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There are sixteen varieties of lattices that are known
to cover N, the variety generated by the five-element non-
modular lattice N. Fifteen of these are generated by finite
subdirectly irreducible lattices L,, L,, - - -, L,;, and the sixte-
enth is jointly generated by N and the diamond M;. We
show that every variety of lattices that properly contains
N includes one of the lattices M, L,, L;, ---, L;5. Of these
sixteen lattices, the first six fail to be semidistributive; in
fact, every variety of lattices in which the semidistributive
law fails contains one of these six.

1. Introduction. By a wariety of lattices is meant the class
of all those lattices satisfying some fixed set of lattice identities.
With respect to set inclusion the set of all varieties of lattices itself
constitutes a lattice. The least element of this lattice is the class
of all one-element lattices and the greatest element is the class of
all lattices. Moreover, this lattice is distributive [5] and it has
cardinality 2% [1],[7].

Let K denote a class of lattices and let K denote the variety
generated by K. To determine K by finding all of the identities
that hold in every lattice in K is often very difficult. On the other
hand, there is an alternative approach to the problem of describing
K which stems from the well known fact, due to G. Birkhoff, that
a variety of lattices is determined by its subdirectly irreducible
members. In fact, it is customary, where possible, to identify a
given variety of lattices with its subdirectly irreducible members.
For instance, in the lattice of varieties of lattices there is a unique
atom whose only subdirectly irreducible member is the two-element
chain: the variety of all distributive lattices. Covering this variety
are precisely two varieties: one is M,, the variety generated by the
diamond, M, (the five element modular non-distributive lattice); the
other is N, the variety generated by the pentagon N (the five-
element non-modular lattice). While there is a great deal known
about varieties of modular lattices (for instance, that the least
modular variety M, is covered by precisely three varieties, each
generated by its finite subdirectly irreducible members [6] (cf. [4])
the non-modular case has proved to be more difficult to describe.

In [8] R. McKenzie lists fifteen finite, subdirectly irreducible,
non-modular lattices L,, L, ---, L,;, (Fig. 1) each of which generates
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a variety that covers V. A sixteenth cover is jointly generated by
N and M,. Our principal result shows that McKenzie’s list is com-
plete.

THEOREM 1.1. Ewvery variety of lattices that properly contains
N includes one of the lattices M,, L, L,, +--, L,,.

This theorem was first established by I. Rival [9] under the
additional assumption that the variety in question is generated by
a lattice in which every chain is finite. Subsequently, B. Jonsson
succeeded in removing this condition. ,

The proof of Theorem 1.1 consists of three main parts cor-
responding to a cumulative classification of the lattices M, L,, L,, - - -, L,,.

The first part concerns semidistributivity. A lattice L is semi-
distributive if, for all wu,v,2,y,2e€L,u =2+ y =2 + 2 implies
% =2+ yz, and dually, v = vy = xz implies v = 2(y + 2). Call a
variety of lattices semidistributive if each of its members is semi-
distributive. The main result of this part of the proof is of some
independent interest.

THEOREM 1.2. A variety of lattices is semidistributive if and
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only if it contains none of the lattices M,, L,, L,, Ly, L,, and L.

This result was first proved by B.A. Davey, W. Poguntke and
I. Rival [2] for those varieties generated by a lattice satisfying the
double chain condition.

The second part of the proof concerns the behavior of con-
gruence relations in non-modular lattices. Let a, b, and ¢ be elements
of a lattice L which generate a pentagon; that is, be <a<ce<a + b.
We write N(a, b, ¢) to indicate that this relation holds. Call a
quotient ¢/a of L an N-quotient if N(a, b, ¢) for some b. Let L be
a lattice in a semidistributive variety that contains none of the
lattices L, L,, Ly, Ly, L,,, L,;,, and L, The basic theme of this part
of the proof is that projectivities between N-quotients in L behave
like projectivities between quotients in a distributive lattice.

