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We study weak containment relations between unitary
representations of a locally compact group G and closed sub-
groups H. We prove that certain weak Frobenius properties
and compactness conditions are equivalent. Moreover, for
amenable G having small invariant neighborhoods at ¢ weak
Frobenius reciprocity (FP) defined by Fell holds for the pair
(G, H) if every element of H has relatively compact con-
jugacy class in G.

Introduction. In [4], Fell considers the following weak version
of the Frobenius reciprocity property (FP): for every closed subgroup
H of a locally compact group G and ze@, «/reﬁ T 18 weakly con-
tatned in LUV, the unitary representation of G induced by +r, 1f
and only if o is weakly contained in the restriction nlH of 7 to H.

Compact groups have property FP by the classical reciprocity
theorem; Fell has shown that abelian groups satisfy FP.

In §2 we deal with a weaker property (RFP): reciprocity above
holds for every +c H and the trivial one dimensional representation
I; of G (not necessarily for arbitrary rel). Property RFP is in-
herited by closed subgroups, we do not know whether this is true
for FP. However, we have shown in [8] that for discrete groups
G properties FP and RFP are equivalent with G to have only finite
conjugacy classes. To get analogous results in the nondiscrete case
we look at the normal subgroup G, of G, the union of all relatively
compact conjugacy classes in G. G is open if and only if there is
a compact neighborhood of ec (@, invariant under the action of G
by inner automorphisms (G €[IN]; see [15], for a proof). It turns
out for the class of IN-groups RFP to be a compactness condition.

THEOREM A. For a locally compact group the following condi-
tions are equivalent

(1) Gel[ININ[RFP]

2) G=0G,.

Also for Lie groups G €¢[RFP] G, is open as it will be shown in
[3]. Thus it follows from Theorem A, that for Lie groups or con-
nected groups G ¢ RFP is equivalent with G to have only relatively
compact conjugacy classes (Ge[FC]).

If G is an IN-group there is a compact normal subgroup K of
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G such that G/K has small invariant neighborhoods at ¢ (G ¢[SIN]).
The results in [8] for discrete groups can be generalized to SIN-
groups. The following theorem shows that groups G € [FC]™ N [SIN]
have property FP. Combining it with Theorem A one sees that for
SIN-groups RFP and FP are equivalent.

THEOREM B. Let G be an amenable SIN-Agroup.A If H is a
closed subgroup of G contained in G, and we G, e H, & is weakly
contained in ;UY +f and only of 7| H weakly contains .

As a corollary we get that the direct product of an abelian
group and a compact group has property FP. It remains an open
problem whether arbitrary [FC] -groups have property FP. The
methods used in §3 to prove the results for SIN-groups do not work
in the general IN-group case.

In §2 we state some general weak containment relations for
unitary representations of arbitrary locally compact groups and then
prove that all conjugacy classes of an IN-group satisfying RFP have
compact closure. Furthermore, we show that extensions of compact
groups with groups satisfying RFP have property RFP. Therefore
the proof of 2 =1 in Theorem A can be reduced to the SIN-group

case.

1. Preliminaries. The following notations will be used through-
out the paper:

C*(@) = C*-algebra of the locally compact group G

4y = canonical bilinear from on L*(G) x LYG)

J@) = flay) and f,(y) = flyx) for a function f on G

[ (y) = flz7'(y)) for an automorphism 7 of G

suppSf = support of f

Cy(X) = continuous functions on the locally compact space X

having compact support

supp ¢ = support of the measure g

x> = subgroup generated by ze¢ G

C(x) = centralizer of

[G: H] = index of the subgroup H

g|Y = restriction of a mapping g to Y

ex C = set of extreme points of the convex set C.

Representation always means continuous unitary representation
on a Hilbert space. G denotes the set of equivalence classes of ir-
reducible representations of G. If m is a representation of G, kerx
denotes the kernel of z, considered as a representation of C*(G). If
S, T are sets of representations, we write S < T if S is weakly con-
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tained in 7. By [2, §18], S < T'if and only if N:.s ker # 2 M. ker .

Let P(G) be the set of all continuous positive definite functions
on G, P(G) & L7(G) endowed with the weak *-topology. On PYG) =
{p € P(G@); #(e) = 1} this equals the topology of uniform convergence
on compact sets in G, sometimes called Pontryagin topology. Every
@ € P(G) defines a representation 7, of G on a Hilbert space §, with
cyclic vector &, such that

P(x) = (T(@)éy | &) for all zeG.

The positive functional on C*(G) corresponding to @ e P(G) is also
denoted by @, M, = {a € C*(®); p(a*a) = 0} is a left ideal in C*(G).

