Pacific Journal of

Mathematics

WHAT IS THE PROBABILITY THAT TWO ELEMENTS OF A
FINITE GROUP COMMUTE?

DAVID RUSIN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 8, No. 1, 1979

WHAT IS THE PROBABILITY THAT TWO ELEMENTS
OF A FINITE GROUP COMMUTE?

DAvip J. RUSIN

We consjder the probability that two elements of a finite
group commute. Explicit computations are obtained for
groups G with G’ < Z(G) and G’ N Z(G) = {1}. We classify
the groups for which this probability is above 11/32.

I. Introduction. All groups considered will be supposed finite.
We will denote by Pr (@) the probability that two elements of the
group G, chosen randomly with replacement, commute. (This will
loosely be called the “probability of G*.) That is,

Pr(G) = Number of ordered pairs (x, ¥)€ G X G such that zy = yx
Total number of ordered pairs (x,¥)eG X G :

This concept has been considered by several authors, as indicated
in the bibliography. The most important formula we will need is
that Pr(G) = (k/|G|), where &k = k(G) is the number of conjugacy
classes in G.

Let us fix our notation. If H is a subset (resp. subgroup, normal
subgroup) of G, we write HC G(resp. H< G, H<@G). For any
element ¢ of G, [G, x] is a subset of G, while for any subset H of
G, [G, H] is the subgroup generated by all [G, 2] with xe H. We
write C(H) and N(H) for the centalizer and normalizer of a subgroup
H < G. We denote the center and derived subgroups of G by Z(G)
and @', respectively.

For any subset HCZG, let us write H* = {xe€ G: [G, x] S H} =
( N H)*. If His a normal subgroup, then it is easy to check that
H*/H = Z(G/H); in particular, H* is a subgroup of G. The ( )*
operation is meant as a partial inverse to the ( ) operation, since
(H*Y € H, H< (H")*, and (G")* =G (in fact, (H*)")* = H*). Note
that H, € H, implies H} & Hy and that {1}* = Z(G).

II. Groups of nilpotence class 2. When G = Z(G), we can
compute Pr (@) in terms of the group structure in G. If we write G =
G, X Gy X ---, where G, is a p-group, then we need only examine
Pr(G,) for each p, and use the general formula Pr (H X K) =Pr (H)-
Pr(K), as noted in [4]. Thus, assume in what follows that G is a
p-group with G’ < Z(G).

In this case, the subset [G, z] is actually a subgroup, since
ly, 21[¢’, 1 = [¥'y, z]. Thus, when considering the possibilities for
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[G, x], we need only consider the subgroups of G’; hence when we
speak of H* here, it will be assumed that H is a group. Since
H< Z, H<G; so as noted earlier, H* is a group. Since G is a
p-group, both |H| and | H*| are powers of p.

For brevity, set H = H* — Ug«y K* (that is, H is the set of
all elements for which [G, x] = H precisely, and not any proper sub-
group). We then have H* = gz K disjointly, so that |H*| =
Sx<u| K| for any H < G'.

Now, given any partially ordered lattice, there exists a function
m (the Mobius Inversion function [6]) such that whenever two func-
tions f and g are such that

g(x) = y; f(¥), then f(x) = g‘ m(x, ¥)g(Y) .

Applying this to the lattice of subgroups of G’ and to the functions

f=1C))]and g =[( )*|, we get that |H| = 3x<n m(K, H)|K*|.
Next, the elements of H each have | H| conjugates, so the total

number of conjugacy classes of G is X< (H/|H|), and thus

_ 1 < A

Pr (G —— |H|

*@ = 61 =TT, 1
1s1 *
- |G| Hée']_Hi(Ké m(K, H)| K ’)
T |G| x%d S I(KéHs(; | H| )

The Mobius functions for the subgroup lattices of p-groups
have been completely worked out [16]: If K is not normal in
H, m(K, H) = 0; otherwise, m(K, H) =m(1, H/K) =m(1, H’, say.
Since the lattice of subgroups of G’ containing K is isomorphic to
the lattice of subgroups of G'/K, we get

1 0
Pr(@) =~ - 5K ](Hoé(zwmmma, HY) .

