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We prove results on the asymptotic behavior of large
prime factors of the integers. The basic idea of the paper
is that if & is any fixed integer, then the kth largest prime
factor of n, denoted by P.(n) is generally much bigger than
JiisiPin). We give precise estimates of this phenomenon.
This paper is a sequel to an earlier paper by the authors.

1. Notations and definitions. Throughout this paper the letters
p and ¢, with or without subsecript will denote primes.

Let »n = I1{., ¥, p, > p, > +++ > p, be the canonical decomposi-
tion of an integer n > 1 into primes. We set

L.1) Am) = Sap,  A'm) =3,
and
1.2) Q(n) = éai , wn) =7r.

Let A1) = A*(1) = 2Q) = w(1) = 0.

We may define the kth largest prime factor in two ways depending
on whether we want to count prime factors according to multiplicity
or not. To be more precise set

rm) =mp, for k= wn)

1.3) =0 for k> wn).

We may also define
Px(”) =P

_ n
(1.4) Pym) = P < Py(n)-Pyn) + - PH(")) '

Pmn)=0 for k> Qn).

1<k < 0Qn)

Observe that P.(n) = P}(n).
The terms “average order” and “normal order” will mean the
following: Let f be an arithmetic function and set

(L.5) F@) = 3 fin) .

Suppose g is a monotonic function such that
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im G@) _
(1.6) lim ) 1
where
A.7) G(x) =1§%zg(n) ’

then f has average order g. Next, we say that two functions f and
g are “nearly the same almost always” if for each ¢ > 0

1 "/’e(x) —
(1.8) lim == =1,
where
1.9) P (x) = > 1.

lsnsz
1—e<(f(n)[g(n)) <1+e

If in (1.9) and (1.8), the function g is monotonic, we say that f has
normal order g.
Consider the sum

(1.10) Y, y) = > 1.

1Snsz
Pi(n)=y

If « =1 is a real number and y = z¥¢, it is well known (see [10])
that

— 1im V@, %)
(1.11) p(@) = lim B

T—00

exists. The limit in (1.11) is also defined if — o <@ <1 and

1 0=a<l

(1.12) ola) = 0 —w<a<0.

The function o(@) is a monotonic decreasing continuous function of
a for ¢ = 1.
Finally we define the sums

Sia, ) = 3 A(n) — Pt (”I)Jl(;)' = Pl g1
(1.13) S =3 ?‘((Z)) , .
Sz, k) = > LE® k=1
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The aim of this paper is to obtain estimates for these sums S,(z, k),
1=1,2,3, 4.

2. General background and main theorem. The results in
this paper are in continuation of those in §2 of [2].

It is a well known theorem of Hardy and Ramanujan [6], [7]
that the functions 2(n) and w(n) both have average and normal order
log log n = g(n). This means that a number » usually has loglog n
prime factors and most of them occur square free. Thus it is natural
to expect the large prime factors to occur with multiplicity one,
most of the time. So one should be able to show that the functions
A and A* have the same average order. In an earlier paper [2] we
showed this to be true and much more.

Not only do 4 and A* have the same average order, but the
function P,(n) dominates the sums in (1.1) to such an extent that
A, A* and P, have the same average order. More generally A(n) —
Pn) — «-+ — P,_,(n) and P,(n) have the same average order. It was
observed in [1] that the functions Pi#(n) and A*(n) — P¥(n) — +++ —
Py (n) also have the same average order as P,(n), since the asymptotic
analysis in [2] remains unaffected if the weak inequalities are re-
placed by strict ones. Thus we restate (without proof) the main
theorem in [2] in a more complete form:

THEOREM A. If k is a fixed positive integer then

1% z{A(n) — P(n) — -+ — P,_y(n)} ~. },ﬁé ka(n) ~1§§L§1P?:(n)'
@.1) *(n) — P*(m) — +ee — P* ~ g, T
ngy{A (n) — P¥(n) P (n)}~a, (log 2)°

where a, 8 a constant depending only on k, and is a rational
multiple of {1 + 1/k) where { is the Riemann zeta function. In
addition for each k=1

(22) 3 {A@m) — A*()} = wlogloga + O(x) = o(m%mpm)) .