The final part concerns critical edges of a subdirectly irreducible
lattice L. We call a quotient ¢/a of a subdirectly irreducible lattice
L a critical edge if every non-trivial congruence relation on L iden-
tifies @ and ¢. Let V be a variety that contains none of the lattices
M, L, L, ---, L, and let L ¢ V be subdirectly irreducible and non-
distributive. We prove that L has a unique critical edge c/a, that
¢/a is the only N-quotient of L, and that the smallest congruence
relation con(a, ¢) which identifies a and ¢ identifies no two distinct
elements besides a and ¢. Moreover, L/con(a, ¢) is distributive (cf.
L = Ly, L,, or L,,).

Therefore L is locally finite, and since every variety is deter-
mined by its finitely generated subdirectly irreducible members, we
may assume that L is finite. It is now only a matter of straight-
forward calculations to show that if V does not contain L, L, or
L,, then L must be a pentagon.

The final section of this paper is devoted to several results
related to Theorem 1.1.

We are indebted to Mr. Wilfried Ruckelshausen, who called our
attention to a gap in one of our proofs, and also pointed out simpli-
fications of two other arguments.

2. Semidistributivity, The principal aim of this section is the
proof of Theorem 1.2. This generalization of the main result of [2]
is realized by focussing attention on the lattices L°, of all ideals of
L, and L7, of all dual ideals of L. Of course, each of L, L°, and L~
generates the same variety of lattices. Moreover, L is embeddable
in both L° and L*. The advantage of L° over L lies in the fact
that L° is compactly generated, whence weakly atomic. For instance,
for a,bec L there exists an element ¢ in L° such that a < ¢ and
which is covered by a + b (¢ < a + b).
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Theorem 1.2 is an immediate consequence of the following result.

LEMMA 2.1. If the lattice L is not semidistributive, then either
L or L™ comtains a sublattice isomorphic to one of the lattices
M, L,, L,, L,, L, or L.

Proof. Let us suppose that the semidistributive law fails in L.
By duality we may assume that there exist u, «, ¥, 2 € L such that

(1) u=cr+y=c+=z,

but not w = x + yz. We claim that in the larger lattice L°* we can
find elements wu, x, ¥, z that satisfy not only (1), but also

(2) y=r<u,rzy<y,rz<=%.

In fact, given elements wu,x,y,2z€L such that (1) holds and
x + yz < u, we can find 2’ e L° such that x + yz < 2’ < u, and we
therefore have

u=2+y=2 +z,y2=2<u.

In L°* we can then find minimal elements 3’ and 2’ subject to the
conditions u =o' +y' =o' + 2,y £ y,2’ < 2. Then 2'y’ < 9y'. Fur-
thermore, if o'y’ <t < ¥/, then 2’ < 2’ + ¢t < uw and hence u = ¢’ + ¢,
so that ¢t = %'. Thus, ¥’ covers 2z'y’ and, similarly, 2’ covers 2'z’.
Therefore (1) and (2) are satisfied if we replace z, ¥, and z by «’, ¥/,
and z'.

We now assume that the elements u, x, y, 2 € L* satisfy (1) and
(2), and begin by looking at the sublattice generated by y, 2, vy, and
xz. In view of (2) we have

y<xy+z or yley+ 2 =2y,
z<xz+1y or z(xz-+ 1y =xz.

Of the four cases that arise, three easily yield one of the lattices
L, 1 <5, as a sublattice of L°*. First,lety <2y + zand z < 2z + ¥.
Let v = xy + x2z, and observe that y £ x and z £ z, hence y L v
and z £ v. Consequently, yv =2y and zv =22. Also, y + 2=
Yy + v =2 + v, and, therefore, L, is a sublattice of L~ (Fig. 2).
Next, let us suppose that y(xy + 2) =ay and 2 <xz + y. The
lattice generated by v, 2, vy, and xz is a homomorphic image of the
lattice in (Fig. 8). Let v =axy + 2. If 2(y +2) + v =y + 2, then
y, v, and xz(y + z) generate a lattice isomorphic to L, or to M, if
xv = xy, while if x(y +2) + v <y + 2, then x,vy, and a(y +2) + v
generate a lattice isomorphic to L, (Fig. 4). The case in which
y <oy + 2 and z(xz + y) = vz is symmetric to the preceding case,
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and it remains, therefore, to consider only the case in which
ylxy + 2) = xy and z(xz + y) = x2.
Let y, =y and 2, =z, and, for n =0, 1, ---, let

yn+1 = y + xzm zn+l =2 + “;yn .