Let N be a closed normal subgroup of G; we set f*(n) = f(xzna™)
for a function f on N and ze@. The extension to C*(N) of the
mapping f— f* of C,(N) will be written as o — a°. An ideal M in
C*(N) is called G-stable if a ¢ M implies a"e M for all xeG. For a
closed subgroup H of G we set P(N, H) = {pe P(N); 9* = ¢ for all
xc H} and PYN, H)= P(N, H)n P{N). PN, H)={pecP(N, H);
P(e) = 1} is convex and compact, E(N, H) denotes the set of all non-
zero extreme points of P(N, H). We write E(N) instead of E(N, N).

Let H be a closed subgroup of G; left Haar measures on G and
H, respectively, are denoted by dx and ds and let 4, and 4, be
their modular functions. For feCu(G) let T,feCyu(G/H) be the
function

T, f(&) = SHf(xs)ds . weG.

If 4 is a representation of H ,U¥ denotes the representation of G
obtained by inducing + to G. For a function f on G we set q(s) =
(dg(8)]4,(8))”* and R(f) = q(s)f(s), s€ H. For ve P(H) let p" be the
Radon measure on G defined by

W) =\ MR, FeCUE) .
By [1, Thm. 1], 2 is positive definite, i.e., p/(f*«f) = 0, let
N™ = {feCy(G); ' (f*«f) =0} and [f) =[f+ N".
The completion of C,(G)/N7 with respect to the scalar product
AT 1La)) = wi(g*«f), [, 9eCu(@)
is denoted by £7. The representation ;U™ of G on 7 such that
ULSY =L-ST, [feCu(@, xeG

is equivalent to U™ [1].



390 ROLF WIM HENRICHS

If H is an open subgroup of G we identify 9" with $, by
[T — 7o(f)é,, Where @€ P(G) is the trivial extension of 7, ¢(z) =0
for z e G\H.

2. Weak containment and the restricted Frobenius property
RFP. If a locally compact group G satisfies FP it has the following
(weaker) property RFP: for every closed subgroup H of G and € H

Actually, if 7 = I, 4 = I, thus 4 = 7| H, we have
I, < ;U= for all closed subgroups H of G

(by [6], this property is satisfied if and only if G is amenable and
it is equivalent to the weak Frobenius property WF1 defined by Fell
in [4]: for every closed subgroup H of G and ne G

7 < ¢U™E) .
Conversely, if e H and I, < ;U*, then FP implies

< Iy therefore « = I,.

We do not know whether FP is inherited by closed subgroups
therefore we deal with the weaker property RFP.

LEmMMA 2.1. If G has property RFP, closed subgroups H and
quotients G/N have property RFP.

Proof.

(a) Every closed subgroup of an amenable group is amenable
and by [6] satisfies WF1. The same holds for every continuous
homomorphic image of G.

(b) Let K be a closed subgroup of H and let Iy < ,U?, e K.
By Theorem 4.3 in [4] and by the theorem on inducing in stages (see
[18], for instance)

UE < JUGUY) = UV . Since G satisfies RFP
I, < ;U7 and I,< zU¥ therefore + = I..

(¢) Let W be a closed subgroup of G/N, N closed normal, and
let Iy < U¥, o =7,e W. Then I, < U¥op, p: G — G/N the canonical
projection. If H = p (W) and v = pepe P(H), op is the cyclic
representation associated with v. If left Haar measures of G and
G/N, H and W, respectively, are normalized such that Weil’s formula
holds, ;U?? and ;U?-p are easily seen to be equivalent: [f] — [Txf]",
feCy(@), defines the corresponding intertwining operator. Therefore
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I, < ;U¥? and + = I, follows from «rop = I.

Let ¢ be a positive definite Radon measure on G. If {f;;iel}
is an approximate identity for C,(G) in the inductive limit topology
we denote by =, the eyclic representation generated by z, and [f;]~.

LEMMA 2.2. 7, is weakly equivalent to the set of representations
7, 1€ 1.

Proof. Clearly {z;ieI}<m,. Let acf. kerz, and fecCy(G)
be given. As

IIF) = mul(OLF) N = l(f — Ff)* = (f — f=f2)
tends to zero and
T )T () = rda)m L) =
we get 7 (a)[f]* = 0. Cu(G@) being dense in $* the assertion follows.

The left regular representation of G is denoted by A4, or simply
A. The crucial step exploring which groups may have RFP is the
following

PROPOSITION 2.3. Let N be an open normal subgroup of G and
let x be an element of G, not in Gp. Then M < U" for every character
v of x> if ome of the following conditions is satisfied

(1) =z has order p, p prime number

(2) x*Ne€(G/N)y has infinite order and {x) N Gy = {e}.

