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In this paper we supply one link in a chain of results
which will prove the following two conjectures:

B(G)-Conjecture. If H is a 2-local subgroup of a finite
group G, then [L(H),O(H) < O(G).

Unbalanced Group Conjecture. If GG is a finite group with
0(Cs(?)) 2 O(@) for some involution te G, then O(C4(t)) acts
nontrivially on L/Z*(L) where L is a 2-component of G with
L/Z*(L) isomorphic to one of the following simple groups:

(1) A simple Chevalley group or twisted variation over
a field of odd order;

(2) An alternating group of odd degree;

(3) PSL(3,4) of He, the simple group of Held.

In 1973 John Thompson, inspired by the Standard Component
Theorem of Michael Aschbacher, formulated the B(G)-Conjecture.
Daniel Gorenstein and John Walter had previously verified that the
B(G)-Conjecture held in a wide variety of circumstances, but they
had not formulated a general conjecture. The history of the B(G)-
Conjecture is discussed in Chapter VI of Gorenstein’s survey article,
The classification of finite simple groups, I, II, which will appear as
a monograph of the American Mathematical Society.

In 1974 converstions among Michael Aschbacher, David Goldschmidt,
John Thompson, and John Walter directed attention toward the more
general Unbalanced Group Conjecture. In §4 we show how these
various results fit together and how completion of some standard
component problems will supply the missing link. Before discussing
our work further we set up some notation.

For any finite group G, O(G) is the largest normal subgroup of
odd order, O,(G@) is the largest normal 2-subgroup, O, ,(G) is the
inverse image in G of O,(G/O(R)), and Z*(G) is the inverse image in
G of Z(G/O(®). Sylp (@) is the set of Sylow p-subgroups of G, and
Inv (@) is the set of involutions of G. The 2-rank of G is denoted
by m(G).

G is quasisimple if G is perfect and G/Z(G) is simple. If G is
simple, G stands for any quasisimple extension of G, (including G
itself). A component of G is a subnormal quasisimple subgroup, and
a 2-component, J, of G is a perfect subnormal subgroup with J/O(J)
quasisimple. L(G) is the product of all 2-components of G, F(G) is
the fitting subgroup of G, E(G) is the product of all components of
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G, and F*(G) = E(G)F(G). The properties of components and 2-com-
ponents are discussed in [2], [8], [13] and [26]. In particular each
2-component of G is normal in L(G) by [13, §2].

A 2-component J of Cy(a), aclnv (g), is standard in G if

(1) J is quasisimple;

(2) [J,J] =1 for all ge@G;

(8) If geG with |Cy({J, J?>)| even, then J = J*.

The standard component (or standard form) problem for J is to identify
(K> whenever K is a standard component of H and K is isomorphic
to J.

If a 2-group A acts on a group N, define N, = L(C,(4)). For
cyclic groups write N,y as N,. By [13, §§3 and 4] we know that
N,Z L(N). Furtherif A and B are 2-subgroups of G which normalize
each other, and if J is a 2-component of N (A4) with [J, B]S O(J),
then J; = K, where K = (L") for some 2-component L of N, B). We
refer to these results as L-Balance and we say that L corresponds
to J. If L =<(L* and J; covers L/O(L), then J also corresponds to
L, and we will say in this case that J and L correspond isomorphic-
ally.

If @ and b are commuting involutions of G and if J and K are
2-components of C,(a) and C,(b) respectively such that K corresponds
to J (and necessarily [/, b]] S O(J)), we will write J — K. We define
a relation - on the set of 2-components of centralizers of involutions
of Gby L > M if and only if L=L,—~ L, --- — L, = M for some
sequence of 2-components. J is maximal with respect to G if and
only if J - M implies J/Z*(J) = M|/Z*(M).

Finally an unbalanced group is one satisfying the hypothesis of
what we shall refer to for brevity as the U.G.-Conjecture.

Now we return to our discussion of the context of this paper.
A short argument using L-Balance together with the properties of
the simple groups listed in the U.G.-Conjecture shows that the U.G.-
Conjecture implies the B(G)-Conjecture. The advantage of the former
is the inductive leverage provided by the following lemma, which
incorporates results of Gorenstein and Walter [13], Gorenstein and
Harada [12], and Aschbacher [1].

LEMMA 1.1. Let G be an unbalanced group. Either G satisfies
the Unbalanced Group Conjecture or G possesses a pair of commuting
involutions (a, x), such that for some 2-component J of Cyla)

(*) [/, OCs@)) N Cel@)] = J = [J, 2] -

By an unbalancing triple of G we mean a triple (a, x, J) with
a,x,J as in Lemma 1.1 and satisfying (*). We refer to J as an
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unbalancing 2-component of G. G is a minimal wunbalanced group
if every proper section of G satisfies the U.G-Conjecture and G has
an unbalancing triple. By Lemma 1.1 it suffices to prove the U.G.-
Conjecture for minimal unbalanced groups.

