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Initial completions of categories (A, U) over a base
category are investigated simultaneously with certain gene-
ralizations of the notion of topological functor. The main
result states that (4, U) has a reflective universal initial
completion if and only if the functor U is topologically
algebraic in the sense of Y. H. Hong. This is analogous to
results of Hoffmann, Tholen, and Wischnewsky that (4, U)
has a reflective Mac Neille completion if and only if U is
semi-topological. In addition, the class of sem-itopological
functors is shown to be the smallest class closed under
composition and containing all topologically algebraic func-
tors. It is also shown that for any (&, M)-functor U (resp.
(B, M)-category) E must be contained in the class of gen-
erating U-morphisms (resp. epimorphisms). Specific construc-
tions of the above completions are given, the first neces-
sitating the new concept of semi-universal morphism.
Examples illuminating the theory are also provided.

0. Background.

0.1. Let X be a category. We investigate categories over X,
i.e., pairs (4, U) where A is a category and U: A — X is a faithful,
amnestic functor, and functors F: (4, U)— (B, V) over X, i.e.,
functors F: A — B with V-F = U. As has been shown in [6], every
small category (4, U) over X has several distinguished initial com-
pletions, in particular:

(a) A Mac Neille completion E*: (4, U)— (4%, U*), which is
characterized either as the smallest initial completion of (4, U), or
as the initial completion which is both initially and finally dense, or
as the injective hull of (4, U) in the category of small categories
over X and functors over X.

(b) A wuniversal initial completion E*: (A, U)— (4% U?), which
is characterized either as the largest initiality preserving, initially
dense, full extension of (4, U), or as the initially complete reflection
of (4, U) in the category of small categories over X and initiality
preserving functors over X.

If A is large, initial completions of (4, U) need not exist, even
for small X. For instance, if X is the terminal category, i.e., the
category with precisely one morphism, then (initially complete) cate-
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gories over X are essentially the same as (complete) partially ordered
classes, and

(a) The partially ordered class (2 x {0, 1}, <), with £ Dbeing a
proper class and

(@, n) < (@, n)— (n<n and @ #+ @),

has no (initial) completion, equivalently no Mac Neille completion.
(b) The partially ordered class (2, <), with 2 being a proper
class and

DWW =—0=0
has a Mac Neille completion but no universal initial completion.

The problem of characterizing those categories (4, U) over X,
which have specific initial completions, has been of considerable
interest. In case the problem is restricted to small-fibered categories,
i.e., if the (specific) completions are required to be S-categories in
the sense of Husek [16], resp. top-categories in the sense of Wyler
[29, 30], it has been solved for the Mac Neille case and X = Set by
Kuéera and Pultr [17]. Recently it has been solved in full gene-
rality and in its small-iberd version by Addmek, Herrlich and
Strecker [2].

0.2. Surprisingly new light is thrown on the above problems
by recent investigations of a different kind. The concept of topo-
logical functors has been subject to various generalizations. The
following concepts are particularly interesting:

(a) (&, M)-topological functors (Herrlich [4], Hoffmann [8],
Marny [18], Briimmer [3], Wolff [27, 28]).

(b) Topologically-algebraic functors (Y. H. Hong [15], S. S.
Hong [14]).

(¢) Orthogonal M-functors (Tholen [19, 20, 21], Wischnewsky
[26)]).

(d) Orthogonal @-functors (Tholen [23]).

(e) Semi-topological functors (Trnkova, [25] Hoffmann [9, 11,
12, 13], Tholen [22, 23, 24], Wischnewsky [24, 26]).

It is known that (a) is strictly stronger than the other 4 con-
cepts, (c) and (d) are equivalent (Tholen [23]) and each of the
above concepts implies (e). Answering the remaining open questions,
concerning the relationships between the above concepts, we will
show that:

(1) The concepts (b), (¢) and (d) are equivalent (Theorem 2.3
below);
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(2) The concept (b) is strictly stronger than (e), but agrees
with (e) under fairly mild side conditions (Herrlich, Nakagawa,
Strecker, Titcomb [7]).

(8) The class of semi-topological functors is the smallest class
of functors containing all topologically-algebraic functors and being
closed under composition (Theorem 2.8 below).

A crucial idea, leading to the above result (1), is the observa-
tion—highly interesting in itself—that for any (&, M)-functor, the
class F must consist of generating U-morphisms only (Theorem 2.1
below).