Proof. In both cases {(z) is discrete and <z) N G, = {¢}. Let v
be any character of (x) and let {f;; 7€ I} be a usual approximative
identity for C,(G) in the inductive limit topology. Since N is open
we may suppose supp f; & N for ¢ I. By Lemma 2.2, since \ is the
representation corresponding to the positive definite measure f — f(e),
FeCy(G), N is weakly contained in the set of cyclic representations
w; defined by \ and f,, tel. By [2, 18.1.4], it is sufficient to show
that for every ¢ ¢ I the function defined by » and f; can be approxi-
mated uniformly on compact sets by positive definite functions as-
sociated with U7. Therefore let feCy(G) with K = suppf < N be
fixed and let C be a compact set in G. For ceC, selx), ze@G

define
9(s, ¢, 2) = Saf(c“‘y“1Z“sz>f *(y)dy .

Then
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(UYL = 5 Y@+ 7))

= 3 0@ | fey s fT Dy
= 2 7(8)a(8)g(s, ¢, 2)4o(z™) .

If ¢(s, ¢, 2)#0 27'sz must be in the set K *cK.

Case (1). Let |<{x)| = p and &k = (p — 1)! then z* ¢ G, and there
exists z € G such that z'z*z is not in the compact set Jz=! (K'CK)*".
It follows

2 'xv'z¢ K'CK , 1sigsp—1
therefore g(s,¢,z) =0 if s #¢, ce€C. Thus for every ccC

MF L) = (F* = f)e) = gle, ¢, 2) = (ULL) | [f1)46(2)

Case (2). We may assume that zN is in the centre of G/N: as
G/N is discrete and [G/N: C(#N)] < H={zecG;2zNecC(xN)} has finite
index, therefore (x> N H,={e}. Then if one can prove Ay < U’
N < U < Uz U = U follows.

Now if z27'sz ¢ K~'¢K < Ne¢N, it follows ¢ e N2 'sz2N = sN. There-
fore g¢(s,c,z) =0 for all se(x) and all ze G unless ce (x)N. If
ce N and g(s, ¢, 2)#0 then ccsN forces s=¢ as {x) NN ={¢}. Thus
for all ze G

0 c¢ {(x)N
Maflf) ceN.
Finally, there is a finite set {k;; 1 < 1< m} of nonzero integers such

that CN(x)N\N) € Ur, 2*N. As 2*¢ Gy, k = I, k;, we may choose
z€ @G such that

A@(ULLY L) =

2xtzl ¢ Q (K*CK )*r*i
therefore
zxtiz™ ¢ K'CK forl<iZm.

Thus g(x*, ¢, z) = 0, but if s = x* g(s, ¢, 2) =0 for cc CN ((xIN\N)
as ¢césN. Consequently

(UIFY 1A =0  for eeCn ((B)N\N).

As Me)f|f) =10 if ¢¢ N we have proved: there is ze G such
that (Me)f | f) = 4,NULLF | Lf.]) for all ceC.

COROLLARY 2.4. Let G be amenable and let x¢ Gy satisfy omne
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of the conditions in Proposition 2.3. Then for every vYe (%) the
representation U of C*(@) is faithful (ker U = 0).

COROLLARY 2.5. If G has property RFP every element of finite
order belongs to Gg.

Proof. If not, let n be the smallest number #ne N for which
there exist a group He[RFP] and xc H\H; of order n. Then 7
cannot be a prime number. Otherwise there would exist a character
v of x>, v#1, such that I; < U’ in contrary to He[RFP]. If
n=mr, n+*m, reéN, ¢ H; as n is minimal. By [7, Thm. 3.11],
there is a compact normal subgroup K of H with a®c K. As H/Ke
[RFP] and |(2K)| < n

2K € (H/K), therefore x € Hy, a contradiction.

For example, the euclidean group of the plane cannot have pro-
perty RFP by Corollary 2.5.

LEMMA 2.6. Let G satisfy RFP and let {x) be isomorphic to
Z. Then xeC(x™)y for all neN.

Proof. By Lemma 2.1, the group H = C(x")/{(x")> has -
RFP and z{x") € H, follows from the last corollary. Let kK
be compact such that

{yxy 5 yeClam)} S K<)y S G .
If yey™* = ka™?, ke K, m(y) e Z, it follows
z" = k*a*'®  as yeCla).

Thus z" "™ belongs to the finite set K* N {(x*>. Therefore there is
a finite set M C Z such that

{yey™; y € C(x™)} & {bx"™; ke K, m e M}

whiceh proves the lemma.

If V is a normal vector group in G and <G, zvz v is a
compact element of V for every ve V so that V < C(zx) [7, (3.4)].
Now we can prove

THEOREM 2.7. If Ge[IN] has property RFP then all conjugacy
classes in G have compact closure.