Theorem A says that the average order in (2.1) is g(n) =
a}-n'*/(log n)* where a} = a,-(1 + 1/k). An average is essentially
influenced by two things—(i) the abnormally large values of a funec-
tion, which certainly contribute to (2.1) and (ii) the values a function
takes most often.

The question now arises whether A, A*, and P, are nearly the
same almost always. The main theorem stated below answers this
question in the affirmative.
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THEOREM B. If k is a fixed positive integer then

Sy, k) ~ Si(x, k) ~ Sy, k) ~ S, k) ~ af —2
(2.3) (z, k) (2, k) ~ Si(=, k) (@, k) ~ a; oz 5~
where a; = 1 and a;, for k> 1 4s a constant depvending only on k,

and s a rational multiple of e” where v is Huler’s constant. In
addition for each k=1

A(n) — A*(n) _ x _ i(n)
2énzo P(n) - O< eV'log  log log » ) B O<zsn2§x P(n) )

2.4)
where ¢ 1s an absolute constant >0.

3. Consequences and motivation. Statements (2.3) and (2.4)
may be looked upon as analogues to (2.1) and (2.2). Theorem A said
that 4, A* and P, have the same average order, 7*n/6log n, (a, =
/12, see [2]). We can deduce from Theorem B the following.

COROLLARY. The functions A, A* and P, are all mearly the
same almost always. Also all three functions fail to possess a normal
order.

Proof. Consider two arithmetic functions f, g satisfying f(n) =
g(n) > 0. Suppose that

(3'1) 1gn§z%§_ ~E

We rewrite (3.1) as

3.2) S 1) =0

Since f/g = 1 we infer from (3.2) that

3.3) [“—/’ﬁi)——1|<—‘;('—”2~—>0 as & — oo

for each ¢ > 0, where +.(x) is as in (1.8). So f and ¢ are nearly
the same almost always. (We can deduce (3.3) also if f(n) < g(n) for
all »).

Setting £t =1 in (2.3) we see that (3.1) is true with f= A(n)
and g(n) = P(n). Therefore A and P, are nearly the same almost
always. Since A = A* = P,, the same is true for all three functions.

Now to show that these three functions do not have normal
orders it suffices to show that one of them does not. It follows
easily from a theorem of Elliott [5] on additive functions
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(3.4) f(n) = g’.}f(p) ’
that A* does not have a normal order. That proves the corollary.

REMARK. Since A(n) = log n, it follows from (2.2) that

A*(n) An) — A*(n)
zéngz{ A(n) 1} éﬁ_ﬁéz logn

(3.5) _ 0(90 log log x> '

log x

From (3.2), (3.3) and (3.5) we can deduce that A and A* are nearly
the same almost always.

Let us look a little more closely at (2.8) which for f = A or A*
and g = P, is a more accurate form of (3.1). We may rewrite (2.3)
as

A*(n) P3(n)
3 = 1+ e XY
R enzs P (n) zénzéz ednze P(m)
3.6 L Pim
1Snsz Pl('n)
where
Pi(n)

(3.7 ~ ax/(log x)* .

2smsx 1(’",

We show in §5 that
3.8) al = r o(s — k)s*—*ds
1

where p is defined in (1.11). We deduce from (3.8) in §6 that a; is
a rational multiple of e’ for k> 1. The integral representation is
investigated in §6 and this leads to pretty connections with some
related problems.

The next section is devoted to obtaining upper and lower bounds
for S, k), i =1,2,3,4. This enables us to deduce the first four
asymptotic relations in (2.8). It is only §5 that we prove (3.7) and
(3.8). But the upper bound method in §4 is used in §5 to take care
of the error terms arising out of (3.6) and (2.3). For the reader
who does not want to go through the detailed proof, see [1], where
some of the ideas of this paper and an earlier paper by the authors
[2] are summarized.

We now move on to the proofs of our results.

4. Upper and lower bounds. In what follows, ¢, ¢ ¢ +--
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denote absolute positive constants whose precise values will not be
our concern. Also exp {x} = ¢*. We begin by proving

THEOREM 1. There exists for each positive integer k a comstant
b, and a real mumber x, = x,(k) such that if x = x, then Sz, k) >
by x/(log 2)** for 1 =1,2,8, 4.