Then (1) obviously holds with % and z replaced by ¥, and z,. Denote
by (2,) the formula obtained from (2) be replacing v and z by v,
and z,. Suppose (2,) holds, and consider (2,,;). We may assume
that v,2,, = 2y, and 2,¥,,, = x2,, for otherwise one of the three
cases already considered would apply with y and z replaced by v,
and z,. As before, we can assume that y,(xy, + 2, = xy, and
2. (22, +v9,) = xz,, for otherwise we are done. We have z <z,
and z £z, so z,,, £ 2, and hence, xzz,., < 2., If 22, <t <Z,.,
then the elements, x, z, and ¢t generate a lattice isomorphic to L,
(Fig. 5). We may, therefore, assume that zz,,, < 2,,, and, similarly,
Ypis < Ynsae We may also assume that y,.,z,., <z, for otherwise
Yy TYoyy a0d y,..2,,, generate a lattice isomorphic to L,. Thus, we
may assume that (2,) holds for all =.

In L~ we now form the join y, of all the elements y,, and the

join z_ of all the elements z,. Obviously
U=0L 4 Yo =2+ By Yoo + Reo =Y + % .

Furthermore, x £ y, for all » and, therefore, x £ y... Thus, 2y, < v..,
and since xzy, < y, for all n we have in fact that xy., < v..; similar-
ly 2z, < z,. Finally, from the fact that zy, + 2z, < ¥, 20 = @
for all n we infer that zy,. = 22z, = ¥.%2..

Dropping the subscripts in order to simplify the notation, we
now have four elements u, z, ¥, and z in L°* that satisfy (1) and (2)
and, in addition, zy = 2z = yz. Letting v = x(y + 2), we consider
four cases depending on whether or not the equationsy +z =9y + v
and ¥ + 2z =2z + v hold. If both equations fail, then the elements
Y, 2,4+ v, and z + v generate a homomorphic image of L, (Fig. 6).
We may assume that this is a proper homomorphism, so that » = yz;
then z, y, and 2z generate a lattice isomorphic to L,. If just one
equation holds, say, ¥y + 2 = v + v >z + v, then y, 2z, and v generate
a lattice isomorphic to L,. Finally, if both equations hold, then
9, 2z, and v generate a diamond.

This completes the proof of Lemma 2.1, and therefore also the
proof of Theorem 1.2.

The remainder of this section is concerned with the behavior
of congruence relations in a semidistributive lattice. We first dis-
pense with the necessary preliminaries.

Given two quotients p/q¢ and #/s in a lattice L if v = p + s and
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8 = q then we say that p/q transposes weakly uwp onto r/s and that
r/s is a weak wpper transpose of p/q, —in symbols p/q ", r/s, —and
we refer to the mapt—t+ s (t€p/q) as a weak upper transposition.
Dually, if gr = s and » < p then we say that p/q transposes wealkly
down onto r/s and that »/s is a weak lower tramspose of p/q, —in
symbols p/g\,,7/s, —and we refer to the mapt—tr (tep/s) as a
weak lower transposition of p/q onto r/s. If there exists a sequence
of quotients x,/y,, 2./¥,, - -+, /¥, With x,/y, = p/q and z,/y, =r/s such
that, for each 7 < =, x,/y; transposes weakly up or down onto .,/
Y.+, then we say that p/q projects weakly onto r/s, and we refer
to the composition of the weak transpositions of z,/y; onto x,.. /vy,
for 1 =0,1, ---,n — 1 as a weak projectivity of p/g onto 7/s.

If both p/q 7, 7r/s and r/s\,, »/q, that is, if »p +s =1 and
ps = q, then we say that p/g transposes up onto r/s and that r/s
transposes down onto p/g, —in symbols p/q “r/s and r/s’\, p/q,
—and we say that »/s is an upper tramspose of p/g and p/q is a
lower tramspose of r/s. In this case the maps¢ —t + s (t€p/q) and
t—tp (ter/s) are referred to as an upper transposition of p/g onto
r/s and a lower transposition of /s onto p/q, respectively. If there
exists a sequence of quotients x./y,, 2./¥., - -, %./¥. With z,/y, = p/q
and z,/y, = r/s such that, for each 7 < n, x,/y, transposes up or down
onto x,,,/y,.,, then p/q is said to project onto r/s, and the composi-
tion of the transportations of z,/y, onto z,../y,., for 7 <m is called
a projectivity of p/q onto r/s.