Proof.
(a) First let G be discrete and let 2G, € (G/G)r. By Proposition
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2.3, (2) there exists n e N with 2" e G, (take N = G;). If {x) is not
finite, x ¢ C(x"); by Lemma 2.6 thus 2¢ G, as [G: C(2™)] < oo, and if
{x) is finite x € G, by Corollary 2.5. Therefore (G/Gy), consists of
one element so that G = G, by Lemma 2 in [8].

(b) Let Ge[IN]N[RFP], we may assume G e[SIN]. By [22],
there exists a compact normal subgroup K of G and closed normal
subgroups V, D of G/K, V a vector group and D discrete, such that
(G/K), is the direct product of V and D'. Again we may assume
K = {e}. As G, is open G/G, = (G/Gz)r by (1a), and Proposition 2.3
shows that for every element z in G there exists n ¢ N with 2* ¢ G,.

If the closed subgroup generated by z is compact, x* is compact
in Gy and by [7, Thm. 3.11] z" generates a compact normal subgroup
K of G. As xzK has finite order xzeG,, therefore V < C(x). If
{ay = Z, xcC(z"), and again V S C(x) as V < C(x*). Thus V is con-
tained in the centre of G.

If for xeG 2" =vd, veV, deD we have Cd) = C(z"). As d
belongs to a finite conjugacy class [G: C(z")] < «» and as z¢C(x),
x ¢ G, follows.

It is an interesting question whether groups G ¢[IN] can have
property RFP. It will be shown in [3] that every Lie group or con-
nected group G € [RFP] is an IN-group. Now let H be a closed sub-
group of an arbitrary locally compact group G, reG, q;reﬁ. If K
is compact normal and (H N K) = {I}

V() =vy(s), seH

defines a continuous irreducible representation 4+ of the closed sub-
group HK/K in G/K.

PROPOSITION 2.8. Let weG and let K be a compact normal sub-
group of G such that n(K) = {I}. If w <UY for v H then 4(H N K)
={I} and T < UY.

Proof. Let 7w = m, and 4 = m,, @ € P{G), 7€ P(H). For f€C,(QR)
define £fe Cy(G) by

£f(x) = SK flkx)dx, *€ G where dk denotes the

normalized Haar measure on K. As “f(xky) = Xf(xzy) for all ke K,

1 T am indebted to the referee for pointing out that the proof in [22] contains an
error (in the proof, on the fourth line of p. 828, that L is B-invariant) and for giving
a sketch of how to correct that error: it suffices to prove that when WX D isin [FC]3
with W~ R" and D discrete abelian, then W has a B-invariant complement D;. Observing
first that G=WXD is also in [SIN]z since W is characteristic and open, one can then
apply a splitting theprem of Hofmann and Mostert to G=WxD to find a B-invariant
complement W; to D. Then take D= Wll
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%, y €@, an easy computation shows

@D |, (UaaLF T [ 1F 1) = ULV D) -

Now let a compact set C S G/K and ¢ > 0 be given. C,(G) being
dense in &7 it follows from = < U¥ that there exist f,eC (@),
1 <% £ m, such that

Pk — 3 (Un-[FT [[£1)| Se,  for ke K, wep(C),

p: G — G/K the canonical projection. Since @(zk™) = @(x), k€ K, and
using (2.1) we get

(2.2) lP@) — X (UIS I [ se,  wep(o).

At first, we conclude from (2.2) that there exists a function fe Cy(G)
such that [%f]" # 0, let ||[%f] || =1. By Blattner’s theorem (see
[18, Thm. 4.4]), R((¥f)*=%f) is a positive element of C*(H), let
T = (R((ZfY*=%f))”2. Then for ke HN K

VIRW(T?) = | albs)((5) + )0 s hys)ds

=, a6 W )ds = (T = Wk

therefore (T) commutes with (k) and for all ke HN K
(T, [ 9(T)E) = (T, | 6)

= | RS mp)ermeds = |51 =1.

But then || (i (T)s — ¥(T% | = 0 thus
YEW WD, = P k(D) = WOw(D)s,
for all se H. Since + is irreducible and (T)& +# 0
wk) =1 foral keHNK.

If Haar measures on G/K and HK/K, respectively, are suitable chosen
and if pe P(HK/K) is defined by o(p(s)) = ¥(s), s€ H, it is easy to
see that

(Ul T i [ [Trfi]) = (UHEST HEATD S reG
therefore (2.2) shows # < UY.

COROLLARY 2.9. If G 1is an extenston of a compact group K
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with a group satisfying RFP, G has property REFP.

Prvof. G is amenable, if G/K is amepable, K compact, normal.
If ¢re H is such that I; < ;U¥, Iy x < U¥ holds by the proposition.
G/K € [RFP] implies + = IHK,_K thus « = I.

