Pacific Journal of

Mathematics

WEAK LOCAL SUPPORTABILITY AND APPLICATIONS TO
APPROXIMATION




PACIFIC JOURNAL OF MATHEMATICS
Vol. 82, No. 2, 1979

WEAK LOCAL SUPPORTABILITY AND APPLICATIONS
TO APPROXIMATION

J. M. BORWEIN

Perturbed optimization problems are studied using a
weaker notion of local supportability than that developed
by Ekeland and Lebourg. This weakening allows for a
more comprehensive treatment of such problems. In parti-
cular we prove that nearest points exist densely for closed
relatively weakly compact sets in spaces with locally wuni-
formly convex norms and provide a simplified proof in this
framework that a normed space with a Fréchet norm is an
Asplund space.

This paper introduces a notion of a local subgradient for a
lower semicontinuous function on a Banach space. This subgradi-
ent is required to satisfy a uniformity condition on a given bounded
set in the space. The first section establishes the existence of such
subgradients in weakly compactly generated Banach spaces. The
following sections consist of applications of this result. Section two
discusses generic differentiability of convex functions and contains
a simple unified proof that spaces with Fréchet norms are Asplund
spaces and weakly compactly generated spaces are weak Asplund
spaces. In section three general perturbed optimization problems
and the existence of farthest points are discussed. Section four
shows, essentially, that any relatively weakly compact set C in a
Banach space with a locally uniformly convex norm possesses a
generic set of points with nearest points in C. This extends a known
result for reflexive spaces.

Recently Ekeland and Lebourg [11] have introduced the notion
of a local e-support for a function and have profitably applied this
to the study of perturbed optimization problems (including nearest
and farthest points) and generic Fréchet differentiability. Rainwater
[16] has provided a self-contained proof of this last result for convex
functions which was deduced in [11] from more general perturba-
tional theorems. Subsequently Lau [13] has applied the e-supports
to establish the existence of dense nearest points for any closed
bounded set in any locally uniformly convex reflexive space. Since
the results on approximation are deduced from the existence of
appropriate Fréchet derivatives they are unavailable for application
in more general spaces and hence do not provide best possible results
(for nearest and farthest points, particularly). In this paper we
introduce a more general notion of local support, examine the impli-
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cations for generic Gateaux differentiability and apply it to various
approximation problems. Having made the initial adjustments many
of our proofs mirror those in [11] and these propositions will be
given with a minimum of proof. We therefore attempt to stay close
to the notation of [11].

1. K-uniform local e-supports. Let V be a Banach space and
V* its topological dual and let (-, -) denote the canonical bilinear
form on V x V*. Let |||+ denote the dual norm to ||-||. Let F%:
V—RU{+c}. The effective domain of F, dom F, is the set of
points at which F is finite.

Let K be an arbitrary closed, bounded set in V.

DerFINITION 1.1. A continuous linear functional w*e V* is K-
uniformly locally e-supporting to F at u i1ff Flu) < o and there
exists 1) > 0 such that

(1.1) 1in(“+tyg_F(“)g(u*, ¥ —e VyeV
1.2) F(u+tkg_F(u)g(u*,k)~e VEEK,0<t<7.

The set of all such u* will be denoted Sx .F(u) and will be called
the K-e-support of F at w. If it is nonempty, F' is said to be locally
e-supported uniformly on K. The symbol N, .(F) will denote those
u for which S .F(u) is nonempty.

REMARKS 1.2. If K is empty, u* is an approximation to a
Gateaux derivative. If K is the unit ball B, the definition reduces
to Ekeland and Lebourg’s notion of e-supportability. We shall be
mainly interested in the case in which K is (relatively) weakly
compact.

These K-c-supports have analoguous properties to those of e-
supports. In particular Sy .F(u) is a convex set which decreases in
size as ¢ decreases or K increases and satisfies

1.3) w* € ) e Fw) N —Sg.(—Fw) — u* = Fi(u) .

(By Fx(u) we will mean a Gateaux derivative which is approach-
ed uniformly for directions in K; we will say F' is K-smooth.)
Corresponding to the hypothesis (H) in [11] we need:
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There exists on V a nonnegative nonzero continuous func-
(H(K)) tion g of bounded support which is K-smooth whenever it
18 Monzero.

