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We show that the C*-algebra of the left regular re-
presentation of the free product of two nontrivial groups,
net both of order 2, is simple and has a unique tracial state.
In the case of the free product of cyclic groups, we investi-
gate weak versus strong triviality for extensions of this C*-
algebra. One consequence of our extension-theoretic results
is that the algebras of nXn matrices (n =1,2, ---) over the
C*-algebra of the left regular representation of the free
product of two cyclic groups are pairwise nonisomorphic.

For a diserete group G, we let C#(G) denote the C*-algebra
generated by the left regular representation of G on <*G). When
G is amenable, C} (&) is reasonably well-behaved. It coincides with
the full group C*-algebra C*(G) defined in 13.9 of [6], so that its
*-representations on Hilbert space correspond precisely to the unitary
representations of G, and is nuclear. (In fact, the conditions “G
amenable”, “CHG) = C*(G)”, and “C*(G) (resp. C#(®)) nuclear” are
equivalent [7], [9], [4].) For certain nonamenable groups G, on the
other hand, C}(G) possesses properties which in this context are
somewhat pathological and which distinguish it quite sharply from
C*(G). The latter algebra always admits a multiplicative linear funec-
tional, but R. T. Powers showed in [11] that C}(G) is simple and
has a unique tracial state when G is the free group F, on two
generators. M. D. Choi [3] obtained the same properties for CX(G)
when G is the free product Z,«Z, of the cyclic groups of orders 2
and 3. Choi also showed that although C}{(Z,*Z,) is nonnuclear, it
(and therefore Cj(F,) can be embedded in a nuclear C*-algebra. By
a recent result of S. Wassermann [14], however, C*(F,) is not a
C*-subalgebra of any nuclear C*-algebra.

Our main result in §1 below is that C*(G,=G,) is simple and has
a unique tracial state whenever G, and @, are nontrivial groups not
both of order 2. This subsumes the cases treated in [3] and [11].
Generalizing somewhat the example in [3], we also show that if U
and V are unitary operators of orders 2 and n (= 3), respectively,
for which there exists a projection P satisfying P+ UPU* =1=
P+ VPV* + VEP(V*}? + -« 4+ V" 'P(V*)*%, then C*(U, V) is natu-
rally isomorphic to C¥(Z,+«Z,). In §2, we introduce a numerical in-
variant j7(A) for separable unital C*-algebras A; namely, j(4) is the
nonnegative integer that generates the subgroup of Z consisting of
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the indices of all unitaries in the Calkin algebra that commute with
the image of A under a trivial extension. We prove that j(C}(Z,+Z,))
divides n for n=1,2, ..., and deduce from this that j(C*(F)) =1 if
F is free on a finite or countably infinite set of generators. In other
words, all weakly trivial extensions of CH(F') are strongly trivial.
Another consequence of our result for C*(Z,+Z,) is that the C*-
algebras CHG) @ M, (n = 1, 2, ---) are pairwise nonisomorphic when-
ever (¢ is the free product of two cyclic groups.

1. Simplicity and uniqueness of trace. Given a (discrete) group
G, we shall denote by #*G) the Hilbert space of all absolutely square—
summable functions f: G — C. The left regular representation of
G on 7*G) is obtained by defining, for each s in G, the unitary
operator L, by (L,f)¢t) = f(s") (¢t in G). Notice that L,d, = d,,
where 4, is the characteristic function of {¢}. The linear span of
{L;:seG} is a *-algebra, which we denote by A*(G). We write
C#(@) for the norm-closure of A*(G). There is a natural faithful
tracial state z on C*(G) defined by (1) = (T9,, 6.), where ¢ is the
identity of G. We shall be interested in C#(G) when G is a free
product. By definition [8], the free product G,+G, of two groups
G, and G, is the set consisting of the empty word (denoted by e)
together with all reduced words w = a,a, -+ - a,, where the a,’s are
elements of either G, or G, different from the identity and satisfy
the condition: a;€ G, implies a;,,€G;,_, 1 < j=<n—1,1=1,2). The
integer #n = #(w) is called the length of the word w. We set 7(¢) =
0. The set G,*G, becomes a group with identity ¢ if we multiply
reduced words by juxtaposing them and then performing the obvious
simplifications required to put the product in reduced form.