If pe P(G)

@ H By = | ) )m @), | m@)8,)ds
for he L)(H), x€G. Thus for acC*(H), 2 G

(P*| H)@) = (7, | H)(@)7s(2)§, | To(2)E0)

so that a € M., if and only if (7, | H)(a)7,(x)é = 0. Since &, is
cyclic for 7w, we get a characterization of ker zw,| H by left ideals
corresponding to positive definite functions on H

(2.3) ker 7, | H = DGM"”‘H .

If @ is a class function on G
(2.4 kernw,| H= M,y = ker @, .
We shall make frequent use of these formulas. We apply (2.3) to
prove the following lemma which will be used in §3.

LeMMA 2.10. Let H be a closed subgroup of a locally compact
group G. Then 7, < ;U for ¢ e P(G) if either

G/H has finite volume or
H is normal and G/H is amenable.

Proof. First let H be a normal subgroup of G, G/H amenable.
By (2.3) we have

ker 7[55] H = ;,Q M(QDIH)” = n n M(“MH)’I)S

2€G 8€H

= n ker 7[(¢|H)“

reld

therefore m, | H is weakly equivalent to the set of representations
(,1x)?, *€G. Since the representations induced by (7,4)*, © € G, are
equivalent to ,U*'#

JUME < UM | and 7w, < U™ as G/H is amenable [6].
Now let G/H have finite volume. We state
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NAPIF =G IFTIE,  feCu(@)

where v is an invariant measure on G/H and 7 = @ | H: considering
7, as a subrepresentation of 7,| H and using the fact that 4, and
A4y coincide on H it is easy to check

v e =1 | e oy

= || @b @@ (R Ne mw)m (RGN dyd

where b denotes a Bruhat function for H. Therefore
11 S | b6@) | moo)m (RGN da

- SG,HSH”@S) | RGeS ))& || dsdu(i)

Since the function x — || 7,(R(.f))s, || is constant on cosets (as q(s) =
1, se H) and S blxs)ds =1, 26 G
H

rries (1, Im R | av) )

= v(G/H )SG | @ (RGS)E |I* du()

= 2(G/H)| b@) || TABCSNE | d
but

|, 5@ Il m(RCE I der = 1 LTI

by Blattner’s theorem (see [18, Thm. 4.4]). Now let {f;, 1€} be
an approximate identity for C,(G) in the inductive limit topology
and for t1e1 let

Pi@) = (@S | [£:]7)
o) = (UILLT, A1), xeG.
Then for fe Cy(@)
Pf*f) = I =f I |I" = w(G/H)o(f** )

thus 7, is a subrepresentation of z,, by [2, 2.5.1]. Since =,, is con-
tained in U" and 7, < {7, i€ I} (by Lemma 2.2) n, < U".

ReMark 2.11. If G is first countable we can choose #,> 0,
¢t € N, such that f, = 3,;cn 7.5 *f: € Cyw(G). Then one shows as in [11]



398 ROLF WIM HENRICHS

that [f,]¢ is a eyclic veetor for z, (the lemma used in [11] is correct
if the measure is defined by a positive definite function). Therefore
7, is a subrepresentation of U’ in the case G/H to have finite volume.

COROLLARY 2.12. Let G = G,,, be amenable and let G, 1=1
= m, be an ascending chain of closed subgroups of G. If G, 1s
normal in G, or if G /G, has finite volume, 1 <1 < n, then
T, < oU?'% for all € P(G).

Proof. Let p =@ |G, and suppose

To < e, Urié
then
GUP < GU(G”UMG&) — GU¢!G1 .

Using Lemma 2.10 the assertion follows by induction.

By Corollary 2.9, in order to prove that groups G e[FC]™ have
RFP we may suppose G ¢ [SIN].

3. Topological Frobenius properties for SIN-groups. Let H
be a closed subgroup of a SIN-group G and + be a unitary represen-
tation of H. It has been shown in [9] that the restriction to H of
¢U? contains + as a subrepresentation therefore

THEOREM 3.1. SIN-groups have propertyAWF2 (defined by Fell
in [4]: for every closed subgroup H and e H 4 < U¥ | H).

Representations corresponding to positive definite measures of
metric groups are known to be cyclic. What we shall need is the
following fact.

PRrOPOSITION 3.2. Let G €[SIN] be first countable. If ve P (H)
1s indecomposable then there exists an extension @ € P(G) of v such
that w, is weakly equivalent to LU.

Proof. As G e[SIN] there is an approximate identity for C,(G)
in the inductive limit topology consisting of class functions (see [7]
or [9]). Moreover, we can choose f,€C,(G) and 7, > 0 such that
supports S; of f}«f, are contained in a compact set K and g, =
S r.f#+f, converges uniformly on K to a class function fe C,(G).
Since f; is a class function for ze G

oix): = (UILLY | L)) = o (fF % -1f2)
= p((f¥*fa) -
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We define
P(x) = t(fo-), x€@G

then @ is continuous as x — f,-: is continuous and g is a Radon
measure. Furthermore, ¢ is positive definite as

p@) = lim 3, ro(x) for zeG .

