + v,, (2) v, < ¢t and (3) v,Sp. The meas-
ure v, is unique. We may arrange to have v,Sy,, and under that
requirement v, is unique also.

If v is a measure on & and Ac.$”, let v, be the measure
given by v, (E) = v(AN E) for all Fe .5”.

THEOREM 1.2. Suppose M(S”) and M,(S”) are families of
measures on &7 such that the zero measure is the only measure
common to both families and such that v, is in one of the families
whenever v is in that family and Ae .. Suppose, moreover, that
each measure Y on & can be written as the sum of measures v,
and v, such that v,e M,(&¥) and v,€ M,(S”) and v,Sv,. Then ve
M) if and only if v(A) = 0 whenever v, e M,(5).

Proof. Suppose ve M,(.5#). Then y,e M,(5”) for all Ac.5”. If
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y,e M(%”), then v, = 0 so that v(4) = 0.

Suppose v(4) = 0 whenever v, e M, ($”). In order to show that
ye M, (%), it suffices to show that v, (&) = 0 for all £ in $”. Sup-
pose, then, that Fe .$”. Since y,Sy,, there exists F in .5 such that
(B =y (ENF) and v(F)=0. Necessarily, v, = (v,),. Since
W)€ M(5), we have v, e M(.5”) so that v(F) =0 by hypothesis.
Then v,(F) = v (EN F) < y(F) =0, and we are done.

The following results follow from the definitions or from
Theorems 1.1 and 1.2:

(1) If vSy, then v,Sp for all Ae .&”.

(2) v,Sp if and only if v,Sp, if and only if vSy,.

(3) If v< p, then vy, < p.

(4) v, < pif and only if v, < p,.

(5) wSp if and only if v(A) = 0 whenever v, < p.

(6) v< pif and only if v(A4) = 0 whenever v, Su.

The relationships of absolute continuity and weak singularity
between measures are determined by the null sets of the measures.
That is, suppose f, ~ ¢, and v, ~v,. Then y, < g if and only if
v, < tt,, and v, Sy if and only if »,Sg,. We prove the nontrivial part
of these assertions.

THEOREM 1.3. If ASy and :\ ~ v, then vSp.

Proof. Suppose vy, < g#. It suffices to show that v(4) = 0.
Since WSy, there exists F' in &7 such that M(4) = M4 N F) and
p(F) = 0. Of course, v,(F') = 0. Then since (A NF) =0, we have
MA) = MANF)=0. Hence, v(A) = 0.

If s is a measure, then g will denote that (necessarily equi-
valent) measure which is o when # is positive and 0 when g is 0.
Of course, ¢, ~ pt, if and only if copt, = cop,. In view of Theorem
1.3 and the preceding remarks, v < ¢ if and only if coy € copr, while
vSyt if and only if couSeope.

2. Quasi-dominance and strong recessiveness. We shall say
that v is quasi-dominant with respect to p, denoted vQu, if given
E in &7, there exists F in % such that v(E) = y(ENF)and g,<Ly.
It is evident that vQu if vSy or g <K v.

THEOREM 2.1.

(1) If »Qn and p < N, then vQu.

(2) If vQu and pSy, them ySp.

(8a) If v,Qu and v,Qu, then (v, + v,)Qu.
(8b) If vQu, and vQu,, then vQ(t, + o).



SOME RELATIONSHIPS BETWEEN MEASURES 119

(4) If vQu, then p can be written as the sum of o, and f,,
where p, < v and vSy,. We may arrange to have p,Sy and Sy,
and under those conditions t, and p, are unique.

(5) If \Qu and X\ ~ v, then vQu.

(62) If v,Qpr and v,Qp, then (v, V v,)Qp.

(6b) If vQu and vQu,, then v, \V ).

(7)) If p is sigma-finite, then vQu for any measure ¥ on .

(8) If vQu, then v,Qu for all Ac.5”.

Proof.

(1) Follows from definition of quasi-dominance.

(2) Given Eec.”, there exists F'¢ .5 such that w(F) = v(ENF)
and g, < y. Since pSy and p, < v, it follows that Y(ENF)=0. In
other words, vSy. ‘

(3a) Suppose Ee.S”. Then there exist F, and F, in % such
that v(E) =y (ENF) and v(E) =v(ENF,), where p, <y and
tho, < V. 1f F=F, UF, then it can be seen that (v, + v,)(E)=
M+ Y)ENF) and g, <y, + v, ‘

(8b) Suppose Ee.%”. Since vQu,, there exists F; in % such
that v(E) = y(E N F,) and (@), < v.  Since v@y,, there exists F, in
& suchthat W ENF,) =v(ENF)NF,) and (,)r, K v. If F'=F NF,
then W(E) = w(E N F) and (g, + t5)r < v. :

(4) By the Lebesgue Decomposition Theorem, ¢ can be written
as the sum of x4, and p,, where 1, < v and Sy and Sy, Since
vQu, by (1) and since £,Sy, we have vSp, by (2). Uniqueness under
the added conditions amounts to the uniqueness of the Lebesgue
Decomposition Theorem for the case ££,St,.