The proof of the following theorem is based on the techniques
of [11], and generalizes the results of [11] and [3].

THEOREM 1.1. Let G = G,*G,, where G, and G, are nontrivial
groups not both of order 2. Then

(@) C*G) is nonnuclear;

(b) CH*G) is simple;

(e) 7 is the only tracial state on CHG).

Proof. For definiteness, assume that G, has order greater than
2. Let a in G, and b, ¢ in G, be such that none of the elements «a,
b, ¢, b~'c is the identity. Part (a) follows from the simple observation
that G contains a copy of F,. Indeed, let » = ab and s = ac. It
readily follows that »* and s® generate a copy of F,. Therefore, we
deduce that G is nonamenable, and from [9] we conclude that C*(G)
is nonnuclear. Now, as in [11], parts (b) and (c) are direct conse-
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quences of the following lemma.

Lemma 1.2. Let G = G,+@, as above, and let S be a self-adjoint
operator in CHG). Then t(S)I belongs to the morm closure of the
convex hull of the wnitary orbit of S.

Proof. As in [11], it suffices to prove the lemma when S belongs
to 4A*(G) and z(S) = 0. In this case, S can be written as

S =3 (@l + &L,

where the «,’s are scalars and each x, is different from e¢. We set
r = ab as above and j = 1 + max {#(x,), - -+, 7(x,)}. Consider 7iz;r
for1<¢<mn. If x, is a power of », then of course riz;'r 7 = a;'.
Otherwise, it is easy to see that rx;'»7¢ begins with a positive
power of  and ends with a negative power of », that is, riz;»™?
can be written as 7t and as ¢'r*, where ¢ begins with an element
of G\{e} and t' ends with an element of G,\{e}. For £ =1,2, ---,
let z, = r*s’r?, where s = ac is as before. Further, let A, be the
set of all reduced words w such that (the reduced form of) »*w
begins with a, but a7 *w does not begin with 5. One readily
checks that the A4,’s are pairwise disjoint. We claim also that if
y € G\A,, then s7'» %y begins with an element of G,\{e}. (If r *y does
not begin with a, then s™' *y = ¢ 'a *r "y begins with ¢™*. If a ¢ *y
begins with b, then s™» %y begins with ¢™*b.) Hence, s~ %y begins
with ¢t for all ¥ in G\4,. We let P, be the projection of ~*G) onto
the subspace I, consisting of all those functions f whose support
supp (f) is contained in A,. Because the A,’s are disjoint, the P,’s
are orthogonal to one another. We claim that the compression of
L, SL,-1 to M, is zero for k=1. To see this, it suffices to show that
(I — PLoyy (I — P)=0 for 1=<4<mn. Thus, given a function
f in #¥G) supported in G\4,, we must show that f(z,x:'2;'y) =0 for
every y in G\A4,. This is the case if for ¥ in G\A4,, we have
2727y in A,. But this follows easily from our observation above
that s7% "y begins with ¢, for if %;* is a positive power of », the
only cancellation that occurs in zx7'z;'y = r*s*x7's % *y is at and
possibly to the left of the final b in x;*. Otherwise, 7z is either
a negative power of 7 or begins with a positive power of # and
ends with a negative power of 7; in these cases, no cancellation can
oceur in zxi'ziy = ris(srixr ™) (s *y) except strictly inside the
expressions sriz;7'r”7 and s *y. This establishes our claim about
L, SL,;1. Our next observation is that if P is any projection
and 7T any bounded operator on a Hilbert space $ such that
(I—P)T(I — P) =0, then |(Tf, /)| =2||T| || Pf|| for all fin $ with
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Il £1. Indeed,

HTH N = (TS PO+ I(Tf, I~ P)f)|
= [(Tf, PN + | (TPf, I — P)f)|
=2|[TI A -

We apply this remark to our operator S and the projections P, to
deduce that for every f in the unit ball of #*G), we have

(5 2 LaSL )1, )| £ £ 21 LaSLp, 1)
<2 3281/ P
= 2ysiva(Zirsr)”
< Zysi.