N—00 1=

By Lemma 2.1 in [9] p,| H = pe)Y and by the proof of that lemma
we may assume ('(f) = 1 therefore

PIH =73 r000) =7 S rw(fef) =7
Now let geC(G), S = supp g then
(@ 0> = Srkou | S | 1o@ 11 = g0 1 do
< lo@ 1| 176)11(f — 90537 | dsde

= sup| (F — 0@ |

hence for all a € C*&)

ds-|l g ”LI(G)
5

HNK,

P@) = 3, r000) -
Since 9*(a) = @(a*™"), € @G, by [17, 1.8],
P*(a) = i 7.05(a) for a e C*(G), 2e@.

As 7, > 0 9*(a*a) = 0 if and only if o¥a*a) = 0 for i¢ N thus
ker 7, = N M, = ( ker 7,, .
re@

ieN
By Lemma 2.2, U’ is weakly equivalent to {z,, © € N} hence U7 and
7, are weakly equivalent.

Let N be a closed normal subgroup of G &[SIN] contained in G,
and let Aut (N) be the group of all topological automorphisms of N
with the Birkhoff topology [10, §26]. I(N, H) denotes the subgroup
of all n — xnx, for x in a closed subgroup H of G, then B = I(N, H)
is compact in Aut (N) [7, Thm. (0.1)] and we define as in [17]:

fEm) =\ f7(n)dr where dr is the normalized Haar measure on B.
B
If pe P(N) p%e P(N, H) and p— o7 is a continuous affine mapping
from P(N) onto P(N, H) [17, 1.9].
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Furthermore, for ac C*(N)

0"(@) = | ol .
Since 7 — o°(a) is continuous on B

Mpl{ = _n M,,Z' = n Mpz

zeH
combining this with (2.3) we get for @ ¢ P(G)
(3.1) ker (7?,.(9 | N) — M(QDIN)G = ker ﬂ‘-(?lN)G .

If e PYGQ) is associated with 7€ G, (| N)¥e E(N, G) by Lemma 1
in [13]. Conversely, if ac E(N, G) we can find an indecomposable
function o€ PY(N) satisfying o° = @. By [9, Satz 2] there exists an
extension @ ecex P(G) of o, thus (| N)® = a. The mapping ¢ —
(| N)¢, pecex PY(F), is continuous and « — M, defines a homeomor-
phism of E(N, &) onto G — Max C*(N') the set of all maximal modular
G-stable ideals of C*(N) endowed with hull-kernel topology [17, Pro-
position 4.8]. Therefore

R PrOPOSITION 3.3. 7= — ker (w| N) defines a continuous map from
G onto G-Max C*(N).

REMARK 3.4. If N is open we can consider C*(N) as a sub-
algebra of C*(G) thus ker (x| N) = kerx N C*(N). In this case the
map 7= — ker (x| N) has been studied in [13] and has some more pro-
perties stated in [13, Thm. 1].

Let H be a closed subgroup of G and pe E(N, H). Since P,(N)
is compact, convex there exists @ cex P,(N) satisfying ¢7 = p. By
changing order of integration, for ne N

0%(n) = S oA m))dr = S (S__CP“’(n)dr )da

Iv,® TV, H) I(N,G)

= @%n) thus 0% = @%e E(N, G) [17, 5.1].

In the following lemma we summarize such functorial properties
and further known facts concerning E(N, H) used in this paper.

LEMMA 3.5. Let H be a closed subgroup of Ge&[SIN] and let
N be a closed normal subgroup of G contained in Gj.
1) —o| H maps E(G, H) onto E(H) [9, Lemma 1.3 and Satz
2F.
2 Lemma 1.8 in [9] holds for arbitrary locally compact groups. The notation I(H)

in [9] does not refer to the inner automorphisms of H but rather to the inner auto-
morphisms of G induced by elements of H.
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(2) ®»— (2| N) maps ex P(G) onto E(N, G).

8) If pc E(N, H), p° is in E(N, G).

(4) The closure F(N, H) of E(N, H) with respect to the Pontryagin
topology is locally compact and F(N, H) U {0} 7s equal to the weak
x-closure of ex P(N, H) = E(N, H) U {0} [9, Korollar 2.8].

(6) If N is contained in H, ex P(N, H) is compact [17, 4.2;
12, Satz 1; 21, Satz 1].