(5) By (4), = p, + 1, where g, < A and ASp,. Since : ~,
we have y, < v and vSy,. Then vQu by (3b).

(6a) Since (V,Vy,) ~ (v, +v,), the result follows from (3a) and
(5).

(6b) Since (14, V ) ~ (¢ + ), the result follows from (3b) and
@).

(7) By the Lebesgue Decomposition Theorem, p= ¢, + ,
where ¢, < v and #,Sv. Since g, is sigma-finite, vSy, [3, Theorem
3.2]. Then »Qu by (3b).

(8) Fix Aec.%” and suppose Fe.5”. Since vQu, there exists
Fe & such that v,(B) =vANE)=v(ANE)NF) and such that
tr < v. Necessarily, g, < v,. Hence, v,(E) =v,(EN(ANF)) and
Hanm < Y4, SO that v,Qpe.

We say that v is strongly recessive with respect to p, denoted
vy <gy, if A is the zero measure whenever » <y and AQu. Clearly,
vQu and v <gp if and only if v is the zero measure.
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THEOREM 2.2. The following are equivalent:
(1) If AeS” and v,Qu, then v(A) = 0.
(2) If N=v and ANQu, then A = 0.

(3) If A< v and My, then = 0.

(4) pSy and v < p.

(5) pSy and v < p.

(6) (¢+ v)Sy.

(7)) pSv and v(A) = 0 whenever p(A) < co.

Proof.

(1) implies (7): Suppose g, < v. Assuming (1), we first show
that xSy by showing that p(4) = 0. Since g, < v,, we have v,Qu,
so that v,Qu. Assuming (1), we have v(A) =0 so that p(4) =0.
Hence, 1Sy. Now suppose p(A) < cc. Assuming (1), we show that
Y(A) = 0. We already know that xSy, so that p,Sv. Since g, is
finite, we have vSy, [3, Theorem 3.2] so that v,Syg. Hence, v,Qu
and assuming (1), we have v(4) = 0 as was to be shown.

(7) implies (6): Since v(A) = 0 whenever p(4) < «, we have
¢ =t +v. Hence, (¢ + v)Sy.

(6) implies (5): Clearly, v < ¢+ v. It suffices to show that
g =+ vy. Suppose Ke.&”. Since (¢ + v)Sy, there exists F in &
such that (u+v)(E)=(u+v)(ENF) and v(F)=0. Hence, (n+y)(H)=
(t+ WENF) = BN F) < (E) so that (1 + v)(E) = p(E).

(4) implies (8): Suppose Sy and y £ . Suppose, moreover,
that M < v and AMQu. It suffices to show that x = 0. Since xSy and
N < v, we have #S\. Since p#S\ and MQu, we have ASy by (2) of
Theorem 2.1. Since ASyt and since N < v, we have A = 0.

Clearly, (5) implies (4), (3) implies (2) and (2) implies (1).

We shall see that the second condition in (7) of Theorem 2.2 is
enough to insure that v <gp¢ whenever g enjoys the property of
semifiniteness. We say that g is semifinite (or locally finite) if it
satisfies any of the following equivalent conditions [1, Exercise 25.9
or 9, Theorem 8.3]: (1) If FEe.”, then wuE) = sup{(E N F):
P(F) < =}, (2) Every measurable set of positive measure contains
a measurable set of finite positive measure. (3) Every measurable
set B contains a measurable set F' such that F has sigma-finite
p-measure and p(E) = pu(F). A measure is called degenerate if the
only values taken on by the measure are 0 and oo.

Following [5, page 396], we shall say that v is totally incom-
patible with g if (&) >0 implies p(E) = . Equivalently, v is
totally incompatible with g if ¢+ v = p. In view of Theorem 2.2,
y is totally incompatible with g whenever v < u. If v is totally
incompatible with p, then clearly vy < p. If vy < p and g is degene-
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rate, then v is totally incompatible with .

THEOREM 2.3. If v is totally imcompatible with p and p 1s
semifinite, then v <g .