Since 3., L. SL.-1 is self adjoint, we obtain the following inequality:

(*) ll . Z LoySLyp

2
! = SISl
Now by iterating (*) as many times as necessary, we can produce
a self adjoint operator of trace zero in the convex hull of the unitary
orbit of S whose norm is arbitrarily small.

REMARK 1.3. (a) We are indebted to Vern Paulsen for a helpful
comment that enabled us to reduce our original constant 79/81 to
2/3 in the above estimate (*). Indeed, we could have taken only
five terms in the above argument and ended up with a constant
2/v"5 which is still less than 1 and suitable for our purpose.

(b) It is easy to see that the converse of Theorem 1.1 also
holds. That is, if G = Z,+Z,, then G is not i.c.c. and hence CHG)
has nontrivial center. This means that C}(G) can neither be simple
nor have a unique tracial state. Furthermore, it can be easily seen
that Z,*Z, is an amenable group and hence C#(Z,xZ,) is a nuclear
C*-algebra.

(¢) The fact that Cx(G,+G,) is simple (for G, and G, as in
Theorem 1.1) implies that C#*(G,+(,) cannot coincide with the C*-
algebraic free product of C#(G,) and C}(G,) (ef. [1]). On the other
hand, full group C*-algebras satisfy C*(G,xG,) = C*(G)*C*(G,) be-
cause of the naturality of both free products.

(d) Since F, coincides with Z=xZ, Theorem 1.1 generalizes the
result of [11]. Moreover, the group G considered in [3] can also be
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defined as G = Z,«Z,, so Theorem 1.1 also extends the result of [3].

Notice that one can generalize the C*-algebra C*(u, v) considered
in [3] as follows. Let 7, and =, be *-representations of the matrix
algebras M, and M,(n = 3) on an infinite-dimensional Hilbert space
for which the projection

1 0.0
| 0 0
0 0---0
Let
0 covvne 0 1
U:n1<0 1> and V =m, 3 gog
10
0---0 10
Then
U*=U", V¥=V*, U*=I=7V", and
. P+ UPU* = I =3 V'P(V*) .

From [10], it follows that C*(P, U, V') is isomorphic to ~,_, ® M,,
where 7, (for k = 2) is the C*-algebra generated by k& isometries
studied in [5]. Since this identification is a natural one, it also follows
that C*(U, V) is algebraically unique in the sense that if P’ is any
other projection and U’ and V'’ are any other two operators satisfy-
ing (**), then there is a *-isomorphism of C*(U’, V') with C*(U, V)
sending U’ to U and V'’ to V. In particular, U and V can be re-
presented spatially as described in [10].

Another consequence of the C*-algebra uniqueness of C*(U, V)
is the following theorem.

THEOREM 1.4. Let U and V be as above. Then C*(U, V) us
*-1somorphic to C¥(Z,xZ,), and hence is nonnuclear and simple, and
has a unique tracial state.

Proof. Let G = Z,xZ,, and let a« in Z, b in Z, be the basic
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generators. Let A be the subset of G consisting of all words that
begin with a. Then G is the disjoint union of 4 and @A, and the
sets A4, bA, ---,b" "4 are pairwise disjoint. Furthermore,

G\leiA ={e,b, -, b

Now let © = «%G), U' = L,, V' = L,;, and let P’ be the projection
on the subspace of 9 consisting of all those functions f such that
supp (f) S A. Then all of the requirements of (**) are satisfied except
the last. Indeed, I — 372} (V')P(V'*)" is the n-dimensional projec-
tion onto the subspace of functions supported in f{e b, ---, 0" ™'}
Therefore, all the properties of (**) actually hold in the Calkin
algebra. The restriction of the Calkin map to C*(U’, V') is an
isomorphism, so C*(U’, V') = C¥(Z,+ Z,) is canonically isomorphic to
C*(U, V) (via the Calkin algebra).