0.3. Initial completions and generalized topological functors are
linked by the following concept: an initial completion (4, U) = (B, V)
is called (epi) reflective, provided the embedding A<>B has a
left-adjoint (with epimorphic front adjunctions)—which need not be
a functor over X. The following hold:

(1) (4, U) has an epireflective Mac Neille completion iff U is
(epi, M)-topological, provided the base category X is an (epi, M)-
category (Herrlich [4]).

(2) (4, U) has a reflective Mac Neille completion iff U is semi-
topological (Hoffmann [13], Tholen and Wischnewsky [24, 26]).

(3) (4, U) has a reflective universal initial completion iff U is
topologically-algebraic (Theorem 2.7 below).

The basic idea, providing insight in the above results, is the
following. Initial completions, with specific properties as mentioned
above, exist, even for large categories A, in some higher universe
(cf. the constructions in [6]). The objects of the larger “categories”
are just suitable U-sources (X EAY UA)),. Since such sources usually
will be proper classes, they cannot be objects of categories in the
given universe. The basic idea to construct reflective initial com-
pletions of a certain kind is to represent any U-source (X i UA); of
the corresponding type by a single generating U-morphism X I, u4a
such that the following holds: a U-morphism X —f+ UB belongs to the
given U-source iff there exists an A-morphism h: A — B with f =
(Uh)-g. In case this is possible, an initial completion of the desired
kind can be constructed in the given universe, by taking as objects
just those U-morphisms X 9, UA, which represent some U-source

X f’» UA,); of the corresponding type. In the case of

(1) reflective Mac Neille completions, they are characterized
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as semi-final U-morphisms;

(2) reflective universal initial completions, they are characte-
rized as semi-universal U-morphisms, a crucial concept introduced
below (1.4).

1. Basic tools. Throughout this paper, U:4A—X will be
assumed to be a faithful and amnestic’ functor. (Neither restric-
tion is serious. In fact all of our results not concerning initial
completions hold without either restriction.)

1.1. A U-morphism with domain X and codomain A is a pair
(f, A), where A is an A-object and f: X — UA is an X-morphism
with domain X and codomain UA. We will usually denote such a
U-morphism suggestively by X —f» UA. If UAL UB is an X-mor-
phism, for which there is a (unique) A-morphism g: A — B with
Ug = g, we will sometimes express this by writing (inaccurately
but suggestively) that UAS UB is an A-morphism (thus not dis-
tinguishing between g and g).

A U—morphismAX L UA will be said to generate A provided that
for each A-object A and each pair of A-morphisms 7,s: 4 — A the
equality Ur-f = Us-f implies r = s.

1.2. A U-source & with domain X and codomain (A4,); is a
pair (X, &) where X is an X-object and & is a family of U-morphisms
X35 UA, indexed by a class I. Such a U-source will usually be
denoted by (X5 UA),. (Notice that, if U is the identity functor,
then a U-morphism is essentially just an 4A-morphism and a U-source
is essentially an A-source in the usual sense.) A U-morphism is
said to belong to &7 if it is of the form (f;, A,) for some ¢ ¢ 1.

If &¢&=X i UA); is a U-source, X 5 UA is a U-morphism
and (AT»"AZ.), is an A-source such that for each 7¢r

X ua®™ pa, — x 15 pa,
then this will be called a U-factorization of <. If E is a class
of U-morphisms and M is a collection of A-sources, such that (e, A)
belongs to E and (A@Ai)z belongs to M, the above factorization
will be called an (E, M)-factorization of .&”. If every U-source has
some (H, M)-factorization, the functor U will be called (&, M)-fac-
torizable. If morever for any X 4 UA in H, any (A"'—@A,), in M,

U is called ammnestic, provided any A-isomorphism f, with Uf being an X-iden-
tity, must be an A-identity.
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any U-morphism XL UA’, and any A-source (A 5 A); with (Uf)-
e = (Um,)-f for each 7¢I, there exists a unique A-morphism g: 4 —
A’ such that the diagram

X UA
b
/
vy -~ .
(* ) f s Uys;
Ve
Ve
Vs
va’ U4,
Um;

commutes for each 7¢I, the functor U will be called an (&, M)-
Junctor. If, for a given clags F of U-morphisms, there exists some
M such that U is an (&, M)-functor, we will call U an (&, —)-
Junctor. Similarly, (E, —)-factorizations, (—, M)-functors, ete. If
the identity functor on A is an (E, M)-functor then A is called an
(B, M)-category.