Proof. Evidently, v € g and it suffices to show that #Sy. Given
E in &7, by virtue of the semifiniteness of g there exists F' in &7
such that #(F) = p(ENF) and such that p(F') is sigma-finite. Since
y is totally incompatible with g and since p(F') is sigma-finite, we
have y(F') = 0.

THEOREM 2.4.

Qa) If v h and M <gp, them v <gft.

Ab) If y<gh and A<y, then v <gp.

(2) If vQu and N <gp, them vSi.

(8a) Ify <s(¢ + \) and @, then v <gp. Hence, if v <s(ft + )
and YS\, then vy <gp.

@Bb) If v+ MRy and M <gy, then vQu.

(4) If () vy <gp, (1) v@n and (iii) MQp, then vS\.

(8) If v, <gp and v, <gp, them v, + v, <g .

(6) If v<sp, then v, <gpy for all A in &7.

Proof.

(la) Since M <g#, we have pSh and M<K ¢ by Theorem 2.2.
Since v < N, we have xSy and v p. Hence, v <y ¢ by Theorem 2.2.

(1b) Suppose Ac.&” and v,Qu. Since A< g, we have v, Q.
Since y <gA and since v,Qn, we have y(A4) = 0. Therefore, v<gp
by Theorem 2.2.

(2) Suppose v, < . It suffices to show that v(4) = 0. Since
A <gp, we have v, < u¢ by (la) of this theorem. By (8) of Theorem
2.1, we have v,Qu. Hence, v, = 0 and v(4) = 0.

(82) Suppose Ae . and y,Qu. It suffices to show that v(4) = 0.
Since v@x, we have v,@\ by (8) of Theorem 2.1. Then v,Q(t + A),
so that y(4) = 0 by Theorem 2.2.

Bb) (@ + NS\ by (2) of this theorem. Henee, M < vy and
Y+ » =p by Theorem 2.2.

(4) Since M@ and vy <, we have ASy by (2) of this theorem.
Since v@\ and ASy, we have yS\ by (2) of Theorem 2.1.

(5) and (6) follow immediately from Theorem 2.2.

For reference and for comparison, we restate the Lebesgue De-
composition Theorem (Theorem 1.1). In stating this theorem, we
may replace the requirement that v,Sy, by v,Qv, because of (2) in
Theorem 2.1 and the fact that v,Sy,. We then prove an analogous
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decomposition theorem involving strong recessiveness and quasi-
dominance.

Lebesgue Decomposition Theorem. Suppose g and v are meas-
ures on a sigma-ring .&°. Then v can be written as v, + v,, where
y, < ¢ and v,Sp. Necessarily, v, is unique. We may arrange to have
v,Qy, (or v,Sy,), and in that case y, is unique also.

THEOREM 2.5. Suppose tt and v are measures on & Sigma-ring
. Then v can be written as v, + v, where v, <gp¢ and v,Qu.
The measure v, 18 unique. We may arrange to have v,Qy, (or v.Sy,),
and under that requirement v, is unique also.

Proof. By the Lebesgue Decomposition Theorem, g can be
written as g4 + (4, where g, <y and Sy and p,Sy,. Again by the
Lebesgue Decomposition Theorem, v can be written as vy, + v,, where
y, < p, and v,Sp, and v, Sy,. Notice that Sy, since 1,Sz, and v, < p,.
We show that vy, and v, are the required measures.

Let us show that v, <gp. Of course, vy, € ¢t since v, < &, and
M = pt. Since 1,8y, we have (,Sv,. Since Sy, and p,Sy,, we have
1Sy, so that v, <gp.

Now we show that y,Qu. Since g, < v, + v, and since £,Sy,, we
have g4 < v, [3, page 630]. Since p, < v, and since v,Sy,, we have
PRAYIE

To prove uniqueness of the decomposition, suppose v =y, + y,,
where v, < ¢t and y,@Qu. Then v,Sy, by (2) of Theorem 2.4. Since
v, <y, + v, and since y,Sy,, we have v, <vy,. Similarly, vy, <y, so
that v, is unique.

Since v,Sy,, we have yQv,. Now suppose v =y, + v, Where
v, <gp¢ and yQp and v,Qv,., Then »,Sv, by (4) of Theorem 2.4.
Since y, <y, + v, and since v,Sy,, we havey, <vy,. Similarly, v, <v,,
so that y, is unique in this case.

We have already seen that v <gpg if and only if v(A4) = 0 when-
ever v,Qu. We now prove the corresponding result for »@Qp.

THEOREM 2.6. Qg if and only if v(4) = 0 whenever v, <g .