REMARK 1.5. (a) With a small extra effort, one can actually
construct a subset 4 of G(= Z,+Z,) in the above proof so that the
projection P’ defined from A together with the unitaries U’ and V'’
satisfy all of the requirements of (**). Indeed, one can define such
a set A by induction on the length of reduced words in G as follows.
Start with e¢ A; inductively, if w = zz is a reduced word with
Z(w)y=mn +1 and 7(z) = n, then we A if and only if z2¢ 4 and z is
either a or b.

(b) One can actually define intrinsically the trace ¢ on C*(U, V).
In fact, we first notice that every operator in A*(G) can be written
as T=aJd + 37, a;,L,, where x; # ¢ for 1 <1 < n and «, is uniquely
determined by «, = 7(T). Let ¢ be the isomorphism from the group
{L,: x € G} onto the group generated by U and V determined by
#(L,) = U and ¢(L,) = V. Then the correspondence

T->al + 3 ag(L.)

establishes a *-isomorphism from A*(G) onto the *-algebra generated
by Uand V. This isomorphism extends to the canonical isomorphism
from C*(G) onto C*(U, V). Thus, one can define, on the *-algebra
generated by U and V, a trace ¢ by

(eI + 2 (L) = &

which determines the trace on C*(U, V).

(¢) As in [3], it can be proved that every operator in C*(U, V)
is quasi-triangular, but U and V are not simultaneously quasi-tri-
angular.
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When G is as in Theorem 1.1, one can show without much dif-
ficulty that the conjugacy class of every element in G\{e} contains
two elements which generate a copy of F, in G. Thus, G has no
nontrivial amenable normal subgroups. The following proposition
shows that conclusions (b) and (¢) of Theorem 1.1 fail for groups G
which do have a nontrivial amenable normal subgroup.

PROPOSITION 1.6. Let G be a group with amenable normal sub-
group H. There is a tracial state v, on C¥G) such that (L, =1
for every x in H.

Proof. First, let H be any subgroup of G. The decomposition
of G into right H-cosets decomposes the representation «z(in H)-—
L.(in <~ (s%@A)), the algebra of bounded operators on ~#*(G)) into the
direct sum of copies of the left regular representation, whence it
follows that the C*-subalgebra of C}(G) generated by {L.:x¢c H} is
*.isomorphic to C¥*(H). We shall thus regard C*(H) as a *-subalgebra
of C#(G). Let S be a finite linear combination of L,’s (x in H) and
T a finite linear combination of L,)’s (y in G\H). If f and ¢ are
unit vectors in <*G) supported in H, then (Tf, ¢9) = 0and || S + T|| =
S+ D), 0l =1(0Sf,9)!, so we have ||S + T|| = ||S||. It follows
that there is a conditional expectation E: C*(G@)— C¥*(H) such that
E(L,) = L, (resp. 0) when ¢ H (resp. x ¢ G\H). Now suppose that
H is an amenable normal subgroup of G. By 8.5.2 of [7], every
unitary representation of H extends to a *-representation of C:i(H).
In particular, the trivial representation of H on C extends to a
multiplicative linear functional ¢ on C#(H) such that ¢(L,) =1 for
every « in H. Let 7, = ¢0 H, so 7, is a state of C}(G) with ¢ ,(I.,) =1
for every x in H. For s, tin G, we have st H if and only if tse H
(since H is a normal subgroup) and hence 7(L,L,) = 7 (L.L)=1
(resp. 0) if st H (resp. st¢ H). It now follows easily that 7, is
tracial.

We have shown that the natural trace is not the only tracial
state on C¥@) when G contains an amenable normal subgroup H
different from {e}. Notice also that {TeCHG):z,(T*T) =10} is a
proper ideal of C}(G) containing 1 — L, for every z in H, so CHG)
is not simple under these circumstances either.