Our next lemma concerns the possibility of shortening a sequ-
ence of weak transpositions. Let us suppose that p/q projects weak-
ly onto #»/s in n steps, say

D/9 = TolYy " w T/Y, w0 Po/Ys 0 XY = T[S .
Let n > 2. If there exists a quotient u/v such that

xo/yo \Awu/v /wxz/yzf

then we can shorten the sequence of weak transpositions by replac-
ing the two quotients x,/y, and x,/y, by the single quotient w/v. In
a distributive lattice this can always be done, and the non-existence
of such a quotient u/v is therefore connected with the presence of
a diamond or a pentagon as a sublattice of L. If L is semidistri-
butive, then this sublattice must of course be a pentagon. The aim
of the lemma is to describe the location of the pentagon relative to
the quotients =z,/y,.

LEMMA 2.2. Let L be a semidistributive lattice, and let x,/y,,
x./y, and /Yy, be quotients in L such that )y, " /Y, \w Lo/ Yoo
Then either there exists a subgquotient p/g of x,/y, such that, for
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Fig. 10

some quotient w/v, plq \ u/v /" %,/Y,, 0+ else there exist a,b,ccL
with N(a, b, ¢) such that either bjbc is a subquotient of x|y, or else
(a + b)/b transposes down onto a subquotient of x,/y,.

Proof. Let x) = x(y, + 2,). If « + 9y, <z, + ¥, then the ele-
ments a = x; + ¥, b = x, and ¢ = y, + x, satisfy N(a, b, ¢), and b/bc=
xo/%, is a subquotient of z,/y, (Fig. 7).

Let z, + y, = 2, + y,. By the semidistributivity of L, x, + y,=
Toky + Yy = X2y + v,. If 202, + Y, < %,, then the elements a = 2.2, + ¥,
b=y, and ¢ = 2, satisfy N(a, b, ¢), and (o + b)/b transposes down
onto the subquotient x,/x,y, of =,/y, (Fig. 8).

Finally, if xzx, + ¥, = x,, then the subquotient (x,y, + x.2.)/%.y,
of z,y, transposes down onto the quotient x,x,/x,y,, which transposes
up onto 2,/v,.
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3. Projectivities between N-quotients. Consider a variety V
that contains none of the lattices M, L, L,, ---, L, and a lattice
LeV. Our aim in this section is to show that projectivities be-
tween N-quotients in L behave like projectivities between quotients
in a distributive lattice.

To this end we require a preliminary result concerning lattices
determined by defining relations (relative to the variety of all lat-
tices). The result is most easily formulated by means of a dia-
gram; indeed, the proof itself becomes quite transparent when pre-
sented pictorially.

LEMMA 8.1. Let L be a semidistributive lattice generated by
three elements x,y, and z, with x S xy + 2z and vz Zy. If L does
not have o sublattice isomorphic to L, L, or L, then L is a homo-
morphic image of the lattice in Fig. 9.

Proof. It is easy to check that Fig. 9 represents the lattice
with the defining relations z < 2y +z, 22 < ¥, (®+Y)z=Yz, (x+y2)y=
xy + yz, and x 4 y(xr + 2) = (x + y)(@ + z). It therefore suffices to
show that under the hypotheses of the lemma the last three of these
relations hold.

The lattice determined by =, z, 2y, and yz and the defining rela-
tions # < 2y + z and zz < y (relative to the variety of all lattices)
is pictured in Fig. 10. In order to avoid L, we must have x, = «,,
where z, = xy + (x + yz)z and z, = yz + xx,. Since (xy + yz) + z,x=
2, =, = (xy + y2) + (¢ + y2)z, semidistributivity yields x,=(xy+yz)+
xx(® + y2)z = xy + yz. As z(xy + yz) = yz, we conclude that
(x + y2)z = (& + yz)zx, = (x + yz)z(xy + yz) = y2. Hence, by the
semidistributivity of L, (x + v)z = y2. Next, check that the ele-
ments z, 2, 2y, y2 and (x + y2)y generate a homomorphic image of
the lattice in Fig. 11. To avoid L, we must therefore have
(x + y2)y = 2y + yz. Finally, observe that the elements v, z,  + ¥,
z + 2z and x 4+ y(x + z) generate a homomorphic image of the lattice
in Fig. 12. To avoid L, we must therefore have x + y(x + 2)=
(x + )@ + 2).