Again, by translation and homotopy, ¢ may be presumed non-
zero at any given point and zero outside as small a ball as needed.

THEOREM 1.2. If V satisfies H(K), then for every lower semi-
continuous F, N .(F') is dense im dom F.

Proof. We proceed as in [11]. Pick w,edom F' and a small
neighborhood N of u, on which F' is bounded below. We now take
g to be nonzero at u, and zero outside an arbitrarily small neigh-
borhood N, N of u, Let

(L.4) G(w) = F(w) + h(w); hu) = —;—(u) .

G is lower semicontinuous, bounded from below and hence, by
Theorem 1.1 of [10], there is some point u, such that

(L.5) Gw) — Gu) = —%sHu—usH Vue V.

Since ¢ is K-smooth and u.e¢dom G cdom k, —h is K-smooth. Let
w* = — hyx(u.). One easily verifies from (1.5) that 0e Sy .,G(u*) so
that, by (1.3),

u* e SK,S/ZG(us) =+ SK,E/Z( - h(utz)) c SK,EF(u’s) .

Moreover, u. < N,, which establishes the density claim.

To give this substance we note that any V which has an equi-
valent K-smooth norm has H(K). Again as in [11], one takes the
composition of the norm with a C, function of bounded support.
Less trivially we have the following proposition.

PROPOSITION 1.3. Let V* have an equivalent strictly convex
dual norm, |||« and let W be any weakly compact set. Then V
has an equivalent W-smooth norm and hence has H(W).

Proof. Let V, be the subspace which is the closed linear span
of W(V,=sp W). By the results in [6, pg. 161] (on factorization
of weakly compact operators), these is a reflexive space (Y, ||| ]|}
with unit ball B(Y) and a continuous linear operator T: Y — V,
such that Wc T(B(Y)). Let T denote the mapping 7T considered
as mapping Y into V and define a new norm |[-]|, on V* by
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(1.6) IF1E =A%+ HT*FI% .
By the renorming theorem of Troyanksi [19] we may presume
that ||| |||+ is locally uniformly convex. Note that |- |, is equivalent

to [|-||« as T* is continuous and is a dual norm since T* is an
adjoint mapping. Thus |-|. induces an equivalent norm |-| on V.
We show that |-| is W-smooth. Notice first that [-| is smooth
since |1, is strietly convex. Let u,€V, and let u, converge to wu,
in norm. Since || is smooth the support functionals f, converge
weak* to f,. Thus |f, + f|lx—2. It follows from (1.6) that
W Tfu, + T lllz = 201 T Iz + 11 Tf.ll1%) converges to zero with n.
Since |||+« is locally uniformly convex, |||Tf., — fulllx —0. In
other words, given ¢ > 0, there is some 7, such that for n = #,
sup (T+(fu, = fuy B) = SUD (fu, = fuy TO) S ¢

be B(Y)
Since W< T(B(Y)), we have

1.7 sup (fu, — fup W) —0 a8 0 —— oo .
wew

The standard equation [6, pg. 2]

]l_ 1u+ty{~[u,[ fu+tu(y)
(1.8) [u[(y)é : §1u+ty1

which holds for any ¢ > 0 and any nonzero y and (1.7) now show
that |w + tk| — |u|/t converges to f,(k)/|u| uniformly for k in W.
Thus || is W-smooth.

In particular, when V is weakly compactly generated the result
holds and W can be chosen to be densely spanning and absolutely
convex. In this case the norm of (1.6) can be said to be “almost”
Fréchet. This is the important case for applications. The sequence
space [,(N) is an example of a space without property (H) to which
the proposition applies. It will be convenient from now on to
denote

|[u*|[x = sup (u*, k)
ke K

and to consider ||-||x as the norm on C,(K), the space of bounded
continuous functions on K endowed with the norm topology.

2. An application to K-Asplund spaces. We will say V is
K-Asplund if given any lower semicontinuous convex function f: V—
R U {+ =}, f is K-smooth on a dense G; subset of (dom f)°. Thus
for K = B(¢) we have the classical notion of a strong (weak)
Asplund space [2], [5]. We introduce the set M. .(f) by
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My (f)
@y _ {u: 20> 0 with sup L+ ) + flu — tk) — 2f(w)

ke K t
0<t<o

<ef.