An A-source (A@Ai),{ is called U-initial, or just nitial,
provided an X-morphism UA’ LA UA is an A-morphism if all
UA’(—%).—@ UA, are A-morphisms. The dual concept is called
(U)-final sink.

1.3. A functor U: A-— X is called:

— topological, provided it is (identity, initial)-factorizable;

— topologically-algebraic, provided it is (generating, initial)-
factorizable;

— semi-topological, provided for each U-sink (UAiﬁ X); there

exists an A-sink (A4, % A); and a U-morphism X “ UA with Ug, =

e-f; for each iec [ and such that for any A-sink (4, 9%, A), and any
U-morphism X ° UA with Ug, = &-f, for each 7¢I there exists a
unique A-morphism g: A — A with (Ug)-e = &, i.e., such that the
following diagram commutes;

U-morphisms X A UA, appearing in the above setting, are called
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semi-final solutions of the U-sink (UAiﬁX)I, resp. semi-final U-
morphisms.

Obviously, every topological functor is topologically-algebraic,
and every topologically-algebraic functor is semi-topological. More-
over, every full reflective embedding, every regular functor [5],
and every monadic functor into Set is topologically-algebraic. But,
in general (even for the base category of relations), monadic fune-
tors may fail to be semi-topological (Adamek [1]). The following
two concepts will be crucial tools for our investigations.

1.4. A U-morphism X 5 UA is called semi-universal, provided
for any initial source (A'ZrﬁAi),, any A-source (AﬁAi),, and any
U-morphism X —J; UA’ with (Um,)-f = (Uf,)-e there exists a unique
A-morphism ¢: A — A’ such that the above diagram (x) commutes
for each 7¢1.

ProprosITION 1.5. (a) Every wuniversal U-morphism is semi-

final.
(b) Every semi-final U-morphism is semi-universal.
(¢) Ewvery semi-universal U-morphism is gemerating.

Proof. (a) Every universal U-morphism X % UA is a semi-
final solution of the sink (¢, X).

(b) Let X-> UA be a semi-final solution of (UB, % X),. If
(A'”if A); is an initial source, XI» UA’ is a U-morphism, and
(A —&Ai), is a source in A with (Um,)-f = (Uf,)-e for each i¢el,
then—by initiality—each UBK_'_"’_’Q UA’ is an A-morphism. Hence
there exists a unique A-morphism g¢g: A — A’ with f = (Ug)-e, i.e.,
such that (x) commutes.

(¢) Let X 2, UA be semi-universal, and let fi: A —> A’ be A-
morphisms with (Uf)-e = (Ufy)+-e =f. For I={1,2}, m;=1, and
A, = A’, the source (4’ ”lfAi), is initial. Hence there exists a unique
A-morphism ¢: A — A’ such that the diagram (x) commutes. Hence
fl =g = f 20

1.6. The standard enrichment of a U-source & =(X Rat UA), is

the smallest U-source & =X £’>UA,-)J having the following properties:
(a) IS J and the family (f;, 4,); is the corresponding restric-
tion of the family (f;, 4;);.
() If X-5 UA belongs to .&° and Al s any A-morphism,
then X5 UA- I U4 belongs to 7.
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) If X % UA is a U-morphism and (Aﬁ‘A,,)K is an initial A-
Umk

source with each X -5 UA % UA, belonging of &7, then X 5 vA
belongs to .

PROPOSITION 1.7. Let & = (X235 UA), be a U-source, & =
(X ELL UA;); be its standard enrichment, and

i
X U4,
\ Aj
UA

be some (generating, — )-factorization of . Then conditions 1),
(2), and (3) below are equivalent and tmply (4):

(1) (A™A)), is initial.

(2) (AT A4,), is initial.

(8) x5UuaA belongs to S°.
(4) X 2 UA is semi-universal.

Proof. Clearly (1) implies (2), and (2) implies (8).

(3) = (4). Let (A4'™5 A}), be an initial source, (4% 4}); be an
A-source, and X ~£ UA’ be a U-morphism with (Un,)-f = (Ug,)-e for
each ke K. By 1.6 (b) every x5 UA—U—Q—'? UA, belongs to . So
by 1.6 (¢) X EA UA’ belongs to .&°. Consequently, these exists some
jed with (f, A") = (fi, A;). Since X UA generates A, this im-
plies that g = m; is the unique A-morphism making the following
diagram commute:

X vA
Ve
e
f Ug, < Ug,
s
7
7
, r
vA' UA;,
Uny,

() =(2). If (¢, A) = (f;, A;), then m; = 1,;, which implies that
(A ™ A,), is initial.