Proof. Let M,(.%”) be the family of measures on . which are
strongly recessive with respect to g, and let M,(.S”) be the family
of all measures on .&” which are quasi-dominant with respect to p.
The desired result follows from Theorem 1.2 and the decomposition
of Theorem 2.5.

As an application of Theorem 2.6 we have the following:

THEOREM 2.7. If (v + MQu and v@n, then vQpu.
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Proof. Suppose v, <g#¢. Then (v + A)Sy, by (2) of Theorem
2.4. Henee, v, + NSy, so that v, < n, by Theorem 2.2. Since
v,Qn,, and v, <g\,, we see that v, is the zero measure. Hence,
v(A) = 0 so that vQu.

Suppose & is a sigma-ring and .77 is a sigma-ring containing
. We say that & is an ideal in & if EN Fe.% whenever
Ee 9 and Fe%”. If & is a sigma-ring, let .54 denote the class
of locally measurable sets; that is, 4 = {K:EN Fe.% whenever
Fe.~”}. The class &4 is a sigma-algebra since it contains X, and
it is the largest sigma-ring having & ‘as an ideal. If g is a meas-
ure on & and . is an ideal in -7, define y; on 7 by m(E)=
sup{(ENF): Fe &} for all Ee 7. Then p, is an extension of g
to a smallest measure on .7~ [1, Exercise 17.1].

THEOREM 2.8. Suppose the sigma-ring . is an tdeal in the
sigma-ring 7 . Suppose, moreover, that tt and v are measwures on
S and that p; and v, are their respective extensions to smallest
measures on 7 . Then:

(1) vSp +f and only +f v;Sp,. Indeed, given E in 7, there
exists F in &7 such that v,(B) =v(EN F) and pF) = 0.

(2) v<paf and only if v; < th.

(3) vQu if and only if viQu,. Indeed, given E in 7, there
exists F in &7 such that v,(E) = v(E N F) and p, < v.

(4) v<gpt if and only if v; <g .

Proof. The relationships on & clearly imply the same rela-
tionships on .&”. It suffices to prove the results which extend rela-
tionships on & to relationships on & .

(1) Suppose Ec.7. Theny,(E)=sup{v(ENF). Fe $}. Hence,
there exists a sequence {E,} in & such that v,(E) = limy(&E N K,).
For each n, there exists F, in & such that W ENE,) =vENE,NF,)
and p(F,) =0. If F= UF,, then vENE, =vENE,NF) for all
n. Hence, v,(E) =v(E N F) and p(F) = 0.

(2) Suppose v £ ¢ and suppose ;(E) =0. Then p((EN F) =0
for all Fin .%”. Since y< i, we have v(EN F) =0 for all F in
S so that y,(E) = 0.

(8) The proof is similar to that of (1). If g, < v for all n
and F'= UF,, then g, < v. Then (¢,;); < v; by (2), and we use the
fact that (¢z): = (¢2)s-

(4) This result follows from (1) and (2) and the fact that xSy
and » < p.

3. Convergence of measures. In this section we examine the
extent to which quasi-dominance or strong recessiveness is preserved
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under convergence of measures. Our notation is as follows: If g,
and ¢ are measures such that p,(4) — p(4) for all Ae.&, we write
s, — . If p, and p are measures such that p.(A4) — p(A) for each
Ae.”, where the a’s are members of some directed set, we write
Yo — . If p,, < p, whenever m < n [y, < ¢, whenever a < ], then
we write p, T [resp., #¢.7p]. An increasingly directed net of
measures always converges to a measure, namely its supremum, but
we have no need of this fact.

THEOREM 3.1. Suppose v,Qu for all n and v, —v or suppose
v.Qu for all @ and v, Tv. Then vQpu.

Proof. Suppose v, <gp. Since v,Qu for all » [v,Qu for all a],
we have v,Sy, for all n [resp., v,Sv, for all a] by (2) of Theorem
2.4. 1In either case, we have vSy, [3, page 630]. Necessarily, v(4)=0
so that vQpu.

We cannot weaken the convergence in Theorem 3.1 to ordinary
convergence of a generalized sequence. That is, there exist meas-
ures v,, v and g such that v,Qu for all @ and vy, — v, but it is false
that vQu. Indeed, we can have v <y u even though v is a finite,
nonzero measure and g is a semifinite measure.