Let N be contained in H. Then it is well known that for given
B € PN, H) there exists a unique normalized positive Radon measure
¢ on P(N, H) such that g has resultant g, i.e.,

@ =\ ohdum  forall feLW),

144,

and supp ¢t S ex P,(N, H) holds [20, Satz 1; 17, 2.2]. If N = H the
unique measure g is denoted by f,. For arbitrary subgroups H of
G maximal measures on P,(N, H) (with respect to Choquet ordering)
having resultant 8 don’t need to be unique.

LemmA 3.6. Let N be a closed normal subgroup of G e[SIN]
contained in Gp and for Be PN, G) let 1 be the unique maximal
measure on P(N, G) with resultant r(tt) = B.

(1) If H is a closed subgroup of G and if v is any maximal
measure on P(N, H) such that r)° = B then

supp ¢ = (supp v)® = {0% o € supp v} .
(2) For ac E(N, @)
T, < Ty if and only if acsupp i .

Proof.

(1) The image v* of y corresponding to the continuous affine
mapping p — ¢ from P,(N, H) onto P(N, G) has resultant r()* = g
and

supp v¢ = (supp V)¢ < (ex P,(N, H))* € E(N, G) U {0}

(this follows from Choquet theory and Lemma 3.5). By uniqueness
¢ = v¢ and the assertion follows.
(2) Since g has resultant g

5(a) = SF wa)p(y)  holds for ae C*(N)

1

thus
Mﬁ: ﬂ Mr: ﬂ Mr

7esupp # 07 esupp &
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as ¥ — Y(a) is continuous on P,(N, G) for every a € C*(N). Since a, 8
are class functions kerw, = M, 2 M, = kerzw, if acsuppp. Con-
versely, if z,<zms; M, is in the closure of {M,, 7 < supp #\{0}} in
G-Max C*(N) with respect to hull-kernel topology, therefore « € supp .

THEOREM 3.7. Suppose GeA[SIN] and let H be a closed subgroup
of G contained in Gy. If v H, and we G is weakly contained in
<U¥ then w| H weakly contains +r.

Proof. By [7, Thm. 2.11; 16, Lemma 4.3] any SIN-group G is a
projective limit of Lie groups G/K;, jeJ, K; compact normal. In
particular, every G/K; is first countable. By Proposition 2.3 in [16],
there exists jeJ such that n(K;) = {I}. Since K;H/K; is contained
in (G/K;);, by Proposition 2.8 we may assume G to be first countable.

Now let « ==, Y€ P'(H), and let @ € P(G) be an extension of
7 such that 7, is weakly equivalent to U¥ (such a function @ exists
by Proposition 8.2). Then

7 < U¥ implies 7 |G, <7, |Gz .

By (3.1) ker (z,|G;) = ker w(,q,,¢c and there exists a e E(G;, G) such
that kerz, = ker 7 | G (see Remark 3.4). Next, take some maximal
measure v on P/(G,) with resultant ¢|G,. By Lemma 3.6 there is
pe suppy with o = a (H = {e}, B = (¢ | G)°), therefore

kerw,= N Mp: 2 N Mye = Mo = kerw | G,

zeGp zed

and then
(3.2) w,| H<rw{H.

As in the proof of Lemma 4.4 in [15] one shows: there exists a
net {0,} € P,(G;) and », =0, ie I, with

r{(P|Gr) — 0, € P(Gy)
such that p is the weak =-limit of {0,}. Since
1ol = poe) =1 and liminf||of| =l o] = 0% =1

we may assume P, ¢) =1. Then p = lim p, uniformly on compact
sets in G thus p|H =limp,| H. Since v is indecomposable and
P|H="rY—p;| He P(H), 1€ 1, implies p,| H = v therefore p| H
=9. Then + = x, is a subrepresentation of z,| H and by (3.2)
J < | H follows.

REMARK. Since groups G e[FC] N[SIN] are amenable [14] it
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follows from Theorem 3.7 that they have property RFP. For arbitrary
G € [FC] there exists a compact normal subgroup K of G such that
G/K e[FC} N[SIN] thus G satisfies RFP by Corollary 2.9. This
completes the proof of Theorem A.

LEMMA 3.8. Let H be a closed subgroup of G &[SIN] such that
H = H, and for Be PG, H) let v be a maximal measure on P(G, H)
representing B. If 0¢suppy then

supp sz = {0 € E(H); 0 = p| H, p € supp v}

wn particular, 0¢supp s .

Proof. The restriction map from P,(G) into P,(H) is not weak
x-continuous in general, but if 0¢suppy

suppy € F(G, H) € PG, H)

therefore the map R: p— o | H from supp v into P,(H, H) is continuous.
Since E(H) is closed in Pontryagin topology the image v® of y has
support

R(suppy) € R(F(G, H)) & E(H)
by Lemma 3.5. By the proof of Lemma 2.9 in [9]

B(x) = Ssupwp(x)dv(p) for xeG thus

8(s) :S ¥(s)dy*(7) for seH and then
E(H)

(8| H, h>:S n ) for ke LH)

P

hence v® = ;.