To prove this we need

LEMMA 1. Let s be a positive real number. Then

1 1
g‘wp(logp)* s(log x)*

+ O(exp{—e,V'Iogx}) .

Proof. We use the Prime Number Theorem [4], [9] in the form

4.1 | z(x) — li(x) | = O(x exp {—¢;V loga}) .
Now write
1 (7 _daty) _("_dy . (" diz) — li{)}
gip(logp)s Saﬂfy(logf:l/)“ Smy(logy)““ L+ y(log y)*
_ 1 n(y) — liy) |”
“.2 " Sogazy | ylogy)’ |-

o[, 0=l

Lemma 1 follows from (4.1) and (4.2).
Proof of Theorem 1. It suffices to prove Theorem 1 for the
smallest of the four sums S,(x, k).

Assume first that k¥ > 1. For a sufficiently large choose a prime
p, in the interval

4.3) Ele/tt < p, < av* .

Now choose primes ,, ps, - -+, D, satisfying

Y b, P Y Vi
(4.4) ’E<pk<k___1<pk_1<k_12<"' <'§ <ps<-§1-<pz<px-

Consider any multiple m < ¢ of p,p,--- D,
(4.5) m=n'pp; - D .
Because of (4.3) and (4.4) we have

(4.6) PP D=
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and

’ m X 1/k+1
(47) "= Do D = (k!)m—lwk/kﬂ <@/
By (4.7) and (4.4)
(4.8) Pn)<n <avr' < (B — D1xF < p, .

Thus by (4.5) and (4.8) we see that P}(m) = p,. So any multiple
<z of p, .-+ p, has p, as its kth largest prime factor (P}). So

S, k) = 5, LE®) > Pi(n)
wavss By(n) g, Pn)
(p; satisfying (4.4))

(4.9)

We can estimate the second sum in (4.9) by using the well known
result [11] '

(4.10) %—]10- = loglog & + ¢, + O(exp {—c,VTog x}) .

Observe that the second sum in (4.9) is

D Y A
Riol/k+1) <p, <al/k p)1a<py<p; p113<pg<pyl2 pk<pp<pyltk-1) Py D D
1 (/% 1
any = 3 (D) (D )
krel/ Ut ) <y <al/k PY \N\9 =2 \2113<p<py [ (G-1) P ; Py k<pp<p1/(k-1)
1

= b > byw/(log )**

- —_
kral/ kD sp otk Py (log p1)k—1

by virtue of Lemma 1 and (4.10). Theorem 1 follows from (4.9) and
(4.11), for £ > 1. For k =1, Theorem 1 is trivially true.
Now for an upper bound.

THEOREM 2. All four sums S,(x, k), 1 = 1, 2, 8, 4 are O(x/(log x)* )
where k is an integer =1, and the O-constant depends only on k.

We need a few preliminary results before proving Theorem 2.

LEMMA 2. Let k be a monnegative integer and

Si(x) = SE; (log log ¢ — log log »)* .

Then

w(m) — _ Flo 0 x+log log o
St (@) (log z)** ’°< (log x)** > :
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Proof. If we write Sj(x) as a Stieltjes integral, use the fact
that

M@=7£%+dww—wwh

integrate the second integral by parts and then use (4.1) we get

x - k
(4.12) s;;(x)zg (log log = — log log y) dy+0<(1 @ >

. log y og x)***
Next
® _ k
() = g (log log x — log log v) dy
s logy
| = (log log 2 — log log y)"li(y)lx
(4.13) 2] — k-1
n ’“i li(y)(log log » — loglog y)** ;.
A VR ylogy
o1 _ k-1
= O((log log »)) -+ k| KMloglog = oglog W) — gy .
. ylogy
But
(4.14) ©(y) log 7 <logz v >

So the integral in (4.13) becomes

S”(log log & — log log y)*™* 0( S *(log log z — log log y)** dy>
(4.15) 4 logz Y " 10g3 y