Example 3.2. Let X be the set of ordinals less than or equal
to the first uncountable ordinal w,. Let .&% be the set of countable
subsets of X — {®,} or their complements in X. Let p(E)=0if £
is countable and 1 if E is the complement of a countable set. For
each a < w,, let 0 (E) =1 if ac E and 0 otherwise. It is easy to
see that p, —» p. Let & be the Borel sets of the unit interval Y,
let » be Lebesgue measure on %, and let & = ¥, x.%. If
Y, = 0X\ and v = pXX\, then it is clear that v, —v. Now let £ be
counting measure on .54, and let p¢ be the smallest measure on
X, such that pu(AxB) = p(A)k(B) [1, Theorem 39.1 and Ex-
ercise 39.18]. Then v, Sy for all @ and v <yu. Since v is nonzero,
it is false that vQp.

THEOREM 3.3. If (1) vQu, for all m,(2) p,— ¢ and (3) v is
semifinite, them vQp.

Proof. If y(4) < o, we show that v,Qu. Suppose y(4) < .
Since vQu,, there exists F, in & such that v(¥) = v(E N F,), where
(t)r, < v. We find, inductively, F, in & such that

(i) F, is contained in F,_,,

(ii) v(A4)=v(ANF,), and
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(i) (ta)r, < v.
Let F= NF,. Then (¢,)r < ¥ for all », and we have g, < v. Since
Y(A) < oo, we have v(4) =v(ANF) and v(A — F') = 0. Hence, v,Qu
if Y(A) < co. Since vy is semifinite, vQu by Theorem 3.1.

It is possible to have measures f,, £ and vy such that vQu, for
all @ and such that g, 7 ¢ and yet not have vQu. Indeed, we can
arrange to have v be finite, ¢ be semifinite, vSy, for each a and
have v <z o where v is not the zero measure. Choose nonzero meas-
ures v and g such that v <y, where g is semifinite (and where v
is finite, if desired). The measures {z,: ¢(A) < =} are directed in
the obvious sense and g, T p¢. If Ee S and p(A4) < oo, then v(E)=
v(El — A) and p,(E — A) = 0. Hence, vSy, for each such A.

We now show that the semifiniteness of v cannot be dropped in
the statement of Theorem 3.3. We shall find a nonzero measure v
and an increasing sequence of measures p, such that v is quasi-
dominant with respect to each g, and such that v is not quasi-
dominant with respect to the limit of the g,’s.

Example 3.4. For each positive integer 1, let X, be a copy of
the unit interval, let .77, be the Borel sets of X, let k; be counting
measure on .7, and let A; be Lebesgue measure on .7,. Let Y= x X,
and let .9 =x.7;. Let p, be the smallest product measure of the

form £, X «++ Xk, XN, ; X+« . If desired, p, can be thought of as
the smallest product of #,x--- %k, and \,.,;X---. Then p, <50, <s
0;<g+++. If p=supp,, then pSp, for all n.

Now let £ and ) be counting measure and Lebesgue measure,
respectively, on the Borel sets & of the unit interval X. Let v
be the smallest measure on & x. 9 such that yv(AxB) = £(A)p(B)
[1, Theorem 39.1 and Exercise 39.18]. Let y, be the smallest meas-
ure on &’ X7 such that p,(AXB) = A(A)p.(B), and let y = sup 4,.
It is easy to see that vSp, for all n (and hence, »Qu, for all n),
. T o, and vy<gp. Since v+ 0, it is false that vQu.

THEOREM 3.5. Suppose v <, for all & and p,— p. If pis
semifinite or if Mo T 1, then v <gp.

Proof. If v(E)>0, then p,(E) = oo for all . Hence, y(E) = o«
if y(B)>0. If p is semifinite, then v <gp by Theorem 2.3. On
the other hand, suppose p, 1 . It suffices to show that Sy, but
this is the case since p,Sv for all a [3, Theorem 3.1].

If v<gp, for all @ and g, — p, it does not follow that v <gp.
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Example 3.6. As in Example 3.2, let X be the set of ordinals
less than or equal to the first uncountable ordinal ®,. Let .5, be
the class of countable subsets of X — {®,} or their complements in
X. Let y(E) =0 if E is countable and 1 if E is the complement
of a countable set. For each a < w,, let y, (&) be the number of
points in E which are greater than «. Let g = coy. It is easy to
see that v <gpu, for all @ and g, — g, but it is false that v <y p.
Indeed, vQ in this case.

THEOREM 3.7. If (1) v, <spt for all a, (2) v,—v and (3) ¢ or
Y 18 semifinite, then v <g M.

Proof. Since v, <gp for all « and since y,— v, it is easy to
see that y(F) = o whenever V(&) > 0. In other words, v is totally
incompatible with g#. By Theorem 2.3, we have v <gp if g is semi-
finite. We will be able to use this part of the theorem to show
that Sy in the case that v is semifinite.