It is also shown in [16] that m(1, H®) for p-groups is zero unless
H° is an elementary abelian p-group of order p?, say; in that case
m(1, H° = (—1)ip**~272,  Therefore, the only terms that contribute
to the above sum are those for which H° is an elementary abelian
p-subgroup of (G'/K). If we let L be the subgroup of elements of
order < p in G'/K, then the formula above becomes

|K*|( m(l, H)
Pr(@) = IGl 2R\ B )

This L is isomorphic to a vector space of dimension # over

GF(p). If B@] denotes the number of subgroups of order p (sub-
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spaces of dimension j) then we have [6] l:';’ = p"-[n ; 1] + B?' _ ﬂ

and |®|=|"|=1. Thus, if (C,)! denotes the direct product of 2
0] |n

copies of the cyclic group of order p, then

M_" i._l__,n__.ﬂ__ii(i—S)zn
2 = gm0 5| | = B 15

i=0

For n = 0, this comes out to 1, while for n = 1, itis 1 — (1/p). For
n = 2, it becomes

(—‘1)01)0(0_3)/2[:’;’,} 4 El(_l)ipi(i—s)/z[’rf’:l + (__1)%pn(n—3)/2lf:n}
i=1 7 n

n—1 — 1" _ 1
=1+ (=L)p 972 Z' (_l)ipi('l_Ii)/Z(pilin ‘ J n l:'n J)

) T —1

= n—1
=1+ (=1)rpr—or 4 21(_1>ipi(i—3)/2_pi[ ) ]
i=1 )

= _— n—1]
— —1)ipli+1(i—2)/2
2, (-1’ [ i
=1+ (=1)rpm»=972 — (—1)°pX0-3/2. O [n; l:l

+ (Hl)n—Lpn(n—a)/2|in - 1] + ”-1(_1)ipi(1;—1)/2(1 _ _1_) n—1
n — 1 i=0 p 7:

1 \»=2 ; n—1
=@—ﬂ;mmwﬁ4ij

=<1_l

p >U§w,,)n—1m(l’ H).

This last sum may be evaluated. Define a function on the sub-
groups of (C,)"* by f({1}) =1, f(H) = 0 if H = {1}; then define the
function g(H) = D\x<r f(K), which is identically equal to 1. If we
apply the Mobius Inversion formula to this pair of functions, we get
fH) = Sg<gm(K, H)g(K). Since n =2, (C,)"* # {1}, so that

0 = f((C)"™)
= 2>, m(K, C;)-g(K)
K<(Cp) L
= 2. m(, C;/K)-1
Es(Cp)nTt
= 23, m(l, H).
HZ (01
We have thus evaluated >, (m(1, H)/|H’|). First, if n =0,
(L = {1}), it equals 1; this is equivalent to G'/K having no elements
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of order p, and hence that K = G’. Second, if » = 1, the sum is
1 — (1/p). This happens just when G'/K has a unique subgroup of
order p; since it is already abelian, G’/K is then cyclic and non-
trivial. Finally, if » =2 (that is, all other cases), the sum is
zero. Therefore, our formula for Pr (G) becomes

L X 1 if K=¢
Pr(G) = ﬁ-K%’II |[ -1 — (1/p) if G'/K is nontrivial cyeclic
B .0 otherwise .

We know that K* is a subgroup of G, and hence its order is a
power of p; therefore let us write | K*| = |G|/p"®. Then our result
is:

(1) THEOREM. If G is a p-group with G' £ Z(G), then

[Gl’l( + dTE 2= 1)1’).”[((15”: K]/p> )

cyclic

Pr(G@) =

Now we look for some limiting conditions on the exponents n(K).
We write n(K,) = n, when the subgroups are indexed. These are
nonnegative integers, with n(K) = 0 iff K = G’. Furthermore, since
we know K, < K, implies (K))* < (K,)*, we must have n, = n, in this
case.

