A REMARK ON GENERALIZED HAAR SYSTEMS IN L_p, $1 < p < \infty$

Alfred David Andrew
A REMARK ON GENERALIZED HAAR SYSTEMS
IN L_p, $1 < p < \infty$

A. D. ANDREW

We show that any chain from a generalized Haar system in L_p is equivalent to the unit vector basis in l_p. The constant of the equivalence depends only on p.

We answer a question raised in [1]. Specifically, we prove

Theorem. Let $1 < p < \infty$. There exists a constant K, depending only on p, such that whenever (h_n) is a chain from a generalized Haar system in L_p, (h_n) is K-equivalent to the unit vector basis in l_p.

Our notation and terminology is standard. If A is a subset of a Banach space, $[A]$ denotes the closed linear span of A. The unit vector basis in l_p is denoted by (e_n), and μ denotes Lebesgue measure on $(0, 1)$.

A generalized Haar system [1] in L_p is a sequence (h_n) defined as follows. Let $\{A_n;i: n = 0, 1, \cdots; 0 \leq i < 2^n\}$ satisfy $A_{n,0} = (0, 1)$; $A_{n+1,i} \cup A_{n+1,2i+1} = A_{n,i}$; and $A_{n+1,2i} \cap A_{n+1,2i+1} = \emptyset$. Let

$$H_{n,i} = \frac{1}{\mu(A_{n+1,2i})} \chi_{A_{n+1,2i}} - \frac{1}{\mu(A_{n+1,2i+1})} \chi_{A_{n+1,2i+1}},$$

and define $h_0 = 1$, $h_{n+1,i} = H_{n,i} \|H_{n,i}\|^{-1}$.

A chain from (h_n) is a subsequence (h'_n) such that $\text{supp } h'_{n+1} \subset \text{supp } h'_n$.

In [1] it is proved that a generalized Haar system is a monotone, unconditional basic sequence in L_p, with unconditional constant λ depending only on p.

The proof of the theorem is based on the following lemma (see [2] and [3]).

Lemma. Let $1 \leq \lambda < \infty$, $\delta > 0$, $1 \leq p \leq 2$, and (x_n) be a normalized unconditional basic sequence in L_p with unconditional constant λ. Then,

(a) $\| \sum a_n x_n \| \leq \lambda (\sum |a_n|^p)^{1/p}$, and

(b) If there exist disjoint sets (B_n) with

$$\|x_n | B_n \| \geq \delta, \text{ then } \delta \lambda (\sum |a_j|^p)^{1/p} \leq \| \sum a_n x_n \|,$$

for any scalar sequence (a_n). 317
Proof of theorem. We shall denote the chain by \((h_n)\), and let \(A_{n,1} = \text{supp } h_n^+, A_{n,2} = \text{supp } h_n^-\). We will assume \(\text{supp } h_{n+1} \subseteq A_{n,1}\).

Any chain in \(L_2\) is an orthonormal system, so a chain in \(L_2\) is isometrically equivalent to the unit vectors in \(l_2\).

We consider now the case \(1 < p < 2\). Let \(N_1 = \{n: ||h_n| A_{n,2}| \geq 2^{-1/p}\} , N_2 = \{n: ||h_n| A_{n,1}| > 2^{-1/p}\} \), and consider first the chain \((h_n)_{n \in N_1}\). Setting \(B_n = A_{n,2} \setminus A_{n,1} \) and \(\delta = 2^{-1/p}\), it follows from the lemma that for all sequences \((a_j)\),

\[
2^{-1/p} \left(\sum_{j \in N_1} |a_j|^p \right)^{1/p} \leq \left\| \sum_{j \not\in N_1} a_j h_j \right\|.
\]

As for the chain \((h_n)_{n \in N_2}\), note that for each \(n \in N_2\), we have \(\mu(A_{n,2}) > \mu(A_{n,1})\). Thus, if \(j\) is the successor (in \(N_2\)) of \(n\), \(\mu(A_{n,1} - A_{j,1}) > (1/2)\mu(A_{n,1})\). Setting \(B_n = A_{n,1} - A_{j,1}\) we have \(||h_n| B_n|| > 2^{-2/p}\), so that

\[
2^{-2/p} \left(\sum_{j \in N_2} |a_j|^p \right)^{1/p} \leq \left\| \sum_{j \not\in N_2} a_j h_j \right\|.
\]