Suppose v is semifinite and suppose ¢, < v. Then (v,), <g . for
all @, and we have (v,), <gv for all @. Since (v,), —v,, we use the
first part of this theorem to assert that v, <g;v. Necessarily, v(4)=0
so that p#(4) = 0. Hence, xSy and we are done.

If v, <gp for all » and v, Tv, does it follow that v <gu? The
answer is no. Indeed, there exist nonzero measures p, and o such
that o, <go for all » and such that p, 1 p. Use the measures p,
and p given in Example 3.4.

4. Atomic and nonatomic measures. A measurable set will
be called an afom for p if it has positive g-measure and does not
contain two disjoint sets of positive p-measure. We say that a
measure is purely atomic if every chunk (measurable set of positive
measure) contains an atom. We say that a measure is nonatomic
if it has no atoms. Using these definitions, it is easy to see that a
measure is purely atomic [nonatomic] if an equivalent measure is
purely atomic [resp., nonatomic]. In Theorem 4.2 and Corollary 4.3
we consider some ways in which quasi-dominance plays a role in
the study of purely atomic measures and nonatomic measures.

THEOREM 4.1.

(1) If p is purely atomic, them so s pt, for each A in .

(2) If p is monatomic, then so is p, for each A in 7.

(8) p is purely atomic if and only if p(A) =0 whenever p,
18 nonatomic.

(4) p is monatomic if and only if p(A) =0 whenever (, is
purely atomic.
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Proof.

(1) If p (&)>0, then (AN E)>0. Hence, AN E contains a
set F' which is an atom for pg. It is easy to see that F' is an atom
for g, also.

(2) If E were an atom for p,, then AN E would be an atom
for p.

(8) and (4). By [4, Theorem 2.1], z¢ can be written as g, + t,,
where g, is purely atomic, g, is nonatomie, £,Sy, and f,Sy,. The
assertions of (3) and (4) then follow from Theorem 1.2.

THEOREM 4.2. Suppose v < ¢ and vQpu.
(1) If p is purely atomic, then so is v.
(2) If p is monatomic, then so is .

Proof. We first notice that v,Qu for all A in % by (8) of
Theorem 2.1. To prove (1), suppose p, is nonatomic. Since v, < g
and since g is purely atomic, we have xSy, by [4, Theorem 2.3].
In other words, v, <gu. Since y,Qu, we have v(4) = 0. Hence, v
is purely atomic by (8) of Theorem 4.1.

To prove (2), suppose vy, is purely atomic. Since v, < ¢ and
since p is nonatomic, we have #Sy, by [4, Theorem 1.6]. In other
words, v, <gt¢. Since v,Qu, we have y(A) = 0. Hence, v is non-
atomic by (4) of Theorem 4.1.

COROLLARY 4.3. (Cf. [4, Theorem 1.5]). Suppose ¢t =p + X and
v,

(1) If p is purely atomic, then so is v.

(2) If ¢ is monatomic, then so is v.

Proof. Suppose g =y -+ A and v@xn. Of course, vQv so that
v + A). That is, vQu. Then since v < p, the conclusions follow
from Theorem 4.2.

5. Quasi-dominance and the Radon-Nikodym theorem. If f
is a real-valued function on X, we say that f is locally measurable
if the inverse image of each Borel set is a locally measurable set.
Equivalently, f is locally measurable if and only if {x: f(x) >a} N F
is in % for all real numbers o and all F in ..

THEOREM 5.1. Suppose there exists a nonnegative locally meas-
urable function f such that v(E) = S f dp for all E in &”. Then
E
v < p¢oand vQu.

Proof. It is evident and well-known that y< g#. Now let
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F={x: f(x) >0}. It is easy to see that v(F — F)=0 so that

VE)=vENF) for all Ec.%”. We show that p, < v. If »(G) =0,

then O:S fdp= S f dp. Since f(x) >0 for all z in F NG, we
FNG

have 0 = ;(F NGy = ;;F(G). Hence, vQu.

THEOREM 5.2. Suppose v is finite, pt is semifinite, v < pt and
vQu. Then there exists a monnegative measurable function f such

that w(E) = | 7 dp for all B in 5.

Proof. Sinece v is finite, we can find a set E, in S such that
v(E,) = v(E) for all E in .&”. Since v@y, there exists F' in .&° such
that v(&,) = v(E,N F) and p, < v. Since v is finite and p, is semi-
finite, it is easy to see that p, is sigma-finite. By the usual Radon-
Nikodym theorem, there is a nonnegative measurable function f such
that V(&) = S S dp for all measurable sets E contained in F. If we
let f be zero (Em the complement of F, then it is clear that v(E)=
S fdp for all E in <.