When K is the unit ball and f is a norm, Sullivan [18] has
studied such sets and called f e-approximately Fréchet. When K=
¢, Mg . (f) is just dom f.

PROPOSITION 2.1. Let K be a symmetric set. Then

(i) Ng,(f) T M. (f) whenever 26 < e.

(ii) If f is convex and lower semicontinuous M. .(f) is open
in (dom f)°.

(il If ueNeso My, .(f) N (dom f)° and K has closed span V
then f is K-smooth at wu.

Proof. (i) follows on applying (1.2) to —f for £ and —% and
then adding the resulting expressions.
(ii) Since f is convex it is in fact locally Lipschitz on (dom f)°
[5]. Also in this case
f<u+ik)+f<u— —1-k>—2f(u)
My (£) = Udu: sup n L <e

”

1
n
=UM,.

Suppose we M, and sup,.r f(u + th) + flu — th) — 2f(w)ft < e — 4.
Now pick 7 such that |ju — w,|], || — .|| = 27 implies || f(u,) —
F@)l| < L|lu, — u,|l. Then if m = max (1/p, n) and if |[v — u|| <7
it follows that u = (1/m)k, v = (1/m)k, v are all within 27 of wu.
Finally, when ||v — %|| < §/4Lm

f<v—l—%k>+f<v—% k>—2f(v)_ fu+ % b )—i—f(u — %k)——Zf(u)
1
m

1
m
ééﬂﬂ_’_ﬂga.

m

Since f(u + A/m)k) + flu — A/m)k) — 2f(u)/1/m is a decreasing func-
tion of m, it follows that ve M, and M, .(f) is open in (dom f)°.
(iii) Since f is convex, d* f(u; k) = lim,_+ f(u+th)— f(uw)/t exists
and is finite at . Since u € N.., M. x(f), we see that d*f(u; k) =
—d*f(u; —k) for all ke K. Since d*f(u; k) is continuous in %k and
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K is generating, we must have d*f(u; h) = —d*f(u; —h) identically
in h which implies that f is Gateaux differentiable with derivative
d*f(u; ). Let us call this derivative u*. Since for ¢ >0 and ke
K we have

(2.2) Slu + tki — f(w) > (u*, k) = fu — tk)t— Sf(w) ,

and as % € [e>o My, .(f), we must have for each ¢ > 0, some ¢ with

f(u+tl;)—f(u) —(u*, k)| <eVkeK, 0<t<d.

Thus f is K-smooth at wu.

We will say that K is generating for V if the closed span of
Kis V.

THEOREM 2.2. If V has property H(K) for some symmetric
spanning set K, V is K-Asplund. In particular every space with
(H) i3 a strong-Asplund space and every weakly compactly generat-
ed space is K-Asplund for any generating weakly compact set K.

Proof. On collecting the parts of Proposition 2.1 together it
suffices to observe that by Theorem 1.2, N..(—f) is dense in (dom
f)° for any l.s.c. convex function f (an examination of the proof
of Theorem 1.2 shows that it does not matter that — f(u) may be
— oo for % not in (dom f)°). Thus by Baire’s theorem N.., Mg .(— f)
is a dense G; set in (dom f)° on which f is K-smooth.

This proof method has unfortunately no hope of dealing with
the general question of when a space is weak-Asplund, but it does
provide a self-contained proof of several different results at the
same time. We also remark that if f is a norm and N, ,(f) =V
for some 6 < 1/2 then V is a strong Asplund space. This is a tri-
vial consequence of the fact that by Corollary 2.1 (i), M, (|| =V
for some ¢ <1 which Sullivan [18] has shown implies V is an
Asplund space.

3. Perturbed optimization. We now examine the substance
of §2 of [11] for our more general local supports. Throughout the
section we suppose K is convex, symmetric and generating. Let
X be a set and f: V x X— R. Let

(3.1 F(u) = in}i{t‘ fu,x) > —c0 VueV.
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Let 4, = {x e X: f(u, x) < F(u) + 6}.

ProrosrTioN 3.1. Assumme that
(3.2) F is K-uniformly locally e-supported to w
and that there exist 6 > 0, 7 > 0 such that

(3.3) Ve e Ay, v— f(v, x) is Frechet-differentiable at v for
hw —ul| =7,

(3.4) {v— fi(v, x): x € A} is equicontinuous at w in V*.
Then there exists 1, 6, > 0 such that
(3.5) diameter {f,(v, 2): [lv—u||=7, v€ 4,}=¢/8 in Cy(K).
Proof. The proof is more or less line for line as that of Pro-
position 2.2 of [11]. We note that since we are only interested in

directions in K and distances in C(K) metric we need only assume
that K — ¢ supports exist.