= Il + Iz .
We split I, into

z/(log )k +3 @

(4.16) I = kS + kS

4 #/(log z)k+3

Clearly in (4.16)

z/(logz)k+3 . x(log Iog x>k_1

. 2
(4.17) 84 - O< (log x)*+ )'— O<(log x)k+2> :
Regarding the second integral in (4.16) we observe that

kS:/(log zyk+3 =k {lo; € + O<loi)1gigxx >}

(4.18) o S (log log x — loglog y)*~*
Y .
@/(log #)k+3 log v




ASYMPTOTIC BEHAVIOR OF LARGE PRIME FACTORS 303

Now' the last integral in (4.18) is

z(log log)*t\ _ x
(4.19) T i(x) + O<W> = Tpu(@) + O <W> .

From the definition of 7, we have

T(x) = —2 o(—*_).
(4.20) o(%) Tog @ + <log2w>

Now make the induction hypothesis that for z > 1

_ (k—Dlx z(log log x)
Ti(o) = —————(log x)k 0<——————-(10g ) > .

Then from equations (4.16) through (4.21) we deduce that

(4.21)

N

klx 0<xloglogx)

42 = Togar Vg

By analysis very similar to the above one can show that

(4.23) I = O<<Tog'9%c)k—+2’> :

So from (4.22), (4.23), (4.15) and (4.13) we see that (4.21) is true for
T\(x) and so by induction for all s = 1. Lemma 2 follows from (4.12)
and (4.21).

LeEMMA 3. Let x, y = 4 be real numbers and I =0 an integer.
Then

(log log x — log log p)* _ (log log & — log log y)***
= p IC + 1

+ 0,((log log = — log log ¥)* exp {—¢;1/ log ¥}) .

e

=

Proof. As in the beginning of the proof of Lemma 2 we convert
the above sum into a Stieltjes integral and replace dz(y) by dy/log y.
Lemma 3 can be easily proved by making the substitution log log x —
loglogy =¢. We do not go through the details.

Proof of Theorem 2. It suffices to prove Theorem 2 for the
largest of the four sums S,(zx, k). That is we will show

— An) — P(n) — -+ — P, _\(n) _ T
Si(@, k) afate P(n) - O((log x)k-1>

for & =1 an integer. We claim that it suffices to prove (4.24), for
k > 1 because for ¥ =1 we have

(4.24)
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A(n) _ A(n) — P(n)
Sl ’ 1 = - 1 + e ——
wz OO VT2pm T2 AT P
:x—l+s1(x92)
= O(x)

assuming that (4.24) is true for k = 2. So from now on we assume
that & > 1.
We write

An) — P(n) — P(n) — -+» — P,(n) _ Pu(n)
Py(n) Py(n)

P, ,,(n) ce
+ P(n) + .

(4.27)

Let us denote a general nonzero term of (4.27) by »./»,.. We would
like to know how often this term occurs in S,(z, k). The term p,/p,
occurs as often as we can find integers n = P, 0, -+ Dy D = &
where the p, satisfy », < p,., < -+ < p, and P(m) £ p,,. If we
fix the primes p, to satisfy these conditions then the number of such
n is given by

x
) D
(“.28) qlp(:mz?z cepy y
where « is defined in (1.10).
Thus we may rewrite (4.27) as

Sy, k) = >, >,

2SS PRSPy PRSPE_1SP) Pp_1SPE_3S0)

(—p )2

(4.29) <
P3=pe=ry NPy et Py D,

We first consider a subsum of (4.29) with a restriction on p,. That
is we choose g8 with 0 < 8 < 1, whose value will be specified later,
and consider p, in (4.29) satisfying 2 < p, < 2. We shall get an
upper bound for this sum.

Observe that the sum in (4.29) with this extra condition on p, is

< S ... T D

2B<p <z pp=py PRLSPE_ 15Dy P3=pesSpy Py 0 Py P,
(4.80) 1 1 1
=2z > — . el
zﬁépléﬂ?pl PSPy PESPE_1SP1 Py P3=Pe=p1 Py

(Note: If £ = 2 in (4.30) we have only

(4.81) r >, 1 21

zB<p <% pf PeZpy
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and no other terms. For %k > 2, there is no confusion in (4.30).)
Because of this difference assume for the moment that & > 2. Then
if we use Lemma 3 we infer

(4.32) > L = 0gog log . — loglog ps) .

p3=Pe=p; Py
Again by Lemma 3 and (4.32)

(4.33) > 1 > L O((log log p, — log log p,)") .