* If v has a Radon-Nikodym derivative with respect to f, then v
enjoys a strong form of quasi-dominance in that the set F' does not
depend on E and that v(E) = y(EN F) can be replaced by v(E — F) =0
for all £ in &7. It is easy to see that if v is finite and »Qp, then
v enjoys this strong form of quasi-dominance with respect to p. We
might ask if a Radon-Nikodym derivative exists for semifinite
measures in the presence of absolute continuity and strong quasi-
dominance, and the answer is no. Indeed, even if g and vy are
equivalent semifinite measures, a standard example shows that it
may be impossible to find a nonnegative function f such that X,f is

measurable and y(E) = g Sdy whenever y(E) < . (It can be seen
B

that two equivalent semifinite measures have the same sets of sigma-
finite measure. Consequently, the Radon-Nikodym theorem holds for

such measures if v(H) = SEfd;z whenever p#(E) < o {5, Theorem 3.1}.)

Example 5.3. [Cf 2, Exercise 31.9]. Let A and B be uncount-
able sets such that card 4 <card B. Let X=AXB. A set
{(a, b): @ = a,} is a vertical line and {(a, b): b = b,} is a horizontal line.
Let &7 be the smallest sigma-algebra containing vertical lines, hori-
zontal lines and countable sets. Let a(&) be the number of hori-
zontal lines L such that L — E is countable, and let B(E) be the
number of vertical lines L such that L — E is countable. Let
p=a+pBand y=a-+28. Then v< ¢ and v is strongly quasi-
dominant over g since g < y. Although g and v are semifinite, it
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can be seen that no function f exists such that v(E) = S Jdp for all
E
E in &7 such that p(E) < .

THEOREM 5.4. Suppose v is a degenerate measure such that
v p.  Suppose, moreover, that there exists a locally measurable
set I such that (B — F) =0 for all E in & and such that p, < v.

If f= coly, then v(E) = S fdpe for all B in <.
E

Proof. Suppose Eec.&”. We wish to show that v(F) = SE fa.
It is easy to see that v(H) = v(E N F) and that SEfd;z = cop(EN F).
If y(E) =0, then (BN F) = co so that p(ENF)>0and copy(EN F) = co.
If w(E) =0, then p,(E) =0 so that @((ENF) =0 and o u(ENF)=0.

We now look at the Radon-Nikodym theorem from a slightly
different point of view. In keeping with [5, page 395], we say
that v is compatible with g if 0 <y(E) < o implies there exists F
in & such that W (E N F) >0 and p(F) < . Let us say that v is
strongly compatible with p if v(E)>0 implies there exists F' in &7
such that »(EN F)>0 and p(F) < «~. For example, v is strongly
compatible with ¢ whenever vSyr. Of course, if v is strongly com-
patible with g, then v is compatible with p. If v is (strongly)
compatible with g, then clearly v, is (strongly) compatible with g
or ft,.

Reecall that v is totally incompatible with g if p(E) = « when-
ever v()>0. If v is compatible with f¢ and if v is totally incom-
patible with g, then it is easy to see that v is degenerate (i.e., has
a subset of {0, o} for its range). A degenerate measure is clearly
compatible with any measure.

THEOREM 5.5. If v is strongly compatible with e, then vQqe.

Proof. Suppose v, <gp. We want to show v(4) = 0. Suppose,
to the contrary, that v(4) > 0. Then there exists F' in . such that
V(AN F)>0and u(F) < eo. In other words v,(F) >0 and p(F') <eo,

which is impossible since v, is totally incompatible with g by
Theorem 2.2.

THEOREM 5.6. If v is semifinite and v is compatible with (e,
then v is strongly compatible with p. Hence, vQu in this case.

Proof. The result follows immediately from the definitions.

If vQu, it does not follow that vy is even compatible with p.
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For example, let v be Lebesgue measure on the Borel sets of [0, 1]
and let ¢ be coy. However, we have the following result if g is
semifinite:

THEOREM 5.7. If vQu and p is semifinite, then v s strongly
compatible with .

Proof. Suppose 0 < y(E). Since vQu, there exists F in .&” such
that v(B) =v(ENF) and g, <v. If p(ENF)<e, we are done.
Otherwise, there exists a measurable set G contained in E N F such
that 0 < p(G) < . Since p(G) >0, we have v(G) > 0, so that v is
strongly compatible with pu.

We may combine Theorems 5.5, 5.6 and 5.7 as follows:

COROLLARY 5.8. Suppose tt and v are semifinite. Then the
Jollowing are equivalent:

(1) v is compatible with .