(@) — (1). Let (A™ A,), be initial. Let UB-> UA be an X-mor-
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phism, such that UB(Um’)'—}i UA, is an A-morphism for each i¢l.

Consider the subclass K of J consisting of those ke., for which
UB (Umk);ib UA, is an A-morphism. It is easily seen that the U-
source (X ﬁi UA,); satisfies all 3 conditions in 1.6, and therefore
K must equal J. Initiality of (A@AJ-) ; implies that UBﬁ» UA is an
A-morphism.

2. Main results.

THEOREM 2.1. If U:A— X 1is an (B, M)-functor then each
member of E must be a generating U-morphism.

Proof. Let U.A— X be an (E, M)-functor. Assume that E
contains some nongenerating U—morphisAm X-% UA. Then there would
exist distinct A-morphisms 7, s: A — A with Ur.e = Us-e = k. Let
I be the class of all A-morphisms, and, for each 7€, let X —{» UA,
be X A UA. Then the U-source (X ELS UA,), would have an (H, M)-

factorization X 75 U4, = X% A’ Y™ UA,. For each feI define:

_(rif mef=s
95 = s otherwise .
Then, for each 1¢l, Ug,-e =k = Um,-¢’ so that by the diagonal
property there would be a unique #: A — A’ such that for each ¢ 1
the diagram

X > UA
7
e
e Ul h/ Ug,,
7
e
¥

A’ UA.

U. Tm 4

commutes. In particular

b r if m,-h =s
Ny * :g: .
' ' s if m,-h #s,

which is impossible.
For a corresponding result concerning locally orthogonal @-func-

tors see Tholen [23], 6.4.

ProPOSITION 2.2. The following are equivalent:
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(1) U has a left adjoint.

(2) U is a (universal, source)-functor.
(8) U is a (—, —)-functor.

(4) U is (generating, —)-factorizable.

Proof. (4) = (1) = (2) = (3) is obvious. (3)= (4) is immediate
from Theorem 2.1.

THEOREM 2.3. The following are equivalent:

(1) U 1s topologically-algebraic.

(2) U is a (semi-universal, initial)-functor.

(8) U is a (@, —)-functor with every U-morphism that is a
X-isomorphism belonging to Q (i.e., U is an orthogonal Q-functor
n the sense of Tholen [23]).

(4) U is a (—, M)-functor with each source in M being initial
(i.e., U 1s an orthogonal M-functor in the sense of Tholen [19, 20,
217]).

Proof.

1) = (2). Let /*(X-> UA)); be any U-source, .&* —(X . UA,),
be its standard enrichment and (X—> UA— gm, UA;); be the (gene-
rating, initial)-factorization of . By Proposition 1.7, (A”—%fAi)I is
initial and X -5 UA is semi-universal.

(2) = (3). Trivial.
(8) =(4). Let (4- >A), be a source in M and UA—+ UA a U-

morphism such that, for each ¢¢l, m,-h = Uf,. Then the outer
square

- Uls
UA i
= UA

7
7
5”
h Eh Uy,
7
e

UA UA.
Um,; ¢

commutes. Since (Ulj, A) belongs to E there exists a unique 4-
morphism ~: A — A such that the above diagram commutes, which

implies & = Uh. Hence (A ™ A), is initial.

(4)=@Q). If U is an (&, M)-functor with each source in M
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initial then by Theorem 2.1 each member of E is generating so
that U is (generating, initial)-factorizable.

The equivalence of (8) and (4) in the above theorem has been
obtained previously by Tholen [23].

2.4. A category over X is a pair (4, U) where U:A—> X is a
faithful, amnestlc functor. A functor over X between categories
over X, (4, U)— (B V) is a functor F: A — B for which U = V-.F.
Such a functor over X is said to be initiality p'reservmg pr0v1ded

that for each U-initial source (A—>A), the source (FA FA),
is a V-initial source. It is called initially dense provided that each
B-object is the domain of some V-initial source with codomain in
F[A]. The dual concept is called finally dense. An initial comple-

tion of a category (4, U) over X is a full embedding (4, U) EA (B, V)
over X for which (B, V) is 4nitially complete (i.e., for which
V:B— X is a topological functor). An initial completion (4, U) —
(B, V) is called reflective if E has a left adjoint R: B— A (where

R need not be a functor over X). An initial completion (4, U) £
(B, V) is called universal provided that FE is initiality preserving
and has the property that for every initially complete category (C, W)

over X, every initiality preserving functor (4, U)— (C, W) over

X has a unique initiality preserving extension (B, V) — (C, W) over
X. An initial completion is called a Mac Neille completion provided
that it is initially and finally dense.

