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Let G be a locally compact group with left Haar measure
r. The well-known ‘“Theorem LCG’’ of A. and C. Ionescu-
Tulcea states that there is a strong lifting of M~ (G,7)
commuting with left translations. Our purpose here is to
prove a generalization of this theorem in ecase G is compact.
Thus let (G, X) be a free left transformation group with
X and G compact. Let v, be a Radon measure on Y=X/G,
and let ¢ be the Haar lift of »,. Let p, be a strong lifting
of M™(Y,v,). We will show that M~(X, ¢) admits a strong
lifting o which extends o, and commutes with G.

In [6], the result just stated was proved when G and X
satisfied certain restrictions. The following theorem, which may
be of independent interest, enables us to remove the conditions
imposed in [6]: Let H be a closed normal Lie subgroup of a
compact group G: then there is a I’ sequence (see 1.2 and [1] in
H, consisting of compact neighborhoods V,(n = 1) of the identity,
such that ¢7'V,g = V, for all geG.

1.

NotaTioN 1.1. Let G be a compact topological group, H a
closed, normal, real Lie subgroup. Let v be normalized Haar
measure on &, and let A\ be normalized Haar measure on H. For
each ge G, define o, H— H:h-—>¢g7'hg. Let § be the Lie algebra
of H; let exp: © — H be the exponential map.

DeriNITION 1.2. ([1]). A D’-sequence im H is a sequence
(W,)z-, of M-measurable subsets of H such that (i) W,o> W, (n =
1); (i) 0 < MW, W, < C-\(W,) for some C > 0 and all n; (iii) every
neighborhood of idy (=identity)e H contains some W,.

PrOPOSITION 1.3. There is a D'-sequence (V,)p.. in H, consist-
ing of compact neighborhoods of idy, such that ¢g7'V,9 = V.(n =1,
ge@@).

Proof. Let W be a neighborhood of 0 in £ such that exp |, is
a diffeomorphism onto exp (W) cC H,, the identity component of H.
Define log to be the inverse of exp|,. There is a neighborhood
Ncexp (W) of idy such that ¢g7'Ng < W(geG). Let @,(x) =logow,o
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exp(x) = log (g7 -exp (¢)-g) for all xe W, = log (N). Then @, W, —
W, and @,00) = 0(g € G).

Each map «, is a continuous isomorphism of H, hence is analytic
([9], Theorem 5.22). Let Ad,:  — $ be the derivative at idye H
of a,, Then Ad,(x)= Dp,(0)-2(x€®). The map g-->Ad, is a
homomorphism of G into GL(9). We show that it is continuous.
Let G, = {geGlg*hg = h for all he H}. Then G, is a closed normal
subgroup of G. The group G/G, acts effectively on H, via the map
n: G/G, X Hy— H,: (9G,, h) — g~*hg. Therefore G/G, is a Lie group,
and the map 7 is analytic ([8], pp. 208, 212, 213). It follows that
g — Ad, is continuous.

Let ( , >, be an inner product on §. Define an inner product
{, >, invariant under each Ad,, by

@, ) = | (Ady(@), Ad,w), VoY@, ¥ e D).

Observe that, if B, ={re9|[|z|| <r, where |[z| = {(x, x)}, then
Ad,B,) = B,(ge@). Also observe that, if m is a Lebesgue measure
on 9, then there is a constant 2 such that m(B,) = 8r*, where k=
dim H.

Consider the measure \|., w. By ([7], Corollary 2, p. 106), there
is a Lebesgue measure m on § and an analytic function p: W— R,
satisfying 0(0) =1, such that \(exp B) = g o(x)dm(x) for each Borel
set BC W. Let W, be a neighborhood oéf 0c9 such that 1/2 <
o(x) = 2(x e W,).

Now let 0 < e < 1 satisfy (1—e)* > 1/2(k = dim H). Recall that
?,0) =0 for all ge G, that Ad,(x) = Dp,(0)-z, that G is compact,
and that (¢G,, 2) — @,(x): G/G, x W,— W is analytic. We can there-
fore find »’ > 0 such that

(") llpyw) — Ady(w)]| < ellx|| for all geG if [[z|| <+ (recall
Hl||* = (x, x)). Choose 7, <+ such that B,,Cc W, and exp (B,)-
exp (B,)cCexp B,, if r <. Let »,=1r/n. Define C,=N,ce P,(B,,),
and let V, =exp(C,). By (*), By, cC, for each n. Hence V,
is a compact neighborhood of idy for each n(n = 1).

We show that (V,)y_, is the desired D'-sequence in H. First note
that g7'V,g=a,oexp(C,)=expop,(C,)=expC,="V, for all geG. Next,
observe that V,V,'=exp(C,) -exp(—C,)Cexp(B,,) -exp(B, )Cexp B,, .
So exp(By-.),,)C V.C V, V., 'Cexp B;,,. So, on the one hand, MV, V)<
Mexp B,,) = S p(@)dm(x) < 2-B8-3-(r,)¢, while on the other hand,

MV 2|, o@dm@) z 1260 - ) > 1480

Hence MV, V1) < 8-30(V,), so (ii) of 1.2 is satisfied with C=8-3".
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It is easy to see that (V,)y., satisfies (i) and (iii) of 1.2. This
completes the proof of 1.3.