Py=P3=P1 Pg P3=0e=p1 Py

Iterating this process we get in (4.30) for & > 2

(4.34) O<w ﬂZ lz > (log log x — log log pk)’”“2>
zP=p =2 Py PP

by repeated use of Lemma 3. Now observe that because of (4.31)
we see that (4.34) is true even for &t = 2. Thus for t = 2, we may
replace (4.30) by (4.34). Thus from now on we drop the assumption
k > 2, but of course still assume k& > 1.

To estimate (4.34) we use Lemma 2 which gives

1
O _—— .
(4.85) (“ mﬁ?falsz p,(log pl)’°“>

Finally Lemma 1 and (4.85) imply that the sum in (4.85) and hence
in (4.30) is

(4.36) O(Bk—_l(lgwgw)

where the constant on the O-term in (4.36) depends only on % and
not on 5.

So (4.36) gives a bound for the sum in (4.29) with the condition
2* < p, < x. For the sum corresponding to p, < 2* we write

(4.37) S =3 03 :

2<p <ab m=0 w5/2m+1§pl§zﬁ/2m

To estimate (4.87) we use the following result of de Bruijn [3]; If
Yy = x¥* then

(4.88) Y(x, ¥) = O(x exp {—c.a}) .

In (4.87) consider the case
(4.39) PP < p, < afT

Then in (4.29) with the restriction (4.39) on p, we have from (4.38)



306 K. ALLADI AND P. ERDOS

the following:

c-lmlghnlso- i) 8) - ot

(4.40) om

We choose 8 = B(k), depending on %, so small that

2" — kB 2
B B

Then by (4.38), (4.39), and (4.41) we will have in (4.29) for the
subsum corresponding to (4.39)

(4.41) a=

(4.42) «#(pl.—af_p-, pk_1> = 0(;;—”—.@ exp {—662”‘1/B}> .

& R

If we substitute (4.42) in (4.29) and analyze this sum just the way
we derived (4.36) we get

(4.42) 0( oz (xﬁﬁm Ty OXP {—062”“/B}>

YO s -
(log )** exp {c,2"/B}/

But then

© (2m+1/6)k—1 < oo |
> exp {¢,2"*/B}

This means that (4.43), (4.42), and (4.36) imply that in (4.29)

(4.43)

Si(x, k) = O(z/(log )"

~for k> 1. That completes the proof of Theorem 2.

It is interesting to note that Theorems 1 and 2 actually imply
the first four asymptotic relations in Theorem B, as will be shown
below. Before establishing this we prove the last part of Theorem
B namely

THEOREM 3. For each positive integer k we have

A(n) — A*(n)

= O(x exp {—¢,;V/1log z log log x})
2inzss P.(n)

Proof. First let 1<y <2 and y = 2%*. N. G. de Bruijn [3]
showed that if 3 < @ < 4y'*/logy then
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(4.44) +(x, y) = O(xlog*y exp {—aloga — aloglog a + ca}) .
Take y = exp {V/log « log log «}. Then from (4.44) we have
(4.45) (2, ¥) = O exp {—c,1/ Tog x log log }) .

Next observe that

(4.46) 1@%‘;—("—) < (n) = O(log n) .

We now split

A%
(4.47) Szls A(__?'L)-P__A._(_’Y_LZ: 2S2S 4+ 232; :Z—{—Z.
pEnss 1(%) Pf('r?)—;y Pl_(;':)_;u ! 2

Clearly from (4.46) and (4.45)

(4.48) 3. = O(log z-v(x, ¥)) = O(w exp {— ¢,V log w logTog x}) .
But then by Theorem A, (2.2), we have

(449) S <exp(—VIogwloglogn) 3, (A(n) — A*(n)

= O(x exp {—ec,, 1V log z log log «}) .