ProrosiTIiON 2.5. If U: A— X 1is topologically-algebraic, then
(A4, U) has a reflective universal initial completion (4, U) —(B, V).

Proof. (1) Construction of (B, V):

The objects of B are all semi- umversal U-morphisms X %, UA.
A B-morphism from X % UA to X5 UA s any pair (f, k) where
X i X'’ is an X-morphism, A4 LA A’ is an A-morphism and the square

X 7 X
e ¢
UA UA

Uk
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commutes. Composition is defined coordinatewise using the composi-
tions in X and in 4. The faithful functor V: B — X is defined by

VX5 UA) =X
and
V(if, k)=1.

In general, V is not amnestic, which is irrelevant here. The
extension E: (4, U) — (B, V) is defined by

EA) = UA 24, paA
and
E(f) = (Uf, ) .

(i) FEA is reflective in B.
For any B-object B = (X LR UA), its EA-reflection is given by

(e, 1)

VA —————— VA

U1,

(iii) (B, V) s initially complete.
Let (X35 VB), be a V-source, where B, = (X, % UA,) for each

1€I. By Theorem 2.8 the U-source (X -e—ﬁ UA,)); has a (semi-uni-

versal, U-initial)-factorization X-> UAY™, UA,. Put B=(X UA).

Tt remains to show that the B-source (B-Z"™ B), is V-initial. Let

B = (Y5 UA) be a B-object, h: VB— VB an X-morphism, and
(B -(hlgi')i B)); a B-source with V(h, g;) = V(f,, m,)-h for each i¢el.
Since Y5 UA is semi-univer§al and (A”iiAi)I is U-initial there ex-
ists a unique A-morphism g: A — 4 such that the following diagram
commautes:
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Y

@)
o
-
[
3 o
i———
o

Consequently (h, g): B—> B is a B-morphism with V(k, ¢) = h.

(iv) E: (4, U)— (B, V) preserves initiality.

Let (A™5 A,), be a U-initial source in 4, let B = (X > UA) be
a B-object, h: VB—> V(EA) be an X-motphism, and (B-"%, ga,),
be a source in B with V(h, g,) = V(Em,;)-h for each ¢cI. Since
X5 U4 is semi-univergal and (A%A,.), is U-initial, there exists a
unique A-morphism g: A — A such that the following diagram com-
mutes:

(2

S
s [z
i~
e§ \
(=
Ll e"}
5

1UA1
U

m;
UA——————= U4,

\

Consequently (h, g): B— EA is a B-morphism with V(h, g) = h.

(v) E is initially dense.
(e, 1)

Let B = (X-% UA) be any B-object. Then B2-5FEA is a V-
initial source with domain B.

(vi) E s universal.

Suppose that (4, U) £ (C, W) is an initiality preserving functor
over X with (C, W) being initially complete. Define a functor G:
B — C as follows: Any B-object B = (X R4 UA) can be interpreted
as a W-morphism X B4 W(FA). Since (C, W) is initially complete



SEMI-UNIVERSAL MAPS AND UNIVERSAL INITIAL COMPLETIONS 419

there is a C-object (denoted by) GB and a W-initial C-morphism
GB% FA such that

WGBs WwFA = X -° UA .

By amnesticity of W, the object GB and hence e, are uniquely
determined. If ¢ = (f,k):B— B’ is a B-morphism with B =

(X' % U4, the diagram

WFA = UA UA' = WFA'
Uk = WFk

X’

commutes. Since GB' % FA’ is W-initial and (Weg)-f = W(Fk-ey)
there exists a unique C-morphism (denoted by) Gg: GB — GB' with
WGg = f. The correspondence B 4B GB G GB' defines a functor
G: (B, V)— (C, W) over X. For any A-object A we have trivially
GEA = FA. Since G, E, and F are functors over X, this implies
that G-E = F, i.e., that G is an extension of F. To see that G
preserves initiality, let (B&» B)); be a V-initial source in B (where

= (X5 UA), B, = (X, UA), and p, = (f, k) for each iel).
Then by construction (see part (iii) above)

5;