(2) v 1s strongly compatible with p.

(3) v is quasi-dominant with respect to p.

If f is a real-valued function on X, let us say that f is p-meas-
urable if {x: f(x) >a}N F is in & for all real numbers a and all
measurable F' such that p(F) < . Let .94, = {E: EN Fe.%” when-
ever Fe.& and p(F)< «}. Define p,, on .9, by p,(E) = sup
{(F): Fe & and FC E and p(F) < o} for all £ in &, If pis
semifinite, it is easy to see that y,; is an extension of ¢ to a small-
est measure on .9, [cf. 1, Exercise 17.1]. We shall use these ideas
in our next theorem, which is a variation of Theorem 5.1.

THEOREM 5.9. (Cf. [5, Theorem 2.1].) Suppose g 1is semi-
finite and suppose there exists a nonmegative p-measurable function

f such that v(E) = S Fdpt,, for all E in . Then v < pt and vQp.
E

Proof. It is easy to see that y < y#. We show that v is strongly
compatible with g#. Suppose 0 < v(E), and let A = {x: f(x) > 0}.
Since y(E) > 0, it follows that p,(AN E)>0. Hence, there exists
F in & such that F is a subset of ANFE and 0 < u(F) < . Since
f is positive on F' and since u(F') >0, we have v(F') > 0. Hence, v
is strongly compatible with respect to p, and we have vQu by
Theorem 5.5.

If desired, an alternate proof of Theorem 5.2 is possible. Since
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p is semifinite and since vQu, we have v is compatible with ¢ by
Theorem 5.7. Then the existence of the Radon-Nikody¥m derivative
follows from [5, Theorem 2.2].

6. Largest product measures. Suppose ¢ and y are semifinite
measures on sigma-rings & and .7, respectively. We say that a
measure 0 on & x.7 is a product of g with vy if o(AxB)=
M(A)(B) whenever Ac€.%” and Be.Z”. More than one product of
r with v may exist. Nevertheless, there is always a largest pro-
duct of ¢ with v given by outer measure extension [7, page 265].

In order to see something of the role quasi-dominance and strong
recessiveness can play in the study of largest produet measures,
we state some results without proof. In Theorem 6.2 we see that
things work out well if v is quasi-dominant -or strongly recessive
with respect to V.

THEOREM 6.1. Suppose

(1) p¢ and tf are semifinite measures on the sigma-ring &,

(2) vy and VY are semifinite measures on the sigma-ring .7
and vy,

(3) o is the largest product of g with v, and

(4) O is the largest product of ' with V. ‘

Then p cam be written as the sum of measures 0, and P, such
that 0, < 0" and 0,S0", where 0, s a product of some measure p,
with v and o, is a product of some measure M, with v.

THEOREM 6.2. Assume the hypotheses of Theorem 6.1, and sup-
pose, in addition, that v is quasi-dominant with respect to Y or
that v is strongly recessive with respect to v'. Then the measure o,
of Theorem 6.1 can be taken to be the largest product of some
measure p, with v.

In general, the measure o, of Theorem 6.1 cannot be expressed
as the largest product of g, with y. For example, let .5 be the
Borel sets of the unit interval and let .7~ be the Borel sets of the
product of the unit interval with the two-point set {0, 1}. Define
pand ¢ on & by =r and g =\, where £ is counting measure
and ) is Lebesgue measure. Define v and » on .9~ by

v(B) = M{y: (¥, 0)e BY) + AM({y: (y, ) e BY)
and

V' (B) = M{y: (¥, 0)e BY) + £({y: (v, 1) e B}) .
Let o be the largest product of ¢ with v, and let o’ be the largest
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product of ¢ with . By Theorem 6.1, we may write 0 as a sum
of product measures p, and 0, such that o, € ¢’ and p,So’. It can
be seen that

o({@, (¥,0): 2 =9}) =0
and
o({(x, (¥, )iz =9}) = oo

If o, could be expressed as the largest product of some measure g,
with v, we would have the impossible conclusion that

X M{(x, y):x =9} =0
and
UXM{(, y):x =y}) = o,

where g, X\ is the largest product of g, and )\ in each case.

We close by stating a theorem with the same hypotheses as
Theorem 6.1 but with a conclusion that uses Theorem 2.5 to de-
compose v with respect to V.

THEOREM 6.3. Assume the hypotheses of Theorem 6.1. Then p
can be writlen as the sum of measures O, 0, and 0, such that
0+ 0. K 0 and p,S0', where pfp,] is the largest product of some p,
with v, [resp., some p, with v,| and p, is a product of some y, with
V.
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