Let
3.6) Al 0) = {fi(v, 2):|lv —ull =7, flu, ) = F(u) + 6}
and let T.(K) be defined by
(3.7) ue T(K)—13n,0 >0, C(K)-diameter A} (n, 0) <c¢.
ProprosITION 3.2, Assume u <€ T(K) and that there exist a, B>
0 such that

(3.8) {fiw, ):|lv —ull £ a, flv, 2) £ Fu) + B} is norm bounded
n V=

Then T.(K) is a norm meighborhood of u.

Proof. This is now exactly as Proposition 2.3 of [11].

ProposiTiON 3.3. If (3.3), (3.4) and (3.8) hold F 1is locally
Lipshitzian at w. Moreover, if the filter G.(K) generated by
{Af (0, 7): 0; ) > 0} converges to u* in Cy(K), F is K-smooth at u
with Filu) = w*.

Proof. Again the only real difference from Proposition 2.4 of
[11] is that we are only concerned with directions in K and the
topology in C,(K) rather in C,(B). We derive as in [11] that F is
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Lipschitz locally at » and that

lim
t-ot

F(u + tk) —F(u)——(u*,k):()
t

uniformly for ke K. This in conjunction with U,.y 72K =V and
the locally Lipschitzian nature of F implies that F''(u) exists as a
Gateaux derivative. Hence F' is K-smooth.

Thus, collecting propositions yields:

THEOREM 3.3. Suppose that V satisfies H(K) for some symme-
tric, convex generating set K and that for some open set 2 C V every
point of u satisfies (3.3), (3.4), (3.8).

Then F is locally Lipshitzian on 2. Moreover, there is a dense
G; subset T of Q2 such that

(3.9) the filter G, (K) converges in CyK) ,

and

(8.10) F s K-smooth with Fx(u) the limit of G.(K); also Fy
1s continuous from T to Cy(K).

Proof. By Proposition 3.3 F is locally Lipschitz on 2. By
Theorem 1.2, for ¢ > 0, N .(F') is dense in 2. By Propositions 3.1
and 3.2, T.(K) is dense and open in 2. By Baire’s theorem (on )
T = Nuex Tua(K) is a dense G, set in Q2.

Let ueT. For each n in N, G, contains a member of C,(K)-
diameter less than 1/n. By (8.3), (8.8) the filter members eventually
are uniformly bounded in the norm topology on V*. Since C,(K)
is complete the filter converges to some element g in C,(K). Since
UnK = V and the filter members are eventually uniformly bounded
in V*, the filter converges pointwise to a functional w* in V*
which extends g. By Proposition 8.8 this limit is Fx(u).

Continuity in Cy(K) now follows as in Theorem 2.5 of [11].

COROLLARY 3.4. If V is weakly compactly generated, the con-
clusions hold for amy weakly compact generating set. If V has
property (H) the conclusions hold in the norm topology in V*.

We now consider general convex suprema as an application.
Let f(u,x) be a family of lower semicontinuous convex functions.
Using conjugate convex functions (A*(u*) = sup,., (u*, ) — h(u)) we
write (using h** = h)
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Fu) = sup f(u, 2) = sup (u*,w) — f*(u?, @) < o .

u*ev*,ze

THEOREM 3.5. Suppose V is weakly compactly generated by W,
Suppose that f: V x X — R is continuous and convex in u for each
x and that for each w in V there is some M > 0 with

(3.11) flu, ) £ M for xe X.

There is a dense G; set T in V such that F,(u) exists for u
in T and such that

(8.12)  (wy, w) — f*(ux, v,) — Fu) == ||us — Fy(u)|ly — 0.

Proof. We may assume W is symmetric and convex. It suffices
to verify that the suprema version of (3.5), (8.6), (3.8) hold for the
functions (w*, u) — f*(w*, x). Since each of these has derivative u*
with respect to u, it suffices to show that for some m > 0, there
exists ¢ > 0 such that

(3.13) lu—v|l =7 and (u*, v) — f(u*, 2) = F(u) — 1

— [[u*l[=c.