For the remainer of this section let L be a lattice in a variety
that contains none of the lattices M,, L, L,, ---, L,,.

LemmA 3.2. If a,b,¢c,a',¢ €L, N(a,b,c), and c/a /c'/a’, then
N@', b,¢) and, for all tecla and t'ec'fa’,{t+ a)e=1t and
te +a" =t

Proof. We have ca’ =a and ¢ + o' = ¢’. Taking z=¢, 9y = a/,
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Fig. 11 Fig. 12
c b c b
t
a a'b a a'b
Fig 13 Fig. 14
c+a'b
4 b
U 1
¢ b b b b
a'(c+b)
a+a'b
Fig. 16 Fig. 17
Fig. 15 ¢

and z =b in Lemma 3.1, we see that N(a/,b,¢'). For tec/a we
must have (t + a'b)c = t, for otherwise the lattice generated by o',
b, ¢, and ¢t has a sublattice isomorphic to L,, (Fig. 13). Similarly,
for ¢’ €(¢c + a'b)/(a + a'b) we must have ct’' + a'b =1 to avoid L,
(Fig. 14). Dually, for t'ec’/a’ and tec'(c + b)/a’(c + b) we must
have t(c +b)+a =t and (¢t + a’)e + b) =t¢. Finally, for te
(¢ + a'b)/(a + a'db) and ¢ ec'(c+ b)ja’(c+b) we must have
(t + a'(c +b)c+abd)=t and t'(c + a'd) + a’(¢c + b) =t' in order to
avoid L, (Fig. 15).

We conclude that the transpositions ¢ —¢ + o’ and ¢’ — ¢¢ are
isomorphisms between the quotients ¢/a and ¢’/a’, and are inverses
of each other, as was to be shown.

COROLLARY 3.3. If the N-quotient c/a in L projects onto a
quotient u/v then wu/v is an N-quotient, and the projectivity is an
isomorphism.
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COROLLARY 3.4. If am N-quotient c/a in L projects weakly
onto a quotient ufv, then a subquotient of c/a projects onto ujv.

LEMMA 3.5. If c¢ja,1=0,1,2, are N-quotients in L with
cO/a/O /‘ cl/al \l c2/(12 then CO/aO \l cocz/aoaz /' c2/(1’2‘

Proof. We have ¢, = ¢, + a, = a, + ¢,, hence by the semidistri-
butivity of L, ¢, = a, + ¢,c,. It follows by Lemma 3.2 that

Ay + o€, = (@ + €€, + a,)C, = €,6, = €,

and, similarly, a, + ¢, = ¢,. Also, ayec,) = ca.c, = a,a, and
az(cocz) = QyAs.

COROLLARY 38.6. If the N-quotient c/a im L projects onto a
quotient w/v, then cla /" x/y \, u/v for some quotient x/y.

Proof. Apply Corollary 3.3 and the dual of Lemma 3.5.

COROLLARY 38.7. If c¢/a is an N-quotient im L, then con (a, ¢)
does mot collapse any montrivial quotient w/v with v < a or ¢ = v.

4. Critial edges. Let V be a variety that contains none of
the lattices M,, L,, L,, -+, L, and let L € ¥V be a subdirectly irreduc-
ible, non-distributive lattice. Our aim in this section is to show
that L has a unique critical edge ¢/a and that c¢/a is also the only
N-quotient of L. It follows that L/con(a, ¢) is distributive and that
L is locally finite.

LEMMA 4.1. If ¢/a is a critical edge of L, then ¢ covers a, and
c/a is am N-quotient.