REMARK 1.4. The sequence (V,);-, is also a D"-sequence ([1]);
that is, each V, contains a subset U, such that U, U U, U, V,,
and MV,) < C'\(U,) for some ‘constant C’(n =1). To see this, let
8, =1 ~¢)r,/38, and let U, =exp B,,. Then U, -U,' Cexp By_.),,C
V., and it is easy to see that we may choose C’ = 8-8*.

2. The reader is warned that much of the terminology of
this section was discussed in ([6]); that discussion will not be
repeated in all detail.

NoraTioN 2.1. Let X be a compact Hausdorff space, and let
G be a compact Hausdorff topological group. Suppose (G, X) is a
(left) transformation group (thus there is a continuous map 9:G X
X — X:(g,®)— g-x satisfying (i) idy-x =a; (i) ¢,-(g.-®) = (9.92)"
z(xe X;9,9,9.€G)). Suppose also that G acts freely (thus g-x =
x=9=1idy(geG,xc X)). Let Y = X/G be the space of G-orbits,
with the quotient topology; let 7, X — Y be the canonical projection.
Let v be normalized Haar measure on G, and fix a Radon measure
y, on Y. Let M*(Y,vy,) be the algebra of all bounded y,-measurable
complex functions on Y, and let L*(Y,y,) be the (usual) space of
equivalence classes in M>(Y, v,).

DEFINITION 2.2. The Haar lift p of v, is defined as follows:
w5 = (| £@-0dr@)anw) for each 7ec(x).

DEFINITION 2.8. Let p, be a fixed strong lifting ([6], 1.4; see
the references given there) of M~(Y,y,). Let p be a linear lifting
of M>~(X, tt). Note that M=(Y,y,) may be embedded in M~ (X, p)
via f— fomw. Say p extends p, if 0ly>y.y = 0. Say 0 commutes
with G if

o(f-g)x) = p(f)g-2)geG,veX, fe M (X, ) ;
here (f-g)(x) = f(g9-®).

The following theorem was proved in ([6]) subject to various
additional assumptions. We prove it here in full generality.

THEOREM 2.4. Suppose (G, X) is a free left transformation
group. Let o, be a strong lifting of M*(Y,v,). Then there erists
a strong lifting o of M*=(X, pt) which extends p, and commutes with
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G, where ¢ 1is the Haar lift of v,

More notation is necessary before we can discuss the proof of
2.4.

NoTATION 2.5. Let H be a closed, normal, real Lie subgroup
of G. Let Z = X/H, and let 7: X — Z be the projection. Note
(G/H, Z) is a free left transformation group. Write g-z for (gH)-
2(9eG,zeZ). Define a Radon measure v on Z by v = rn(y). Let
» be normalized Haar measure on H. For each ze Z, let \, be the

Radon measure on X defined by \,(f ):SH f(h-2)d\(h) for one (hence
all) xex™(z). Then p(f) = S N (f)dy(z) for all feC(X).

It can be shown that 2.2 follows from 2.6 below. See the
paragraphs under “Proof of 2.2, using 2.7” in ([6]), and the reference

given there. See also the proofs of Theorems 2 and 3 in ([5], Chpt.
V).

THEOREM 2.6. Let H,Z,y, 7w be as in 2.5, and suppose there
1s a stromg lifting 6 of M>(Z,v) which commutes with G/H. Then
there is a strong lifting p of M>(X, p) which extends 0 and com-
mutes with G.

To prove 2.6, we need only revise the proof of Proposition 3.11
in ([6]). For each z,€ Z and fe M*“(X, p), define R/(z,) as in ([6],
3.3-3.5). Thus R’(z) is an element of L*(X,\,). Abusing nota-
tion, we think of R’(z,) as a function on 7#7%(z,). We repeat Proposi-
tion 3.9 of ([6]):

PROPOSITION 2.7. RS %(2)(h - ,) = RI(g - 2,)(ghg™" - 92,) (x, € X, 2, =
n(x,), he H, g€ @).

DeFINITION 2.8. Let (V,)i., be the D’'-sequence of §1. Let
2, e X, z, = w(x,). As in ([6], 38.10, Case I), define

1
MVa)
1

~ MVn)-gHRf(z@(hx@%(h)th)

Tﬁf<xo) =

| B @@ 2@ @)

(here + denotes characteristic function).

ProrosITION 2.9. T/ %(x,) = T{(g-2)geG, x,e X).
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Proof.
.9 — 1 .9 . 1
T = < |, R (M)
= (by 2.7 above) M%}ﬂ)SHRf(g-zo)(ghg"f-gxo)%n(h)dh(h)
= (by (121, 28.126) = RI(G 20002, (WNM(H)

= T'nf(g “2).

2.10. Proof of 2.6. Combine the following: (i) the just-proved
2.9; (ii) the reasoning of the Case I portions of ([6], 3.12, 3.13, and
3.14); (iii) ([6], 3.15).
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