We catalog the current work on the U.G.-Conjecture.

THEOREM 1.2 (Aschbacher [4]). Let G be a finite group with F*(G)
quasisimple. Suppose that acInv(G), J is a 2-component of Cila),
m(J) =1, and acd. Then F*(G) is isomorphic to a known group;
i particular if G is unbalanced, F*(G)/Z(G) is isomorphic to a
Chevalley group or twisted variation over a field of odd order.

THEOREM 1.3 (Aschbacher [3], Solomon [25], [27], [28]). Let G
be a finite group with F*(G) quasisimple. Suppose that a € Inv (G)
and J is a 2-component of Cyla) with J/Z*(J)= A, for some odd
nw=9. Then F*(@)Z(G) is isomorphic to A, for some odd m or to
Lyons’ simple group.

THEOREM 1.4 (Thompson, Burgoyne [5], Griess, Solomon [14,
Theorem 2.22]). Let G be a minimal unbalanced group with F*(GQ)
quasistmple. Suppose that acInv (@) and J is an unbalancing 2-
component of Cyla) with J/Z*(J) isomorphic to a sitmple Chevalley
group or twisted variation over a finite field of odd order. Suppose
Sfurther that J/O(J) 2 L,(q). Then G satisfies the conclusion of Theorem
1.2 or Theorem 1.3.

THEOREM 1.5 (Harris, Solomon [16, 18]). Let G be a finite group
with F*(G) quasisimple. Suppose that a €Inv(G) and J is a 2-com-
ponent of Cyla) with a Sylow 2-subgroup tsomorphic to D;. Suppose
that Cy(JJO(J)) has cyclic Sylow 2-subgroups. Then F*(G) is isomor-
phic to ome of the following simple groups:

(1) A, Sp(4, 4), Ly2), Uy2) or HiS with J/O(J) = A

(2) A, or He with J/OJ) = Ay;

(8) Ly4) or HJ with J/O(J) = Ly(7);

(4) Ly(g», Li(q) or Uy q) with J/O(J) = Lyq);

(5) PSp(4,q), Lig) or Ulg) with J/O(J) = Ly¢*).

THEOREM 1.6 (Griess, Solomon [14]). Let G be a minimal un-
balanced group with F*(G) quasisimple. Suppose that a € Inv (G) and
that J is an unbalancing 2-component of Cyzla) with J/O(J) isomor-
phic to He or to a covering group of Li(4). Suppose that G has no
unbalancing triple (b, y, k) with K/Z(K) = Ly,q) for q = 27. Then
F*(®)]Z(F*(®)) 1s isomorphic to He or Ly(4).
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The next result assumes the solution of certain standard form
problems. Specifically, the following hypothesis is needed.

Hypothesis S. Let H be a finite group satisfying

(1) F*(H) is simple.

(2) All sections of H satisfy the Unbalanced Group Conjecture.

(8) H has a standard subgroup, L, such that one of the follow-
ing holds:

(a) LJ/O(L) = PSL 3, 4).

(b) L/Z*(L) = PSL(4, 8), PSU(4, 8), PSp(4, 3), 2(3), 28, 3),
2-(8, 3).
Then F*(H) is a known simple group.

THEOREM 1.7 (Foote [7], Harris [17]). Let G be a finite group
with F*(G@) simple. Suppose that the following conditions hold:

(1) Proper sections of G satisfy the Unbalanced Group Conjec-
ture.

(2) There exists teInv(G) and J a 2-component of Cui(t) such
that J/O(J) = A, or Ly,q), q odd, and J is maximal in G.

(8) Proper sections of G satisfy Hypothesis S.

Then either I or II holds:

1. J/O(J) = L)(q) and F*(G)/F(G) is isomorphic to one of

(a) Lg%, t a field automorphism;

(b) L), t a graph automorphism;

(e) Ufq), t a field automorphism;

(d) LJqg), t a graph automorphism;

(e) LJp), t diagonal or graph, q = p%

(f) Ufg), t a graph automorphism;

(g) Udp), t diagonal or graph, q = p*;

(h) PSp(4, q), t inner or outer (2 classes);

( i ) PSp (47 p); t outer, q = pz;

(i) Re*(q), t inner;

(k) L,16), t a field automorphism, q¢ = 5;

(1) Ly4), t field with ¢q =T or t graph with q = 5;

(m) Uy4), t outer with q = b;

(n) A, A, t outer with ¢ = 5,9 respectively;

(o) A, A, t inner with q = 5,9 respectively;

(p) J., t imner with q = b;

(a) HJ, t inmer with ¢ =5 or outer with q = T,

(r) J,, t outer with q = 17,

(8) M, t inner or outer with q = 5;

(t) HiS, t inner with q = 9;

(u) Sp@,4), t outer, ¢q =9;

(v) GL(5, 2), t outer, ¢ = 9;
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(w) Ui2), t outer, q =9;

(x) 2@, p), t outer, q = p.