2. Weakly trivial extensions. By an extension of a separable
unital C*-algebra A, we mean a unital *-monomorphism from A into
the Calkin algebra «(9) of a separable infinite-dimensional Hilbert
space . Two extensions o,7: 4 — &(9), (') are said to be
strongly equivalent if there is a unitary U:  — ' such that 7 is the
composition of ¢ with the *-isomorphism from «7(9) to £(9’) induced
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by U. (The corresponding notion of weak equivalence requires only
that U be a partial isometry with finite-dimensional kernel and co-
kernel.) We write [z] for the strong equivalence class of the exten-
sion 7. Let A be faithfully and unitally represented on $ with A
containing no nonzero compact operators, and for» =0,1,2, ---, let
7.0 A — &(9,) be the extension of A obtained by compression to a
closed subspace 9, of codimension » in £ followed by the Calkin
map < (9,) — &(9,). For each 7, the strong equivalence class [z,]
is independent of the representation of 4 on by 1.5 of [13] and
independent of the choice of §, by elementary arguments. In par-
ticular, 7z, is, up to strong equivalence, the only extension of A4 that
factors through a *-representation of A on the underlying Hilbert
space. We call such extensions strongly trivial. Each of the z,’s
is weakly equivalent to 7,, that is, weakly trivial. Together with
their inverses relative to the usual semigroup operation “+” on
strong equivalence classes, the [z,]’s comprise all of the weakly
trivial classes.

We let j(4) be the smallest positive integer j such that 7, is
strongly trivial, setting j(4) = 0 if 7, is not strongly trivial for any
7= 1. It is clear from our comments above that j(A) is an algebraic
invariant of A.

REMARKS 2.1. (a) We have 7, strongly trivial if and only if
j(A) divides k. (This is because [z,] + [z.] = [r,:,] for every », s = 0.)

(b) If Bis a unital C*-subalgebra of A, then j(B) divides j(4).
(This follows from the observation that =, (for B) is just the restric-
tion of 7, (for A) to B.)

(¢) If w is a unitary in £°(9) of index »(= 0), then 7, is strongly
equivalent to the extension wuz,(-)u*. In order for this extension to
be strongly equivalent to z,, there must be a unitary v of index 0
in &(9) such that vur,(-)u*v* = 7,(-). Hence, 7(4) is the nonnegative
generator of the subgroup of Z consisting of the indices of all
unitaries in the Calkin algebra which commute with the image of A
under a trivial extension.

By way of examples, we mention that j(4) = 1 whenever A4 is
commutative (1.5 of [2]) and that j(#,) = » by Remark 2.1 (¢) above.
More generally, it follows from 3.3 of [12] that if A has an #n-
dimensional irreducible representation, then j(4) divides m. Thus
for full group C*-algebras C*(@G) (when G is countable), we have
J(C*(@) = 1. On the other hand, j(<,) =0 (» = 2) [10], where &,
is the algebra studied in [5]. One of our results in this section is
that j(C¥(F)) = 1 whenever F' is the free group on a finite or counta-
bly infinite set of generators. We will show this by showing that
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Jj(CHZ,+ Z,)) divides n for » =2 and then observing that C}(F)
embeds unitally in (for instance) C*(Z,» Z;) and CHZ,+ Z,).

THEOREM 2.2. Let G = Z,+Z,, where n = 2. The extension of
Cx@) obtained by compression to a subspace of 7*G) of codimension
n followed by the Calkin map is strongly trivial. Thus, j(CHG))
divides n.

Proof. Let b and ¢ in G be the generators of the two copies
of Z, of which G is the free product. For a reduced word w in
G\{e}, let D(w) be the set of all reduced words of the form yw where
y is either ¢ or a word ending in a nonzero power of b (resp. ¢) if
w begins with a nonzero power of ¢ (resp. b). Said another way,
D(w) is the set of all words that “end in w”. Let

E=U{DWe):l1<sksn—10<jsn—1},

and let & be the subspace of #%G) consisting of the funections sup-
ported in F. Since G\E = {¢, ¢, ¢? ---, ¢}, the subspace & has
codimension n». We will exhibit a *-representation 6 of C#(G) on
& such that 4(L,) and 6(L,) differ finite-dimensionally from the com-
pressions of L, and L, to &, thereby establishing the strong triviality
of the extension of C¥*(G) obtained from compression to £ For 1 <
j £ n — 1, consider

E; = D®) U U{DO*):1=k<n—1}

and let &; be the subspace of #*G) consisting of functions supported
in E;. Since E is the disjoint union of the E,’s, & is the direct sum
of the &,’s. Further, let