WGB = X X; = WGB,
Wep =¢ ;= Wep,
WFA = UA UA,; = WFA,
Uk, = WFk;
. 3zfz
is the (semi-universal, U-initial)-factorization of (X —5 UA,),. To

see that (GBl> GB;); is W-initial let h: WC — WGB be an X-mor-
phism and (C —>GB) be a source in C with (WGp,)-h = Wy, for
each 7e¢I. Since (ALAi), is U-initial and F preserves initiality,
the C-source (FA-2% FA), is W-nitial. Hence W(Fk)-e-h —
Wies,-9;) implies that there exists a C-morphism g¢:C — FA with
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Wg = e-h. Since GBZ FA is W-initial by construction of G, and
(Wey)-h = Wy, there exist a C-morphism %: C — GB with Wk = h.

wC

= WGo,
WGB % i waB;
Wy
e= Wep We B;
WFA »WFA,
WFk

Consequently (GB—g—p—i> GB,); is W-initial. Since F is initially dense,

G: (B, V) — (C, W) is the only initiality preserving extension of F.
This completes the proof.

Surprisingly enough, the property of the above proposition
actually characterizes topologically-algebraic functors, since we have:

PROPOSITION 2.6. If the category over X, (A, U), has a reflec-
tive universal imitial completion, then U:. A— X is topologically-
algebraic.

Proof. Let (4, U)g)(_B, V) be a reflective universal initial
completion of (4, U). For simplicity, let us assume that (4, U) is
a full, reflective subcategory of B, and K is the corresponding
embedding. To show that U: A — X is topologically-algebraic let
& = (X Lt UA)); be any U-source. We must show that it has a

(generating, U-initial)-factorization. Let & = X fﬁ UA;); be the
standard enrichment of . (1.6). Since (B, V) is initially complete,

thgre exists a V-initial source (B ﬁA,-), such that VB =X and
Vf; =f; for each jeJ. Let ¢:B— A be the A-reflection map for
B. Then for each jeJ there exists a unique A-morphism m;: A —
A; with mj;-e=f;. Applying V, we obtain a factorization
x5 va, = x ¥ uaP™ va, of P. Clearly X2 UA is a generat-
ing U-morphism. By Proposition 1.7 it remains to show that
X Ye UA belongs to .&°.

To this end, construct the following category, (C, W), over X:
C-objects are all pairs (H, B) with B a B-object and H a set of
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V-morphisms X LA VB with domain X and codomain B. For each
C-object (H, B) denote by S(H, B) the set of all B-morphisms g: B—
A with domain B, codomain in 4, and such that for each ke H the
U-morphism X LA VB e, UA belongs to .&°. C-morphisms f: (H, B)—
(H', B') are all B-morphisms f: B— B’ with the property that ge
S(H', B') implies ¢gfe S(H, B) [equivalently: such that B Y% Ain
S(H', B), and X% VB in H, implies X% VB v U4 is in
.

W:C— X is defined by W(H, B)= VB and W((H, B) %> (7', B))=
V.

! (C, W) is a category over X. (The fact, that W usually fails
to be amnestic, is irrelevant.) (C, W) is initially complete. To see
this, let (Y5 W(H,, B.)x be a W-source. Since (B, V) is initially
complete, there exists a V-initial source (B X By with V(B it B =
(Y™ VB,),. Let H be the set of all V-morphisms X-% VB with
the property that for each k¢ K and each ¢ge< S(H,, B,) the U-mor-
phism X—h» VB VB, BN UA Dbelongs to .. Then ((H, B) a3
(H,, B))x is easily seen to be W-initial. Next, define F: (4, U)—
(€, W) by

FA-Loany =@, 415 an

F preserves initiality. To see this, let (AEA,,)K be a U-initial
source, let g: W(H, B) — WFA be a X-morphism, and let ((H, B) LA
FA,)x be a source in C with (WFn,)-g = Wy, for each k< K. Since
E. (4, U)— (B, V) preserves initiality, (A@Ak),{ is V-initial. Hence
(Vn,)-g = Vg, implies that there exists a B-morphism g: B FA

with Vg = ¢g. To show that (H, B) 9 FAis a C-morphism,

(H, B)

FA = (¢y A)
Ik
Fnk
Fa, =5 4)

let X LA VB be an element of H. Since all g, are C-morphisms and
1, €S, A), this implies that al X vBSua ™ ya, -

x2vB Y% 4, belong to 2. Since (A™ A,), is U-initial, 1.6(c)