II. J/OWJ) = A, and F*(G)/F(@) is 1somorphic to one of
(y) A, t outer;

(z) Ay, t inner;

(zz) He, t outer.

THEOREM 1.8 (Aschbacher [2], Seitz [23], Nah [22], Griess and
Solomon [14]). Let G be a finite group satisfying the U.G.-Conjec-
ture. Suppose that F*(G) 1s simple. Assume that J is a component
of Cu(t), telnv (@), with J/Z(J) = L,(4) or J = He and that either
Cs(J) has cyclic Sylow 2-subgroups or Z(J) has even order. Let J
be maximal in G. Then F*(G) is isomorphic to one of

(a) L,16).

(b) He.

(e) O'NS, a sporadic simple group of O'Nan-type.

In order to state our results we make some further definitions.
A maximal unbalancing triple of G is an unbalancing triple (a, z, J)
such that if beInv(Cya)), [J, ] S O(J), and J corresponds to the 2-
component L of C,(b), then

(1) If (b,y, L) is an unbalancing triple in G for some y € Cy(a) N
Ny(J), then J corresponds isomorphically to L, and,

(2) If SeSyl,(Cysla) N Ng(J)) and be Z(S), then Se Syl, (Cys(b) N
Ny (L)).

A restricted simple group is one isomorphic to L,(g), ¢ odd, Suz,
or one of the groups listed in the conclusions to Theorems 1.7 and
1.8. A group K is of restricted type if K/Z*(K) is a restricted simple
group.

Theorem B below is our contribution to the proof of the Un-
balanced Group Conjecture. In §4 we show how Theorem B, all the
work previously mentioned, and some additional results recorded
below imply the validity of the Unbalanced Group Conjecture under
the assumption of Hypothesis S. We formulate this observation as
Theorem A.

THEOREM A. Hypothesis S implies the Unbalanced Group Con-
Jecture.

THEOREM B. Let G be a minimal unbalanced group satisfying
the following conditions:
(a) (a,z, J) is a maximal unbalancing triple of G;
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(b) J/OWJ) = Lyq), q odd, or J/OJ) = A,, or J/Z*(J) = L,4);

(e) The solution to the standard component problem for L.(q),
q odd, A, and L,;(4) in core-free proper sections of G is a central
product of quasisimple groups of restricted type.

Then one of the following conclusions holds:

(1) G satisfies the comclusion of the Unbalanced Group Conjec-
ture, or

(2) JOWJ) = L,(q) and there exists beInv(G) and r an odd
prime power with L,JO(L,) = L,(r*) and {b) e Syl, (Cs(L,/O(L))), or

(3) (a) If belnv(Cyxa)) with [J, b] S O(J), then J corresponds
isomorphically to a 2-component K of Cyb); and

(b) If b is as in (a) and Se Syl,(Cyla) N Ny(J)) with be Z(S),

then Se Syl,(Cs(b) N Ng(K)).

COROLLARY C. Let G be a minimal counterexample to the Un-
balanced Group Comjecture with F*(G) simple, acInv(G) and J a
2-component of Cyla) with J/O(J) = A,. Suppose that there is a 4-
subgroup E of Cyia) N NgJ) with 4 = Cya) N (N.czt OCyle))) and
[/, 4] = J. Then F*(G) = A, for some odd n = 11.

We remark that Theorem B and Corollary C are used in the proof
of Theorem 1.6. We use Theorem 1.6 only in §4 in which we show
how Theorem A follows from hypothesis (3) of Theorem 1.7 together
with all the theorems in this section.

2. Properties of the restricted simple groups. In this section
we collect the properties of the restricted simple groups which we
shall need in the proofs of Theorem B and Corollary C.

ProPOSITION 2.1. Assume that H is a group such that

(a) LS HZ Aut (L) with L simple of restricted type.