Next, if K; = K; N K, and K;, K, < K, then we have (K;K,) < K,
so KYKF<(K;K)* < K and K} N K = K¥. Hence,

l_g_l — IKl*l > \K]*Kk*| — IK]*II'KZ*I — IKJ*IIKIG*I
P | K7 0K | K|

- (161 . (1G] Gl _ 1G]
- (L6 (et /(L) - el

so that we get n; + n, = n, + n,.
We also have the following

(2) PROPOSITION. If H is a p-group with H' < Z(H) and H’
cyclic, then H|Z(H) = JI;(C n X Cn) with all n, <k, and n, = k.
(where, p* = |H'|.) In particular, [H: Z(H)] is a square, and is at
least |H' %

Before giving the proof, let us indicate why we need Proposition
2. We will use it on Theorem 1 as follows. Recall that n(K) was
defined so that |G|/p™* = |K*|. Thus,
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M — |G/K* _ _IG/K] _ H: Z(H

where H = G/K. Note that H' = '/K is cyclic for the subgroups
K appearing in Theorem 1, and H' £ Z(G)/K < K*/K = Z(H). Hence
by Proposition 2, all the n(K) in Theorem 1 are even, and p™% =
[G': K]

Proof of Proposition 2. We prove this by induction on the rank
7 of the abelian group H/Z(H). The proposition is certainly true
if » = 0. On the other hand, since H/Z(H) is never cyclic, r # 1.
Hence, we may assume 7 = 2. Write H/Z(H) = {a,Z) X, ZY X »++ X
{la,Z).

Because H is generated by Z(H) and the a,;, and H' < Z(H), we
have

H={_a,01=%j=7).

Since H' is eyclic of order p*, this implies in particular that some
[a;, a;] has order p*. Without loss of generality, we may assume
that ¢ = [a,, a,] is such an element. Since ce Z(H), [a]", a;] = [a,, a;]™;
so since [a,, a;]** = 1 for all j but [a,, a,]?* " = 1, a?* ¢ Z(H) but a?* ¢
Z(H). Therefore, {a,Z> = C,«. Similarly, {a,Z) = C,.

Since ¢ generates H’, for each ¢ and j we may write [a, a;] =
¢’. Then if we set b, = a,a;%a for each ¢ > 2, we compute

[a, b] = [a, alla, a]~[a,, a]
= ¢%ig=e = 1

and similarly [a,, b;] = 1. Since {a,> N {a, a,) < Z(H), the order of
b, Z(H) is the same as that of a,Z(H); from this it is easy to check
that

HIZ(H) = {a,Z)> x {a,Z> % {bZ> % +++ % b, Z) .

Now let K < H be the subgroup K = {Z(H), b;, b,, ---, b,». It
is clear that Z(H) < Z(K); but conversely, since H = (K, a,, a,) and
[a, b)] = [a,, ;] =1, we have Z(K) & Z(H). Thus we may use the
inductive hypothesis on K:

(1) K'€ H', so K’ is cyclic

(2) K'C H' < Z(H) = Z(K)

(3) K< H is also a p-group

(4) K/Z(K) = K|Z(H) = {b,Zy X +++ X {b,Z) has rank r —2 < 7.
So, we may assume K/Z(K) = JI(C,» X C,») for some set of mu,.
Thus,
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HIZ(H) = {a,Z) X {a, Zy X {b;Z) X «++ X (b, Z)
= (Cpr X Cpi) X TL(Cpni X C i)

as desired.

III. Groups with G' N Z(G) = {1}, Now let us turn to the
opposite extreme, where G' N Z(G) = {1}. We need a

(8) PROPOSITION. If NG and NNG = {1}, then Pr(G) =
Pr (G/N).