422 H. HERRLICH AND G. E. STRECKER

implies that X% VB-% UA belongs to <. Thus je S(H, B), which
implies by 1.6(b) that (H, B) L FAis a C-morphism with Wg = g¢.
Since (B, V) is a universal initial completion there exists an
initiality preserving extension (B, V) e (C, W) of F over X. Reecall
that (BZ EA,), is V-nitial. Thus (GB- GA,), = ((H, B) 2L
(6, 4,)); is W-initial where, by the above contruction, H is the set
of all V-morphisms X A VB such that X LA VBﬁ} UA; belongs to
. In particular X L VB belongs to H. However, BAEAis a
B-morphism, so that GBS FA is a C-morphism; i.e., (H, B) 5 (5, 4)
is a C-morphism, so that for each he H, ¢h must belong to . In

particular ¢ = e¢-1; must belong to R , Which is what was to be
shown. Hence (4, U) is topologically-algebraic.

Putting the last two propositions together yield , our main result.

THEOREM 2.7. The following are equivalent:
(1) U s topologically-algebraic.
(2) (4, U) has a reflective universal initial completion.

THEOREM 2.8. The following are equivalent:

(1) U is semi-topological.

(2) (4, U) has a reflective Mac Neille completion.

(8) U s the full reflective restriction of some topological
functor.

(4) U belongs to the smallest class of functors that contains
all topologically-algebraic functors and is closed under composition.

Proof. (1) = (2). The proof of this is similar to that of Pro-
position 2.5 where objects of the completion are all semi-final U-
morphisms.

(2) = (3). Trivial.

(8) = (4). Full reflective embeddings and topological functors
are topologically-algebraic.

(4) = (1). Every topologically-algebraic functor is semi-topologi-
cal and semi-topological functors are closed under composition.

It should be noted that the equivalence of (1) and (3) above has
been obtained previously be Tholen and Wischnewsky [24] and the
equivalence of (1) and (2) by Hoffmann [13}.
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3. Examples. Since the initial completions of §2 are obtained
constructively, it is of interest to see what the construction yields
in some special cases:

Topological examples: Let A be any epireflective subcategory
of Top, consisting of T,-spaces only and containing at least one
space with more than one element. Let U: A — Set be the usual
forgetful functor.

PropoSITION 3.1. For any U-morphism X %, UA the Sollow-
g are equivalent:

(1) X 5 UA is semi-final.
(2) X 2, UA is semi-universal.
(3) X 2, UA is surjective.

Proof. (1) = (2). Proposition 1.5.

@ —@). Let X5UA=Xx%UBZ™ UA be the (surjective,
embedding)-factorization in Top. Then B belongs to A, since 4 is

epireflective in Top, and B™ A is U-initial. Hence there exists a
unique A-morphism f: A — B such that the diagram

X va
-
Ve
U e
g9 /f/ UIA
Ve
Ve
UB UA

commutes. So Um is a retraction, hence surjective. Consequently
e = (Um)-¢g is surjective.

3)=@0). If X% UA is surjective let Jf: UA— X be any func-
tion such that e¢f = 1,,. Then X % UA is the semi-final solution
of the U-sink consisting of the U-comorphism f together with all
U-comorphisms UA, EAY X having the property that ef; is a constant
function.

3.2. As a consequence of the above, for any such category
(4, U) over Set the universal initial completion agrees with the
Mac Neille completion and the objects of either are obtained by
“blowing up points” in the spaces belonging to A. Thus we have
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Universal initial completion =

Category A Mac Neille completion

all T,-spaces all topological spaces

all T,-spaces all symmetric topological (=R;)
spaces

all 7,-spaces all HO-spaces of K. Csaszar

all T;-spaces

( = regular + ?Z‘l-spaces) all regular spaces

all Tychonoff spaces

( = completely regular + T'- all completely regular spaces
spaces)

all zero dimensional T,-spaces all zero-dimensional spaces

3.3. Analogously, the universal initial completion (resp. Mac
Neille completion) of the concrete category of separated uniform
spaces is the concrete category of all uniform spaces.

Algebraic examples:

PropPOSITION 3.4. Let U:A— X be a regular functor in the
sense of [4] and suppose that every U-initial source is a mono-
source. Then the following are equivalent:

(1) X 5 UA is semi-universal.

(2) X Sua extremally generates A; i.e., it generates A in
the usual algebraic sense.

Proof.