By hypothesis F' is continuous (being finite and lower semi-
continuous) so there exists » > 0 with f(v, x) < F(u) + 1 when ||v—
w|| < 27. For these v we have, therefore,

fr®, ) < 29(lu*|l, + (w*, v) — Flu) + 1
énd so if f*(u*, ) < (w*, v) + F(u) + 1 and ||u — || =7
2= 2wty + @ v —u) = 9wy -
The remaining conclusion is now a direct application of (3.10).
COROLLARY 38.6. Let f(u,x) = f(u —2x) + g(x) where X is a
weakly compact subset of V, f is bounded on bounded sets and con-

vex and g is weakly wupper semicontinuous. (i) Then there is a
dense G, set T in V such that for we T, Fy(u) exists and

F(u) = max flx —u) + g(x) .
(ii) If, in addition, f is a locally uniformly convex function

then it suffices that X s relatively weakly compact and g is norm
wupper semicontinuous and bounded.

Proof. (i) We may suppose that X< W. Since X is bounded
and f is bounded on bounded sets (8.11) holds. Let z,e¢ X, uXeV*
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be a minimizing sequence. We may assume that x, converges weakly
to ®,, On using (3.12) we see that (u}, x,) converges to (Fy(u), ).
Moreover,

(w*, w) — f*w*, o) = (W, w — ) + g — W .

As u} also converges weak* to %y = Fy(u) and f*, being a
conjugate is weak* lower semicontinuous, f*(uf) < lim f*(u;). Also
9(x,) = lim g(z,). Thus

(3.14) Fu) z f(u — x) + 9@ = (u, w) — f*us, ,)
= lim (u, w — x,) + 9(@,) — f*(ws)
= F(u) .

(ii) Suppose X is relatively weakly compact. We may apply
the previous considerations to C =c¢o X and deduce that some
sequence z, in X exists with lim g(x,) = g, and

(8.15) F(u) = lim (ug, w — «,) — f*(us) + 9(@.) = f(w — 2,) + 9, .
Since f(u — z,) + gx,) < F(u) and f is weakly lower semicon-

tinuous we must have

(3.16) flu —x,) — fu — x,); 2, — x, weakly.

(Here we have used the fact that sup,.. f(w — z) = sup,cx f(u — %)
for any lower semicontinuous convex function.) It follows from
(8.15) and (3.16) that

ﬁmf(“;”"—r“;”Ozlmmwzu—%»vwmm=fm~%y

Thus

3.17) lim f<“ Lo

2@_§m—m+mhmkﬂm

To say that f is locally uniformly convex is to say that (3.17) im-
plies # — x,/2 converges in norm to % — z,/2. Thus z, — x, in norm
and z,¢ X. This means that ¢(x,) = ¢, and (3.15) completes the
proof.

REMARKS 3.7. (i) If we let X be singleton in Theorem 3.5
we recover one of the main results of Theorem 2.2.

(ii)  In Corollary 3.6 (ii) one may also consider functions for
which (8.16) implies {r,} converges in norm and proceed without
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(8.17). This is done in [3] for reflexive spaces with f = w(|-|])
where @ is a convex continuous strictly increasing function and
Il - || has property (x) (see §4).

(iii) The case of Corollary 3.6 (ii) in which ¢ = 0 and f is the
square of a norm which is locally uniformly convex is proved by
Lau in [14]. He has no requirement that the space be weakly
compactly generated. However, this requirement can be weakened
if one wishes to dispense with the differentiability of F. Moreover,
in applications this is little liability since span X is weakly com-
pactly generated. Since there is always an equivalent locally uni-
formly convex norm for span X [6] and since any farthest point
in this norm for % in X necessarily is a strongly exposed point of
X, one can then proceed as in Lau’s papers [15], [12] to derive
Lindenstrauss-Troyanski’s original result [19] that every weakly
compact convex set is the closed convex hull of its strongly exposed
points (see the remark at the bottom of page 209 of [11]).

COROLLARY 8.8. Let V be a weakly compactly generated space
(generated by W) and let C* be a weak*-compact subset of V*.
There is a dense G; set TCV such that if we T there is some ¢* €
C* with

(3.18) (¢*, u) = max (u*, u)
u*e 0%
and
(3.19) (cx —e*,u)—0, ¢ e C* = |le¥ — ¢*|ly—0.