Proof. From [8], it suffices to show that Pr (L) = Pr(L/N)-
Pr(N) for all subgroups L = (N, g, h) where [g, h]e N. But all such
L are abelian: L' is generated by the conjugates of [N, NJ], [N, g},
[N, k], and [g, ], while each of these lies in NN G = {1}. Thus,
N £ L and L/N are also abelian, so that

Pr (L) = Pr(L/N)-Pr(N)=1.

We may use this proposition in our case to conclude that Pr (G) =
Pr(G/Z); moreover, (G/Z) =(G'Z)|Z=(G'x Z)] Z=G', and also Z(G|Z) =
(G'N2D)*Z ={\}*/Z = Z]Z. Thus, Pr(G) = Pr(K) for some group
with K’ = ¢, and Z(K) = {1}. Therefore, we must merely look for
Pr (K) for all such groups K.

(4) PROPOSITION. For any given G', then are at most a finite
number of groups K with K' = G and Z(K) = {1}.

Proof. This will follows from the “N over C” theorem [5, p. 20],
which gives us that L = K/C(K') = N(K')/C(K') is isomorphic to a
subgroup of Aut(K’). Now, L' = K'C(K")/C(K’), so that we have
an abelian group L/L' = (K/C(K"))/(K'C(K")]C(K")) = K/(K'C(K")); if
n = rank (L/L'), then K/(K'C(K')) ecan be generated by n elements
2(K'C(K")) with z,€ K.

Now we can use the result of P. Hall {5, p. 266] which states
that [C(K"), C(K")] < Z(K). In our case, this means that [C(K")] <
Z(K) = {1}, i.e., C(K") is abelian; so if ye C(K’), then [K'C(K"), y] =
{1}. Since K = {&,, %,, - -+, x,, K'C(K"))», this means that if yec C(K")
commutes with each z,(1 < ¢ < n) then ye Z(K) = {1}.

Therefore, for y,, y,€ C(K), if [y, x,] = [¥,, ;] for each %, then
Y2yt = Y297, so that y;'y, commutes with each «,, and hence from
the above we know y;'y, =1, or ¥, = 9,. This tells us that |C(K")|
is at most equal to the number of values the n-tuple {[y, 2;], 1 < 1 < n}
assumes as ¥ ranges over C(K’), which is therefore at most
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IO, 21| < UK, 2] < | KJ*
Then, from |K| = |C(K')|-|K/C(K")|, we have that | K| < | K'|*-|L| =
| K’ 142w E00 Aut (K')|. Hence, with a given commutator subgroup G/,
the orders of groups K with K’ = G’ and Z(K) = {1} are bounded by
a function of G’ alone. This justifies the claim that there are only
a finite number of such groups.

There are further restrictions when Z(K) = {1}. For example,
no element x in K’ except # = 1 can be fixed under each automorphism
of L < Aut (K"), since that would mean kxk™ = « for all Le K, and
then ve Z(K) = {1}. Furthermore, L = K/C(K') is abelian iff K' <
C(K"), i.e., iff K’ is abelian. In that case, we must have | K’| dividing
|C(K")|. In particular, if n =1, then |K'| < |C(K')| £ |K'|, and so
K’ = C(K"). (Actually, this is even true when n > 1.)

We may use these observations on a specific class of groups to
get more detailed information than that supplied by Proposition 4.
For example,

(5) ProposITION. If K’ 1s cyelic of prime order p, and Z(K)
{1}, them K = {a,b:a? =b" = 1, bab™ = a"), where n|(p — 1) and r?
Imodop iff »|j.

Proof. Write K’ = {a). Then Aut (K’) is eyclic, so that n =1
and K’ = C(K’) as noted above. Further, L < Aut (K’) is also cyelic,
say L = (bK’). We write | L|=n and note that »n divides |Aut(K")| =
p—1. From |[L|=mn have b"c K' = {a), say, b =a’. If s=+0,
then <b) = <b,a) = K, so K would be cyclic, and then would not
have trivial center. Thus we have s =0, and " = 1. Next, note
that K’'<0 K implies bab'e<{a), say bab™* =a". If 7/ = 1mod p,
then bab? =a”’ =a, so b commutes with ¢b) and with {a), so
be Z = {1}, and j = 0(mod n).