The first equation in Theorem 3 follows from (4.47), (4.48) and (4.49).
The second equation is a consequence of Theorem 1. That proves
Theorem 3.

THEOREM 4. For every integer k =1 we have

Sl(xy k) ~ Sz(w’ k) ~ Sa(w’ k) ~ S4(xy k) .

Proof. The smallest of the four sums is Sz, k). By Theorem 1

(4.50) S.(x, k) = Sz, k) > bzx/(log x)* .
The largest of the four sums is S,(z, k). Consider the difference
Sia, k) — 8@, k) = 3 An) — P(n) — --- — P ,(n) — P¥(n)
2<nse P(n)
_ A(n) — P(n) — -+ — Py(n)

2snsw Pl(’n)

(45D L 5 Piw) = Prm
2sn=e P.(n)

= S, k+ 1)+ 3 PM)P‘WI;'T(”) .

By Theorem 2
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(4.52) Si(x, k& + 1) = O(x/(log x)¥) .
But then

(4.5%) A(m) ~ 4*(n) = 3, Pin) — 3, P}(n) = 5, (Pi(n) — P3(m)
= Py(n) — Pt(n) .
So by (4.53) and Theorem 3 we have

(4.54)  2=ms= P\(n) R P.(n)

= O (x exp {—e¢,;V Tog x log log x}) .
Clearly from (4.51), (4.52) and (4.54)

(4.55) Sy(x, k) — S,(z, k) = O(x/(log x)*) .
Thus from (4.55) and (4.50) we deduce
(4.56) Sz, k) ~ S,(x, k) .

But since these are the smallest and largest sums, Theorem 4 follows
from (4.56).

While proving Theorem 2 we did not use Lemmas 1, 2, and 3 in
the forms in which they were stated, but used only the upper bounds
they implied. These lemmas will play a role in obtaining asymptotic
estimates, which we take up in the next section. We refer to the
method of proof of Theorem 2 (namely the choice of 8 and the con-
vergence of the series (4.43)), as the “upper bound method” and use
this method to take care of the error terms arising out of the
asymptotic estimates in what follows.

5. Asymptotic estimates. Our goal in this section is to prove

THEOREM 5. Let k be a positive integer. Then all the four
sums Sz, k), 1 =1, 2, 3,4 are asymptotically equal to

ax/(log x)*

where
al = Swp(s — k)stds .

We need some lemmas before we go to the proof.

LEMMA 4. If a =1 and ¢ > 0 then
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lo(@ + €) — pa)| = O<P—(a£+—1)> .

Proof. 1t is well known (see [10]) that p satisfies

1 _ ("ot — L)d¢
5.1) pl@) =1 — [l Det,
Furthermore (see [10], [3])
012
(5.2) ole) < —F_(&:T) .

Combining (5.1) and (5.2) we get

0=o@—plate= S o T = m e o P(as+ 1))

because p is monotonic decreasing.

LeMMA 5. There exists constants ¢, ¢, and ¢, such that if
az=z1land y=a", x =1, then

2

vy <9 ma C 2 |Gt .

(e, 2 — ap(e) | 5 2 max( B, —qut )

Proof. Lemma 5 is obtained by combining certain results of de

Bruijn [3]. For the function A(x, %) defined by de Bruijn, it is
known

(5.3) | (e, 2/%) — Az, 2% | < ewal exp {— ¢,V log y}
and
(5.4) | A(x, 2*) — xp(e) | < exa/(e**-log x) .

Lemma 5 follows from (5.8) and (5.4).

Proof of Theorem 5. Because of Theorem 4 it suffices to prove
Theorem 5 for one of sums Sz, k). We consider S,(z, k). So we
start with (4.29). (We assume &k > 1 since Theorem 5 is trivially true
for k =1. (See (5.1), (5.2) and Theorem 4.)