Proof. Since L is non distributive and semidistributive, it has
an N-quotient u/v. Since con(u, v) identifies ¢ and ¢, there exist
elements «,, 2, -+, 2, € L with ¢ =2,>2, > +++ > 2, = a such that
u/v projects weakly onto each of the quotients x,/x,,,. By Corol-
laries 8.8 and 8.4, all the quotients x,/x;,, are N-quotients, and, of
course, they are all critical. Hence, all the congruence relations
con(x;, x,,,) are equal, and by Corollary 3.7 this implies that n = 1.
Thus, ¢/a is an N-quotient. To show that ¢ covers a we again ap-
peal to Corollary 3.7.

LeMMA 4.2. All the N-quotients in L are critical edges of L,
and they are all projective to each other.
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Proof. Choose a critical edge ¢/a of L. By the preceding lemma,
a < ¢, and ¢/a is an N-quotient. By Corollary 3.4, every N-quotient
u/v has a subquotient w'/v’ that is projective to c/a, and is there-
fore a critical edge of L. Furthermore, %'/v cannot be a proper
subquotient of w/v, for if, say, 4’ < u, then con(u, ') collapses u'/v’,
contrary to Corollary 3.7. Thus wu/v = w'/v’ is a critical edge of L
projective to c/a. ‘

LEMMA 4.3. Let 0 be the smallest non-trivial congruence rela-
tion on L. Then L/0 is distributive and, for all u, ve L with u > v,
0 identifies w and v if and only if u/v is an N-quotient.

Proof. By the preceding lemma, & collapses all the N-quotients
of L, whence it follows that L/6 cannot contain a pentagon. Since
L/6 belongs to V, it does not contain a diamond either, and it must
therefore be distributive. The second part of the lemma follows
from the fact that, by Lemmas 4.1 and 4.2, the N-quotients in L
are precisely the critical edges.

The next step is to prove that con(a, ¢) idenitfies no two distinet
elements other than ¢ and e.

LEMMA 4.4. If c¢/a is a critical edge of L, them a is meet ir-
reducible and ¢ is join irreducible.

Proof. By Lemma 4.1, a0 < ¢ and ¢/a is an N-quotient. Let us
assume that o is meet reducible; that is, a = ¢d for some d > a.
Then con(a, d) identifies ¢ and ¢, and, hence, there exist quotients
2/¥;, 1 = 0,1, -+, n, with z,/y, = d/a, ¥y, = @ and z, = ¢, such that,
for ¢ < m, «,/y; transposes weakly up or down onto z,,,/y,.,. We as-
sume that % has been chosen as small as possible. Clearly, n = 2.

The first two weak transpositions go one up and the other
down, and the order cannot be reversed by replacing z,/y, by another
quotient. This is obvious when = > 2, for if the order could be
changed, then the sequence of quotients could be shortened by re-
placing «,/y, and =z,/y, by a single quotient. Regarding the case
n = 2, we need only observe that we cannot have d/a \, u/v 7, s/a
with s = ¢, for then c < u + a < d.

First, let us suppose that d/a 7, /¥, \\» 2./¥.. By Lemma 2.2,
there exist a’, b, ¢’ € L with N(a/, b, ¢/) such that either b/bc’ is a
subquotient of d/a, or elso (a’ + b)/b transposes down onto a sub-
quotient of d/a. In either case, ¢ < b. By Lemma 4.2 ¢/a and ¢'/a’
are projective, whence it follows by Lemma 3.2 that N(a, b, ¢).
However, this is impossible since a < b.

Next, let d/a \,, 2,/y, . %./¥,. By the dual of Lemma 2.2 there
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exist o/, b, ¢’ € L with N(a’, b, ¢’) such that either (¢’ + b)/b is a sub-
quotient of d/a, or else b/be’ transposes up onto a subquotient of
dja. As before, N(a,b,c), thus a £ b, and (o’ + b)/b cannot be a
subquotient of d/a. Also, b/b¢’ cannot transpose up onto a sub-
quotient of d/a, for this would imply that a + b < d; hence, ¢ < d.

COROLLARY 4.5. L has only one critical edge c/a, and con({a, ¢)
tdentifies no two distinct elements of L other than a and c.

Proof. By Lemmas 4.1 and 4.2, all the critical edges of L are
projective to each other, but by Lemma 4.4, a critical edge cannot
be projective to any quotient distinet from itself. Hence, L has
only one critical edge. The second statement of the lemma follows
by Lemma 4.3.