These are known as metacyeclic groups. We remark that by
computing the number of commuting pairs of elements by brute
force, one sees that Pr(G) = (»* + » — 1)/n*p.

There are some cases in which there are no K with K/ = G' and
Z(K) = {1}. As noted before, this happens if thereisanxze G — {1}
fixed under each automorphism in L < Aut(G). One common case
in which this occurs is when G’ is isomorphic to C,., n = 1; since G’
has a unique element of order 2, that element is fixed under all
automorpnisms, and hence must lie in Z(G). This also happens if

G =C,.
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IV. Groups with Pr(G) > 11/32. In some cases it is possible
to find the possible set of values of Pr (&) in a given interval. We
shall do this for the interval (11/32, 1]. We the use “degree equation”
from character theory [5, Chapter 5]. It states that |G| = 3k, %,
where &k is the number of conjugacy classes of G, and the =, are
positive integers; precisely [G: G'] of these are equal to 1. So,

Gl =[G: G+ > u

[G: G7]+1
=2 [G:G] + 4k — [G: &)
= 4k — 3[G: G']
so that
k=G +3(G: @D,
and so
1 3 1
P < s
(6) r(G)_4+4|G’|

Equation 6 enables us in principle to determine all possible values
for Pr(G) greater than any fraction p, as long as p, > 1/4; we
merely find all values of Pr (G) for those groups for which G’ is one
of the groups of order less than 3/(4p, — 1). For example, to compute
the values of Pr (G) > 11/32, we need only consider those G of order
less than 8, viz. ¢’ = {1}, G, C, C,, C,, xC,, C;, G, S,, and C,. (The
reason we stop at 11/32 is because continuing further would require
a consideration of the groups of order 8. There are many of these,
including some nonabelian ones, so we avoid them altogether.)

G' = {1} means G is abelian, so Pr(G) =1. On the other hand,
G’ = S, is impossible, since S, is a complete group and S; = S; [13].
Thus, we need only consider the seven remaining cases.

It turns out that even for a given G’, the different possibilities
for G’ N Z(G) require separate discussions. Since G'NZ(R@) is a
subgroup of G’, we must investigate the following combinations:

G C, C, C, CxGC G Cs C,

G' N Z(G) {1} {1} {1} {1} {1} {1 {1
G, C, G, C, C,
¢, C,xC,

ESIFQIRY
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Case 1. G' < Z(@). A method for computing the probabilities
for such groups was given in II.

For G’ = C, with p a prime, the only proper subgroup of G’
is {1}, which has index p, so that Pr(G) = 1/p-(1 + (p — 1)/p**) for
some 7, where G/Z(G) = C* by Proposition 2. For p = 2, we have
the infinite family of values 1/2-(1 + 1/2**), For p =3, only n =1
gives a value (= 11/27) greater than 11/32. For p =5 and p =T,
all the values of Pr(G) are too small.

For ¢ =C,=C, x C,, we know that G is nilpotent, say G =
H, x H, where H, = C, and H, = C,. Taking the probabilities from
the last paragraph, we have

For G’ = C,, the only subgroups in the lattice are C,, C,, and {1};
Theorem 1 becomes

1 1 2
Pr(@)=—-(1 ,
r ( ) 4 ( + 22m + 22% >
with 2 > [G': {1}]? = 16, 2" = [G": C,]* = 4, so that Pr (G) < 11/32.
For G' = C, x C,, Theorem 1 becomes

1 1, 1, 1)
z_ (1 + o + oy + oy ) °

Taking %, = n, = n, for definiteness, we must also have n, + n, = n,,

so that Pr(G) = 7/16 (n, = n, = n, = 1) and 25/64 (n, = 2, n, = n, = 1)
are the only values greater than 11/32.