B=U{D®):1<k<n—1 and
C={uU{DE):1=sj=n—1},

so that G is the disjoint union of B and C. For 1<j<n —1,
multiplication on the right by ¢/ maps B onto

UD@e):l<k<n—1},

while right multiplication by &’ maps C onto D(b?). We may thus
define unitaries V;: 7/A(G) — &; on basis vectors by setting V0, = 0,.i
(resp. 0,;5) if we B (resp. we C). These give rise to *-representa-
tions 0;: C¥(G) —» L (8;) defined by 6,T) = V,TV*. Let 6 be the
direct sum of the §,’s, so 4 is a *-representation of C}(G) on & We
claim that 6;(L,)V;0, = L,V;6, for every w in G\fe, b, b, -, b"}.
If such a w belongs to B (that is, w ends with a nonzero power of
b preceded by a nonzero power of ¢), then so does bw and hence
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0;(L,) Vb = Vibyw = 0yuei = L, Vio,. If, on the other hand, w belongs
to C (that is, w ends with a nonzero power of ¢), then bw belongs
to C also and we have V;d,, = 047 = L, Vi0,. It follows that 0(L,)
differs from the compression of L, to & by a finite-dimensional
operator of rank (at most) n(n — 1). In similar fashion, one checks
that 6(L,)V;, = L,V;, for every w in G, using the observation
that cwe B if and only if we B. This shows that 0(L,) coincides
with the compression of L, to &, completing the proof of the lemma.

We now explore some consequences of this theorem.

THEOREM 2.3. Let F be the free group on a finite or countably
infinite set of generators. Then jJ(CHEF)) =1, that is, all weakly
trivial extensions of CHE') are strongly trivial.

Proof. Let F be freely generated by the (finite or countably
infinite) set {a,, a,, ---}. Take n = 3 and let b and ¢ be the generators
of the copies of Z, of which Z,xZ, in the free product. We may
embed F in Z,+Z, by (for example) sending each a, to (cb)c(ch)*,
80 as in the proof of Proposition 1.6 above, C#(F') embeds unitally
in C¥Z,«Z,. The theorem now follows from Theorem 2.2 and
Remark 2.1 (b).

Since j(M,) = n, the theorem above and Remark 2.1 (b) imply
that C}(F') cannot unitally contain a copy of M, forany n = 2. (It
has long been conjectured, at least for F' = F),, that in fact C¥(F)
contains no projections except 0 and I.) One consequence of the
following proposition is that the C*-algebras C}(FYQ M, (n = 1,2, ---)
are pairwise nonisomorphic.

PROPOSITION 2.4. Let A be a separable unital C*-algebra. For
every n =1, we have j(AR M,) = j(A)n.

Proof. Let 7,: A — «&7(9) be a strongly trivial extension of A.
Then 7, K i,: AQ M, — &(9) Q M, = &(H ® C") is a strongly trivial
extension of A X M,, where 4,: M, — M, is the identity map. The
unitaries v in «(9) ® M, that commute with (¢, ,)(A R M,) are
precisely those of the form v = & I,, with I, the identity of M,
and % a unitary in € (9) commuting with z,(4). Since the index of
v is n times the index of u, the proposition follows from Remark
2.1 (e).

COROLLARY 2.5. Let G be the free product of two cyclic groups.
Then the C*-algebras CHG) R M,(n =1,2,---) are pairwise non-
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isomorphic.

Proof. One checks easily that G can be embedded in Z,+Z, for
some positive integer p. (The case G = ZxZ, requires somewhat
special treatment. Here, we may embed G in Z,+Z, as the subgroup
generated by beb and ¢?, where b and ¢ are the basic generators of
Z,+Z,) This means that C}(G) embeds in C¥(Z,+Z,), so j(CHG))
divides p by Theorem 2.2. In particular, j(C}(G)) # 0 and the corol-
lary follows from Proposition 2.4.

It would be of some interest to compute j(C#(Z,xZ,)) for m,
n = 2. Since Z,*Z, embeds in Z,xZ,, where p is the least common
multiple of m and n, we know that j(CXZ,xZ,)) divides p. Is
H(CHZ,*Z,)) equal to p?
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