COROLLARY 4.6. L s locally finite.

Proof. If ¢(n) is the order of a free distributive lattice with
n generators, then an n-generated sublattice of L can have at most
é(n) + 1 elements.

5. Proof of Theorem 1.1. Let V be a variety that contains
none of the lattices M,, L,, L,, ---, L, and let L e V be a subdirectly
irreducible, non-distributive lattice. Since any variety is determined
by its finitely generated subdirectly irreducible members we may
take L to be finitely generated; whence, by Corollary 4.6, L is, in
fact, finite. Let ¢/a be the unique critical edge of L. To complete
the proof of Theorem 1.1 it would suffice to show that L must be
a pentagon. This is the objective of this section.

LEMMA 5.1. There exists be L such that N{a, b, ¢), bc < a and
c<a+b.

Proof. Choose bel with N(a,b,¢) so that the quotient
(a + b)/bc is minimal. Given ¢ <t < a + b, we cannot have bt = be,
for then ¢/c would be an N-quotient, contrary to the fact that ¢/a is
the only N-quotient in L. Letting b = bt, we therefore have
a<a-+0b, and hence, ¢c < a + b by the meet irreducibility of a.
Thus N(a, V', ¢), and in view of the choice of b this yields a + b'=
a +b; hence, t =a +b. Thus, ¢c <a + b and, by duality, bc < b.

LEMMA 5.2. The elements a and ¢ are doubly irreducible.

Proof. By the preceding lemma we can choose beL with
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N(a,b,¢),be < a and ¢ < a + b. According to Lemma 4.4, a is meet
irreducible and ¢ is join irreducible, so that by duality it suffices
to show that ¢ is meet irreducible. If this is not the case, then
there exists d ¢ L with ¢ = (¢ + b)d and ¢ < d. As in the proof of
Lemma 4.4, we see that there exists a quotient u/v such that one
and only one of the following two statements holds:

(i) dJc transpose weakly up onto a quotient that transposes
weakly down onto u/v;

(ii) d/c transposes weakly down onto a quotient that transposes
weakly up onto u/v.

We shall show that either case leads to a contradiction.

Case (i). By Lemma 2.2 and the fact that c¢/a is the only
N-quotient in L, there exists b’ ¢ L with N(a, b’, ¢) such that either
b'/b'c is a subquotient of d/e, or else (a + b')/b’ transposes weakly
down onto a subquotient of d/c. Regardless of which alternative
applies, we have ¢ < b’, contrary to the fact that N(a, ¥, ¢).

Case (i1). Using the dual of Lemma 2.2, we obtain b € L with
N(a, b, ¢) such that either (a + b’)/b’ is a subquotient of d/c or else
b'fv'e transposes up onto a subquotient of d/c. The former case is
excluded by the fact that ¢ £ 5. In the latter case o’ < d, and
hence, (a + b)(a + b') = ¢. The elements a, b, and b’ generate a sub-
lattice K of L with the property that the congruence relation
0 = con(a, ¢) identifies no two distinet elements of K except a and
¢, and that K/# is distributive. Since 6 identifies the elements
(@ + bY@ + ') = ¢ and @, K/6 is a homomorphic image of the lattice
in Fig. 16.

Let a > ab’ + ab. Then 6 does not identify ¢ and ab’ + ab.
Also, 6 does not identify ¢ with either @ + b or a + b’. Consequent-
ly, @« + b,a + b, and b + b’ generate, in this case, an eight element
Boolean algebra. Thena + b,a + b/, b + b, and a generate a lattice
isomorphic to L,,.

Thus, we must have a = ab + ab’, and K/ must be a homo-
morphic image of the lattice in Fig. 17. Actually, this homo-
morphism must be an isomorphism, since no two of the elements
b, b, and ¢ are comparable modulo . However, this implies that K
is isomorphic to L., so this too leads to a contradiction.

LEMMA 5.3. L is a pentagon.