In particular, C* is the weak* closed convex hull of these points
satisfying (3.19).

Proof. Theorem 3.5 with X = C*, z=u* f(u,u*) = (w* u)
implies (3.18) and (3.19) and the final conclusion now follows from
a standard separation argument.

Since W is spanning any point satisfying (38.19) is at least
weak*-exposed and in fact a good deal more. In reflexive spaces
they are strongly exposed points. It would be interesting to study
these W-weak* strongly exposed points more carefully, particularly
in duality with W-Asplund spaces.

REMARK 3.9. It suffices for the results of this section that
(3.3) be replaced by

(8.3") VxeA;, v—> f(v,x) is K-smooth at v for ||[v —u|| < 7.
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4, Nearest points. As a final application of K-e-support points
we indicate an adaptation of Lau’s proof method in [13] which
establishes the following result. We say a norm has property (k)
if whenever ||z,|| converges to |[z|| and 2z, converges weakly to x
we have 2z, converges in norm to z. Locally uniformly convex
spaces and [,(S) on any set S are among the spaces with this pro-
perty.

THEOREM 4.1. Suppose V has property (k) and V* has an
equivalent strictly convexr dual norm. Let K be a relatively weakly
compact, norm closed subset of V. There exists in V a dense G,
set T such that each point u in T has a nearest point in K. That
18: there exists k, in K with

(3.20) 1w — k|| = inf [ju — | .

Proof. Let r(w) =inf,..||]u —k|. Let 0 <e <1 be given and
define 4.6, »*) and A, by

(3.21) AG,u*) ={ue V/IK:keK, |k —ul| < rm) + 9
= (u*, k —u) = (¢ — Dr(u)}
(3.22) A, = U{AG, w): | [|u*]|—1] <&, 8 > 0} .

In [13], Lau shows that A, is open and dense in V/K whenever
V has property (H). He then shows that T = ..y 4,. is the
desired set possessing nearest jpoints. Lau’s proof that A, is open
requires no special hypotheses on K or V and his proof that T
satisfies (3.20) relies only on property (x) and relative weak com-
pactness of K.

Lau in fact shows that, for any point % in T and any weakly
convergent minimizing sequence k, in K converging to k, in the
weak closure of K, one has ||k, — u|| converging to ||k, — u]|. It
now follows from (x) that %, lies in K and the infimum is attained.

. It remains to show that A, is dense even in absence of property
(H). We do this in the following propositions.

PROPOSITION 4.2. Given €, > 0 and w,€ V/K, there exist @ in
V, a* in V* and t, > 0 such that

(3.24) % — u,|| =7, a*eS, @),

(3.25) T(ﬂ“(’“;ﬁ))‘“‘@;(w,k—a)—enk—an Vke K, 0<t<t, .

Proof. An examination of (1.7) and (1.8) shows that the norm
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of (1.6) actually satisfies the additional equation:

(3.26) lim L%tk —w)| — |ul _ fulk —w)
L ¢ ||

uniformly for k¥ in K. We can now produce a K-smooth function
of bounded support satisfying the same additional uniformity. If
we repeat the process of Theorem 1.2 for » we derive (in addition
to u* e Sy .r(u.)) that

3.27) Gu, + tk -tug)) — G(u,) > _ %Hk — |
and, setting d = 1/2)r(u,),
(3.28) —h(u. + tk t— u,)) + h(u.) > w*, k—u) — _&Z:_d

whenever 0 < ¢ < §,. If we arrange in advance for g to have its
support in a neighborhood of u, of diameter less than both d and
7, it follows that ||u, — %,]] < d and so r(u.) > d. Then (3.27) and
(3.28) combine to give

8.20) Tt tk ‘t“e” Z ) > g k- ) — L@+l

= +<u*7 k— us) - EHk - ue“
for 0 <t £ t, (t, depends on K and u,) and ke K. Since ||u.—u,||=<

N, 4 = U, and %* = u* are the desired points.

ProOPOSITION 4.8. If w, u* satisfy (3.23), (3.24) for € > 0, then
ueA,. It follows that A, is dense in V/K.

Proof. Let 6 = (t,er(u))/2 where 0 < ¢ < 1/2 and ¢, are as above.
Suppose that
(8.30) ke K and ||k —ul] < r(w) +0.