Using (1), (2), part (a) of the lemma, and the unconditionality of \((h_n)\) we have

\[
\frac{2^{-3/p}}{\lambda^2} \left(\sum |a_j|^p \right)^{1/p} \leq \frac{2^{-3/p}}{\lambda^2} \left(\sum |a_j|^p \right)^{1/p} + \frac{2^{-1/p}}{\lambda^2} \left(\sum |a_j|^p \right)^{1/p} \leq \frac{1}{\lambda} \left\| \sum_{j \not\in N_2} a_j h_j \right\| + \frac{1}{\lambda} \left\| \sum_{j \in N_1} a_j h_j \right\| \leq 2 \left\| \sum a_j h_j \right\| \leq 2\lambda \left(\sum |a_j|^p \right)^{1/p},
\]

as desired.

Now suppose \((h_n)\) is a chain from \(L_p, 2 < p < \infty\). Then \([h_n]\) is isometric to \(l_p\), as we may regard \(h_n = e_n + b_n e_m - \sum_{j=n+1}^{\infty} b_j e_j\). The biorthogonal sequence \((h_n^*)\) is a chain from a generalized Haar system in \(L_q\), with \(1/q + 1/p = 1\). Since \(1 < q < 2\), \((h_n^*)\) is equivalent to \(e_n^*\). Letting \(T: l_q \to l_q\) be the isomorphism realizing this equivalence, we have that \(T^* e_n = h_n\) and \(T^*\) is an isomorphism. Hence \((h_n)\) is equivalent to \((e_n)\).

REFERENCES

Received January 30, 1978.

GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, GA 30332
Pacific Journal of Mathematics
Vol. 82, No. 2 February, 1979

Krishnaswami Alladi and Paul Erdős, On the asymptotic behavior of large prime factors of integers .. 295
Alfred David Andrew, A remark on generalized Haar systems in L_p, $1 < p < \infty$.. 317
John M. Baker, A note on compact operators which attain their norm 319
Jonathan Borwein, Weak local supportability and applications to approximation .. 323
Tae Ho Choe and Young Soo Park, Wallman’s type order compactification 339
Susanne Dierolf and Ulrich Schwanengel, Examples of locally compact noncompact minimal topological groups .. 349
Michael Freedman, A converse to (Milnor-Kervaire theorem) $\times R$ etc... 357
George Golightly, Graph-dense linear transformations 371
H. Groemer, Space coverings by translates of convex sets 379
Rolf Wim Henrichs, Weak Frobenius reciprocity and compactness conditions in topological groups .. 387
Horst Herrlich and George Edison Strecker, Semi-universal maps and universal initial completions .. 407
Sigmund Nyrop Hudson, On the topology and geometry of arcwise connected, finite-dimensional groups ... 429
K. John and Václav E. Zizler, On extension of rotund norms. II 451
Russell Allan Johnson, Existence of a strong lifting commuting with a compact group of transformations. II ... 457
Bjarni Jónsson and Ivan Rival, Lattice varieties covering the smallest nonmodular variety .. 463
Grigori Abramovich Kolesnik, On the order of Dirichlet L-functions 479
Robert Allen Liebler and Jay Edward Yellen, In search of nonsolvable groups of central type ... 485
Wilfrido Martínez T. and Adalberto Garcia-Maynez Cervantes, Unicoherent plane Peano sets are σ-unicoherent .. 493
M. A. McKiernan, General Pexider equations. I. Existence of injective solutions .. 499
M. A. McKiernan, General Pexider equations. II. An application of the theory of webs ... 503
Jan K. Pachl, Measures as functionals on uniformly continuous functions 515
Lee Albert Rubel, Convolution cut-down in some radical convolution algebras ... 523
Peter John Slater and William Yslas Vélez, Permutations of the positive integers with restrictions on the sequence on differences. II 527
Raymond Earl Smithson, A common fixed point theorem for nested spaces 533
Indulata Sukla, Generalization of a theorem of McFadden 539
Jun-ichi Tanaka, A certain class of total variation measures of analytic measures .. 547
Kalathoor Varadarajan, Modules with supplements .. 559
Robert Francis Wheeler, Topological measure theory for completely regular spaces and their projective covers ... 565