In (4.29) we first look at the contribution due to numbers for
which

P 1

65 ». < Togpy

We will get an upper bound for the contribution due to such numbers.
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Let 0 < 8 < 1 be a real number whose value will be specified later.
Then write

(5.6) 2= 2 +X
25p s m.‘ggplgz m=0 z8/2™ ‘ngplga:ﬁ 2m

In the interval ?*"" < p, < 2™ one has an upper bound for + given
in (4.42), while for «* < p, < x we use the trivial upper bound

X A
| ot ) s
(57> Dy Dy kl) Dyoee Dy

Then for numbers satisfying (5.5) together with x* < », < x, we have
the following bound in (4.29)

0.(log p,)** 2iZee Py PrSlSE Py meShasE P,

59 0<“xﬂ<%§x 1 1 1 . ox 1)

Analysis similar to (4.32), (4.33) and (4.34) yields

1 1
0 S, S— —(log'1 , — log'1 k2
(aczﬁ;mg ooz P pg;l o (log log », — log log p;) )
log log p)F*\ z(log log x)**
=0 (log log p)" Y _ ( z(log log @)*™*
<x:c.3§§};1‘§a: pl(log pl)kﬂ > < ,6”°+1(10g x)"“ )

using Lemma 1. To estimate the contribution due to integers satis-
fying (5.5) for the case p, < 2?, we use the decomposition of the last

sum of (5.6). Then the upper bound method yields

(5.9)

(5.10) O(% )=0( (105 x)">

provided B is suitably chosen. Thus from (5.9) and (5.10) we conclude
that the contribution due to terms satisfying (5.5) is given by (5.10),
and is smaller than the asymptotic term we are seeking.

Next we observe that the contribution due to terms for which
p, = p(n) is small is negligible. For that purpose set

(5.11) y = (exp {(log 2)**}) .
With ¥ as in (5.11) we have by (4.38)
(5.12) ¥(x, y) = O(x exp {—cy(log »)"?}) .

So, if p, = P(n) £y, then

5 A = P) = = Pe) 5 Q(fn)§0< s logx>
(5.13) == Pyn) =05z,

= O(log #y(x, ¥)) = O(x exp {—ca(log 2)*}) .

Py(m)sy
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Because of (5.13) and (5.10), we assume from now on that

(5.14) (@@—)— < 1, < p,; P(n) = p, > exp {(log ©)*7} .

Once we assume (5.14) we can rewrite Lemma 5 as

w(_m.ﬁ:_ log(@/p, « -+ D1) >

)= oo
v = o log D4,

4 O< xe . >
Dy -+ Dy log vy,

(5.15)

where a = log (¥/p, - - - py)/log D;_;.

The idea is to substitute (5.15) in (4.29). It is then easy to take
care of the contribution due to the error term in (5.15) in (4.29) by
observing that (5.14)

(5.16) log p;_, = log p, ~ log p, > % log p, , T = .

This means if we substitute the O-term of (5.15) in (4.29), and use
the upper bound method we get

(6.17) O(x/(log x)¥) .

The convergence of a series like (4.43) is ensured this time by the
¢~ term in (5.15). Since (5.17) is smaller than the asymptotic term
we are seeking, we may forget the contribution of the O-term in
(5.15), in the sum (4.29).

As to the leading term of (5.15) we observe that

log (®/p, -+- 2) \ _ ,(logz — >/, log p,
(5.18) ‘0< log ps_, > '0< log pi, ) )
By (5.14) we have

(5.19) log p; = log p, + O(log log p,) , 1515k,

Substituting (5.19) in (5.18) we get

log (/p, + -+ D) > :p{_log_x ok +O(log.')c-loglogﬁlh)} )

(5.20) '0< log P, log p, log® p,

Using Lemma 4 to estimate (5.20) we get

p< logz k>+0<logx-loglogp1>

(5.21) log », log? p,- I'()

where « is as in (5.15).
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Thus the factor p in the leading term of (5.15) is equal to the
quantity in (5.21). Recall that our idea is to substitute (5.15) in
(4.29) and estimate the sum. The contribution of the O-terms in
(5.21) can be obtained by the upper bound method. There is alogx
in the numerator, but a log?p, in the denominator. This time the
presence of /() in the denominator ensures convergence in a series
like (4.43). Thus the upper bound method yields

(5.22) O(x log log x/(log x)¥)

as the contribution due to the O-term of (5.21). Thus we deduce
that the main contribution from (4.29) comes by assuming (5.14) and

replacing (x/p, «++ Di, Di-y) bY

x log «
— k).
(5.23) Dy Dy 0 ( log p, >

So we replace (4.29) by

x o((log x/log p,) — k)

exp((log #)2/3}£p <= i
X by PN > =
Py (log p) Etispr<p) ppspp_159 Dy P3=Pe=P; Py

To estimate (5.24) we use Lemma 3. First we get

(5.25) %%.g mi— = (log log p, — log log p;) + O(exp {—e¢;V log pJ)) .