Since (1 — O)||k — u|| = r(w + td — ), (8.30) and (3.25) combine
to give

A =Bk — ull — |k —u|| + 0 = tw*, k —u) — te||lk — ull
if 0 <t=<t, and k satisfies (3.80). Thus, setting ¢ = ¢,

— () + % > (b — ) — ek — ull

(1]

or
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(3.31) (—1 + 2&)r(w) = —r(u) + %r(u) +e(r(w) +0) = (w*, k —u),
for k satisfying (3.30). Once we have shown that |1 — ||u*||| < 2¢
it will follow that e A,.(8, w*) C A, and u,c A,. as required. This

final assertion is proven below.

PROPOSITION 4.4. If u* lies in Sg .r(w), then

u*fl — 1] =e.
Proof. For any v in V we have by (1.1)

r(u+tvg——r(%) > W h)—e  0<t<tW).

Setting v = h/||k||, s = t/||h]| we have

(3.32) "<“+3h8)‘7(“) > (u*, h) —e||h]] 0<s<sh).

Since = has Lipschitz constant one (é.32) produces

(3.83) A+ )| = u*h) and ||u*|| <1 +¢.

Let || — k.|| — r(w) = ¢, converge to 0. Pick ¢, with ¢,||u—
k.|| = €i* so that

() — (@ + t(ky — W) S [[% =kl —6 = A —E)]|w — K, ||
tn”kn—u” B t'n.”kn_un

=1—Ve,—1.
Congider (8.25) for this choice of k,. It yields

() — r(w + t(k, — w) _ (—u*, kb, — u) .
tal ks — ul s - reslwlite

for # = m,. Since the left-hand side converges to one we have the
desired inequality 1 — e < ||u*||.

We show that in fact this method yields the following theorem.
Here mK = {(x,, @, ***, )i @ = X, = -++ =&, € K}.

THEOREM 4.5. Let ||-ll;,1=1,2, .-, m be equivalent norms
with property (k). Let K be relatively weakly compact and norm
closed and consider

inf max ||k — wll, = F(u,, =+, u,)
keK 1si=m
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where U, 1 =12, -+, m are arbitrary points in [~ V. Then
there is a demse G; set T in II&, V/K which has “simultaneous”
nearest points in K.

Proof. Let ||-||., be defined on I, V by

H(vls M vm)”oo = z:f}a},{m Hvi“z .

Set (v, +++,v,) = 7. Then we may write

F@) = zanHi" — mk|. .

We may consider the sets A., constructed before, for this pro-
blem. Then T = N.., 4. is a dense G, set in J[", V/mK. More-
over, there is for each uw e T, by the construction of T, a minimiz-
ing sequence mk, in mK with

Almk, — ull, — ||mk, — u||,; mk, — mk, (weakly) .

Suppose that ||mk, — u||.. = ||k; — %]} There is some 7 between
1 and n with ||k, — wl; — |[ky — |},

If i =1 it follows from property (£) that %, — u, converges in
|+, to &, — u,. Thus k, converges in each norm (by equivalence)
to k,e K and

F(uu Ugy **°y u'n) = ,_Ina'X ”ko - ut”z .

If 1=+1, ||k, — ull; £ ||ky — %,]|, so that (since ||-||; is weakly
lower semicontinuous) ||k, — u.|l; still converges to ||k, — ull;.
Again using property (k) for ||-]|; completes the proof.

COROLLARY 4.6. If K is a norm-closed relatively weakly com-
pact subset of a weakly compactly generated space V with property
(K), the set of points of V/K with nearest points im k contains o
dense G; set.

This includes Lau’s theorem in [13] as the reflexive case. Some
condition like relative weak compactness is necessary since in the
space ¢, with Day’s locally uniformly convex norm, Cobzas [4] has
provided a convex body for which the corollary fails. Similarly,
some condition like (k) is necessary as Edelstein has exhibited a
strictly convex renorming of 1, for which it fails [9]. It would be
interesting to know whether one can remove the strict convexity
hypothesis of Theorem 4.1.

We note that the algorithm given in [7] for constructing dense
nearest points in uniformly convex space can also be adjusted for
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simultaneous uniformly convex approximation. We also note that
Theorem 4.5 holds because ||-||. has property (x) for directions in
the diagonal.
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