Proof. By Lemma 5.1 we can choose be L so that N(a,b, ¢),
be<aand ¢c<a+b. Let w=a+ b and v = be.
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We claim that u(s + t) = us + ut for all s,te L. By Lemma
4.3 and Corollary 4.5, this holds modulo con(a, ¢), and the only way
the equation can fail is if u(s + ¢) = ¢ and us + ut = a. Since ¢ is'
doubly irreducible ¢ = s + ¢; hence, s = ¢-or ¢t = ¢, so that us + ut=
c>a.

Defining s¢t by us = ut, we infer that ¢ is a congruence rela-
tion on L. Since ¢ does not identify a and ¢, 4 must be trivial.
From this we infer that ¢ < u for all ¢e L, since ¢ always identifies
% + t with w. Similarly, ¢t = v for all ¢te L.

No element other than a, ¢, u, and v is comparable with either
a or ¢, for if t < a, then t =a or ¢ = v, while if a <¢, then ¢ < ¢
by the meet irreducibility of a, and therefore, ¢t =¢ or t = u. If ¢
is not comparable with a¢ or ¢, then a + ¢t = v and ¢t = v, so that
N(a, t,¢). From this, we infer that v <b < wu, for if b <t < u,
say, then N(b, ¢, t), contrary to the fact that c¢/a is the only N-
quotient of L. Thus if ¢e L is distinet from a, b, ¢, , and v, then
b+t=c+t=u and bt =ct =wv, so that b, ¢, and ¢ generate a
diamond.

6. Related results. While semidistributivity as applied to vari-
eties of lattices, rather than individual lattices, is not equivalent
to a conjunction of identities the next result shows that semidis-
tributivity is equivalent to the disjunction of countably many
identities.

THEOREM 6.1. Let y,=1vy,2, =2 and, for n=20,1,2, .-+, let
Ynin =Y + XZpy Zppy = 2 + 2Y,. Then a variety V is semidistributive
if and only if, for some n=0,1,2, .- 2(y + 2) = 2y, =22, and
its dual hold im V.

Proof. If LeV is not semidistributive then there are elements
x,¥y,2 in L such that xy =2z < a(y + 2) say. Then, for all n=
0,12, +--, 9, =y and 2, = 2z whence zy, = xz, < x(y + 2).

Conversely, let us suppose that V is a semidistributive variety.
It suffices to show that, for some #, x(y + 2) = 2y, = 2z, in the free
lattice F,(8) of V generated by z, ¥, and z. In F,(3)° let y. be the
join of the elements y, and let z, be the join of the elements z,.
Then 2y, < 22,., and %z, < *¥,,, so that xy., = xz.. Now, ¥y, + 2,=
y -+ 2, and semidistributivity implies that z(y + 2) = zy., = »z.. It
follows that, for some =, x(y + 2) = 2y, = 22,.

The proof of Theorem 6.1 yields the next result.

COROLLARY 6.2. A wariety V of lattice is semidistributive. if
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and only if the lattices Fy(8)° and F,(3)" are semidistributive.

As we mentioned at the outset the problem of finding a set of
identities which describes a given variety is usually quite difficult.
This task was accomplished by R. McKenzie [8] in the case of the
smallest non-modular variety N. Once these identities are exhibited,
however, the matter of verifying that they describe precisely N is,
in view of Theorem 1.1, a simple computation.

THEOREM 6.8. N is precisely the class of all lattices satisfying
the two identities.

x(y + 2)(y + w) £ 2y + 2w) + 22 + 2w
and
x(y + 2(x + w)) = 2(y + x22) + x(xy + zw) .

A lattice L is said to satisfy (W) if, for all z,y,u,vel,
2y < u + v implies that either 2y < u or zy <v or x = u + v or
y=<u-+wv. It is easy to verify that each of the lattices
M, L, L,, ---, L, satisfies (W). According to a result of B.A. Davey
and B. Sands [3], every finite lattice satisfying (W) is a retract of
any finite lattice of which it is a homomorphic image. On the
other hand, each subdirectly irreducible member of a variety L
generated by a finite lattice L. is a homomorphic image of a sub-
lattice of L [5]. Combining these observations with Theorem 1.1
yields our final result.

THEOREM 6.4. Let L be a finite non-modular lattice. If L 1is
not a member of the smallest non-modular variety them L contains
a sublattice isomorphic to one of M, L, L, -+, L.
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