The contribution due to the O-term in (5.25) in (5.24) is taken care
of by the upper bound method. This time the presence of o in (5.24)
ensures convergence of a series like (4.43), because of (5.2). Actually
every error term that arises in (5.24) by repeated use of Lemma 3
can be estimated by the upper bound method, yielding

(5.26) O(x exp {—ecV log o)) .

So we need only look at the leading terms arising out of Lemma 3
in (5.24). After k-2 applications of the lemma we are left with

©((log x)/(log p,) — k)

2
exp{(log #)2/3}<p, <= P

(log log p, — log log py)**

pql(log pp b+l <py (k — 2)!

X

(5.27)
X

In (5.27) we use Lemma 2 to get
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o((log »)/(log »)) — k)

X

exp((log 2)2/3)<p 5o p%
(5.28) y [_p_~ + o(&@&%@)] ,
(log p,)" (log p.)*

As before, the O-term in (5.28) contributes
(5.29) O(z log log x/(log x)*)

by use of the upper bound method. Finally the leading term in
(5.28) is estimated by writing it as a Stieltjes integral. That is

o((log x)/(log p,) — k)

X

expl (log 212/3) Sy 50 p,(log p))*™
=l ol(log w)/(log y) — k)da(y)
epx{(log x)2/3)~ y(log y)l£~1
(5.30) — g o(log @)/log ) — k) 4.
expi(log =)2/3) y(log y)k
. g o((log «)/(log y) — k)
exp{(log «)2/3}— y(log ,y>k—1

X d{w(y) — ity =L, + 1, .

We can bound I, rather easily. First observe that |po| £ 1. Ignoring
0, we integrate by parts, and use (4.1) to deduce

(5.31) I, = O((w exp {—c.(log 2)7}) .

To estimate I, write y = «°. Then

€@ (log 2)1/3 s
= Gop e S o(s — k)s*~ds

632 ST R

’

X X
c L0
“ (log )" < (log x>’°>

because of (5.2). So Theorem 5 follows from (5.32) and the preceding
estimates.

REMARKS. Note that we have actually shown that

Sz, k) = al x 0 2 log log x _

(5.33) (x, k) = aj Tog oy + <————(log o) >

Observe that Si(z, k) is the largest of the four sums and S,(x, k) is
the smallest. Therefore, because of (4.55), we deduce a stronger
form of Theorem 5, namely
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S.(z, k) = a x L0 z log log z
(5.34) (&, k) ak(log )kt < (log x)* >

for 1 =1, 2, 3, 4.
Thus we have proved all the statements of Theorem B, except
the relation between a, and ¢. We do this in the next section.

6. The constants a;. It is obvious from Theorem 4 or (5.1)
and (5.2) that a; = 1. So we suppose k¥ > 2. For k = 2 write

6.2) a) = S°° o(s — k)s—ds — S:p(s — k)sttds = S:p(t)(t + k)t

~ (-2 o =2 [k — 2 )
=3 < . ) i (Cowpar = 5 ( . )kf

=0 Vi 0 =0 2
where
(6.3) £y = Swp(t)tfdt .

0
In a recent paper, Knuth and Pardo [8], have studied the behavior of
(6.4) Vi@, Y) = S%x 1.
P{(%)éy

In the course of their investigations they show

(6.5) fi=¢€9;
where 7 is Euler’s constant and the g; are recursively defined by
(6.6) Go=0=1, g;==23 ("lg9;=, 5=0.

y 1=i=9 ’L

Combining (6.2), (6.5), and (6.6) we infer that a, is a rational
multiple of ¢ for &k = 2. For instance

’
a, = f, = e'g, = e,

That completes the proof of Theorem B.
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