(1)=(2). Let X5 UA=X2%UBY™ UA be an (extremally

generating, mono)-factorization. Then B A is initial. Hence there
exists a unique A-morphism f: A — B such that the diagram

X UA

. . . . e
commutes. Consequently m is an isomorphism, i.e., X > UA extrem-
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ally generates A.

(2)=(1). Let (B™ A,), be an initial source, (475 4,), be an
arbitrary source, and X i» UB a U-morphism with Um,-f = Uf,-e
for each 7¢I. Let

X, v4=x"vurx % va

and

x L ve=x" vrx-Y. uB

be (universal, —)-factorizations, where F denotes the left-adjoint of
U. Then ¢ is a regular epimorphism. Since (B G A,) 1s a mono-
source there exists a unique A-morphism g: A — B such that the
diagram

FX

5
<

AN
o

commutes. Hence g¢g: A— B is the unique morphism making the
diagram

X UA
-
e
e
I Ug” Uy,
Ve
yd
UB T U4,

commute.
For the following categories the forgetful functors to Set satisfy

the above conditions:
R-Mod, Grp, Lat, Comp Haus.

In general for these categories the universal initial completions
are much larger than the Mac Neille completions; e.g.,

Mac Neille completion - Completely regular
of Comp Haus spaces

& Universal initial completion of Comp Haus .

Comp Haus &



426 H. HERRLICH AND G. E. STRECKER

The wuniversal initial completion of Comp Hawus is the category
Prox of all (not necessarily T,) proximity spaces and proximal maps-
equivalently, the category of totally bounded uniform spaces and
uniformly continuous maps. Analogously, the universal initial com-
pletion of the concrete category of separated complete uniform
spaces is the concrete category of all uniform spaces. A correspond-
ing result holds for regular nearness spaces.

3.5. In general, for regular categories, initial sources need not
be mono-sources; e.g.:

(1) for the concrete category of sets, every source is initial;

(2) for the concrete category of pointed sets, the following
are equivalent:

(i) (X, p) s (X, p); is initial.

(ii) if m,(x) = p, for each 1€ I, then = = p.

In the last case the universal initial completion coincides with
the Mac Neille completion and is the category of all pairs of sets
(X,S) with Sc X and all functions preserving the distinguished
subsets.

3.6. Let Grph be the concrete category of graphs. Objects
are triples (X, d, ¢) where X is a set and d and ¢ are unary opera-
tions on X, satisfying:

cd=d*=d and de =c¢*=c¢c.

The elements of ¢[X] = d[X] are called vertices and the elements
of X\¢[X] are called edges. Morphisms are functions commuting
with the operations ¢ and d

(@) A source ((X,d, c) 5 (X, d, ¢,); in Grph is initial if and
only if: (for each iel, fix = f;y is a vertex) = (x = y is a vertex).

(b) Y-S5 (X, d, ¢) is generating if and only if ¢[Y] contains all
edges of (X, d, ¢).

() Y A (X, d, ¢) is semi-universal if and only if each edge in
(X, d, ¢) has precisely one preimage under e.

@d Y A (X, d, ¢) is semi-final if and only is it is semi-universal
and it satisfies:

e ex) = ¢ = e (dx) = ¢ .

Hence the Mac Neille completion of Grph is properly contained in
the universal initial completion of Grph. The objects of the latter
are obtained essentially by replacing the set of vertices in a graph
by a family of pairwise disjoint (possibly empty) sets. Grph is
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simultaneously reflective and mono-coreflective (but not bi-coreflective)
in its universal initial completion.

Factorizations:

3.7. Theorem 2.1 implies that for every (&, M)-category X, E
must be contained in the class of all epimorphisms of X. In parti-
cular, this implies that the category Set has precisely two factori-
zation structures, namely:

(1) the trivial one; i.e., the (iso, source)-factorization structure
given by the (bijective, source)-factorizations,

(2) the regular one; i.e., the (regular epi, mono-source)-factori-
zation structure, given by the (surjective, point-separating source)-
factorization.

3.8. None of the implications:

(generating, —)-functor

topologically-algebraic functor

semi-topological functor

functor having a left-adjoint

is reversible. For the first consider the identity functor on any
category that is not an (epi, —)-category; for the second see [7];
for the third consider the funetor from a noncomplete partially
ordered class with least element (regarded as a category in the usual
way) into the terminal category. However, in the case that 4 is
an (epi, —)-category, all of the above conditions are equivalent.
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