COROLLARY 3.9. Let N be a closed normal subgroup of G € [SIN]
contained 1n Gy and let ac E(N, G). If F, H are closed subgroups
of N, FC H, and if v is a maximal measure on P(H, F') with
resultant «| H then 0¢ supp v.

Proof. Let y, be a maximal measure on P, (N, H) with »(v,) = «,
then {a} = (suppy,)® by Lemma 3.6, therefore 0 ¢ suppy,. By Lemma
3.8 0 ¢ supp M,y and again by Lemma 3.6 0 ¢ supp v.

REMARK. The same holds if « is the resultant of a probability
measure ¢ on P,(N, G) with supp ¢ S E(N, G).
G. Schlichting has pointed out to me the following corollary.
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COROLLARY 3.10. Let G, N, a as in Corollary 3.9 and let H be
a compact subgroup of N. Then tt,; has finite support.

Proof. By [12, Satz 3], E(H) is discrete and
supp lax & E(H) (Corollary 3.9) .

REMARK 3.11. Let Ge[SIN] and N & G, be a discrete normal
subgroup of G. Since every element in N/Z(N) has finite order,
Z(N) the center of N, every finite set in N/Z(NN) generates a
finite subgroup [19, Thm. 4.3.2 and Corollary 2, p. 45]. Thus every
finite subset of N is contained in a normal subgroup M of G such
that

ZIN S M N and [M:Z(N)] < .

THEOREM 3.12. Let G be an amenable SIN-group and H < G
be a closed subgroup. If weG, and if € H is weakly contained in
7| H, then U¥ weakly contains .

Proof. Take ac E(G;, G), 0c E(H) such that |G, is weakly
equivalent to =, and « is weakly equivalent to =, (see Remark 3.4
and the remarks preceding Proposition 3.3). By (2.4), v+ <xn|H
implies 7, < 7, | H < 7, ; therefore

0 € SUpPDP Loz by Lemma 3.6.
It is sufficient to prove
(3.3) T, < {(c,U), xeG}.
Actually, since the representations of G induced by (;,U°)*, € G are
equivalent to ¢U(;,U°) = ,U° it follows from (3.3) and [6]
T < (U r < U < U < ,U”.

Therefore let Y be a compact subset of G,. By [22] there exist
normal subgroups V, L, and K of G such that V is a vector group,
K is compact open in L, L/K Z (G/K), and G, = VL is a direct
product of V and L. Then by Remark 3.11 we can choose normal
subgroups M, Z of G, KS Z < M < L, such that [M: Z] < «, Z/K
is the centre of L/K and Y is contained in N= VM. VZ is an
open subgroup as it contains VK. Now we consider the chain of
subgroups

HC HKC HVZ < HN .

8 See the footnote to the proof of Theorem 2.7.
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Since SIN-groups are unimodular HK/H and HN/HVZ have finite
volume. HK is normal in HVZ as Z/K is the centre of L/K and V
is central in G,. Therefore by Corollary 2.12

8.4) 7w, < zyU® for pe P(HN).

Now let v be a maximal measure on P,(HN, H) with resultant
a HN. By Corollary 3.9 and Lemma 8.8, there exists pesuppvy
such that

olH=o0.

Since a| HN is a class function on HN 07" € supp llo;zy by Lemma
3.6, thus 7w,uv < Ty uy. As kerrw, = ker w,uv we get 7, < Tpzy, and
T, < gy U° follows from (8.4). Sinece HN is open in G, we obtain by
inducing up to G;

w,<7ms and w, < 4,U°

where @ ¢ P(G;) and B P(G,), respectively, denote the trivial ex-
tensions of o and a| HN, @(x) =0 = B(x) if x¢ HN. Since 7, is
weakly equivalent to {(w,)?, x € G} therefore

oo < wge and 7w < {(;,U)"; 2€G}.
Finally, take ve€ E(G,, G) such that =, < 7, then
Ty < TpGiy «

But if B=IN,G) and ne N

gom) = | pemndr = | a@w)ds = aw)
B B
therefore M, , 2 M, . Since E(N, G) is homeomorphic to G-Max C*(N)
and 7| N, a|NeE(N, @)
YIN=a|N
thus 7 and «a agree on Y and 7, < {(;,U°)"; = € G} consequently

m, <A{(,U);2xeG}.

REMARK. Theorem B follows from Theorem 3.7 and Theorem
3.12.

COROLLARY 3.13. For SIN-groups G the following conditions
are equivalent

1. Ge[FP]

2. Ge[RFP]

3. G =Gy
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Proof. Clearly, 1=2, 2=38 by Theorem 2.7 and 3 =1 follows
from Theorem B.
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