Case 2. G'N Z(@) = {1}. We saw at the end of III that the
unique element of order 2 must lie in the center of G if G’ = C,, C,,
or C,, so that these cases lead to a contradiction. (This also rules
out the combination ¢’ =G, G' N Z(G) = C,.) If G’ =C, x C,, then
as in III, we may find that G/Z(G) = A,, and Pr (G) = Pr (4,) = 1/3.

The remaining cases are of the form G' = C, for p an odd prime;
as we remarked after Proposition 5, these have probabilities
(n* + p — 1)/n*p (where n|p — 1). The only values of Pr(G) above
11/82 for groups G in Case 2 are 1/2 (G’ = C, and G/Z(G) = S,) and
2/6 (G' = C; and G/Z(G) = D).

Case 3. Remaining combinations. The calculations here are
rather involved, and not particularly interesting, so we just quote
the results. First, when |G| =4 and |G N Z(G)] =2, I have been
able to show that Pr(G) = 1/4-(1 + 1/2® + 1/2-1/2%), with 2* =
[C(G"): Z(C(G"))] and 2* = [H: Z(H)] where H = G/(G' N Z(G)); s + 1 =
t = 1. The only value of this above 11/32 is 7/16.
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The last case is ¢’ = C, and G’ N Z(G) = C,. It is possible to
show that for such G, we must have Pr(G) =1/4 + 1/2*, s = 8. The
only value above 11/32 is 3/8 (for s = 3).

Summary. We have the following possibilities for Pr (G) above
11/32:

Pr (G) G G' N Z(@) G/Z
% DL+ 2 C, c, ()
1/2 = .5000 C, L S,
7/16 = .4375 C, or C, x G, C, D,

C, x G, C, x G, C: or C:

11/27 = 4074 C, C, C, x C,
2/5 = .4000 C, {1} D,
25/64 = .3906 C, x C, C, x C, G: or C!
3/8 = .3750 Cs C, C,xS,or T.

(We write T for the nonabelian group of order 12 besides A, and
C, x S;)

We have not discussed the last column for all cases in the paper,
but have included it here for completeness. It bears out the intuitive
feeling that a group which has a relatively large center is nearly
abelian.

Note that this table allows us to characterize the groups with
Pr (@) = 5/8, say, or any of the numbers on the table. In the case
of 5/8, it is precisely the set of groups G with G' = C, and G/Z =
C, x C, that have this value Pr(G). (Actually, the first constraint
is superfluous: see [9].)

V. Concluding remarks. There are several open questions
relating to Pr(G). For example, Joseph [7] has asked for a descrip-
tion of the set V ={x¢c][0, 1]: 2 = Pr(G) for some finite group G}.
V is a submonoid of @ N[0, 1], since Pr(G)-Pr(H) = Pr(G x H).
(The abelian groups supply the identity.) If weset V, = {x:2 = Pr(G)
for some finite G of nilpotence class %k}, then it may be deduced from
Theorem 1 that the closure V, is well ordered by = above 1/4 and
has order type at most w® there. It is easy to imagine that the
same is true for each V,, but the methods of II do not extend to
this more general case. Using Equation 6 and §III, we also have
that V, N (1/4, 1] has order type @, where V, is {Pr(G): G' N Z = 1}.

One problem is that the method used here is inherently limited
to any interval [p,, 1] for p, > 1/4. It would be interesting to discover
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some other method for finding the probabilities for Pr (G) in, say,
(1/5, 1/4). It is possible, of course, that the set of probabilities is
even dense there.

Another point to be looked at would be lower bounds for Pr (G);
Erdos and Turidn have shown [2] that Pr (G) =log log |G|/|G|. Bertram
[1] has that Pr(G) > (log |G|)?/|G| for “most” groups G, where ¢ is
any constant less than log 2. Sherman [15] notes that Pr(G) =
log,|G|/|G| for nilpotent groups G.
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