(b) aclnv(H), J = L,q), A, or L;(4), a component of C,a),
such that J is standard in H. Pick SeSyl,(Cy(a)) and let P = Cy(J),
D=S8SnJ. The following conditions hold:

(1) P =<a) except in the following cases:

(i) J=A, H=A,,, (ne{5,6,7), P= K,
(ii) J=A;, H= AutM,, P= E..
(iii) J = Ly(¢*, L = L,(q) or UJ(q), C.(J) = Z,,. withe = *+1,
q +¢=0 (mod4).
(iv) J/Z(J) = Ly4), L = Suz or He, P= H,.
(v) J=A,, L=HJ, P=E.,.
(2) PN Z(S) = <{a)y except when
(1) J=A,, H= AutM,, or
(ii) J= A, H= HJ.
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PROPOSITION 2.2. Same hypothesis as Proposition 2.1. Let z¢€
InvC,(S). Then a ~zaz except in the following cases:

(1) L = L,(q¢* and H does not contain a diagonal automorphism
or a field-type automorphism (of order divisible by 4) acting mon-
trivially on D/[D, D].

(2) Cases (1)G) and (L)(iii) of Proposition 2.1. In these cases
a~ 2z in L. Moreover if a,€Inv P, then a, ~ z in L.

(8) J=A, H=S,,, me{56,7}). Then a ~ ¢ in H where o
aclts as a transposition on J.

(4) J = LyJ¢*), H= AutPSp4, q). Then a ~ac for some o€
C.la) inducing a field automorphism on J.

(5) J = Z,-L,4), L of O’ Nan-Sims type. Then a ~y in L for
every yelInv(J).

Moreover, if case (1)(v) of Proposition 2.1 holds, then a, ~ a,z in
C.(z) for all a,e P°.

We will be confronted with a slightly more general situation
arising from the application of L-Balance to a group in which the
B(G)-conjecture holds. If H is such a group and J is a component
of Cy(a), then (J*% will be quasisimple or a central product of two
quasisimple groups permuted by {(a>. Let acInv(H) and let J be a
2-component of C,(a) with J/O(J) = L.q), A, or L,(4). Takez, S, P, D
as above.

PROPOSITION 2.3. Assume that H is a group such that:
(a) The B(G)-Conjecture holds in H.
(b) J is standard and not subnormal in H = HJO, ,(H).
(¢) L(H)/Z*(L(H)) is a product of restricted groups.
The following conclusions hold:
(1) P=<a)(PN Oy, (H)) except as listed in 2.1(1).
(2) PN Z(S) = {a)(PN Oy (H)) except as listed in 2.1(2).
(3) a ~gyaz except in the following cases:
(1) The five cases listed in 2.2,
(ii) LJ/O(L) = SL(2, q)*SL(2, q) with a ~ azy, y € Inv Z*(L).
(ili) J = Ly5) or Ly,(7), L/Z*(L)= L,4) with a ~ azy, yc
Inv Z*(L).
(iv) J = L(¢», L/Z*(L) = L), UJg) or 278, ¢"*) with a ~
azy, ¥y €Inv Z*(L).
(v) J=L;4), L/Z*(L) = Suz with a ~ azy, y<Inv Z*(L).
(4) If JOH)/OH)=SL(2, q) and a+az in H, then L/Z* (L) is
1somorphic to ome of SL(2, q)*SL(2, q), Ly(q%, A, As, A, A, Ly4)
PSp 4,V q), LV q), UV q) or 28,V q).

Propositions 2.1-2.3 incorporate all of the facts we need about
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restricted simple groups other than A4,, A,, PSp (4, q), L(q), Ulq) or
2-(8, g), which we treat more fully later.

Proposition 2.1 is easily checked for all of the listed groups. We
remark that H may be taken to be AutL except in the following
cases:

(1) J=A, L=H=A4,,,. Jis not maximal in S,,,.

(2) J = L9, L = HiS. J is not maximal in Aut HiS.

(3) PSp{4,q), LJ(qg), Ulg) discussed below.

Moreover the case J = L,(q), L = PSp(4, q) does not occur, since in
this case J is not standard in L, even though J is maximal in L.

If L/Z(L)= A,, then as | Z(J)| is odd, | Z(L)| is odd. The prop-
erties of A, are well-known. If L/Z(L)= L,,(16), Ly,(q) or Uyq) (¢
odd), U,4), Sp(4, 4), Ly(2), U«2), Re(q), J,, J;, Held’s group or a group
of O’Nan type, then | Z(L)| is odd. If L = J, or Re(q) or of O’Nan
type, then a ¢ L and L has one class of involutions. In the other cases
La has one class of involutions. So Propositions 2.2 and 2.3 hold for
all of these groups.

If L/Z(L)= HiS, we refer the reader to [15] for the desired
properties of L.

If L/Z(L) = L,4), then Proposition 2.8 only makes an assertion
about fusion modulo Z(L). As each coset of InnL in Aut L has at
most one class of involutions, this is clear.

We now treat M,,, HJ and Suz.

PROPOSITION 2.4. (a) Suppose that L/Z(L) = M,,. Then J = A,
and Cuy(J)=P=K, with |[PNInnL|=2. Nuyu(J) =P X JKb)
with |Cpb)| = 2. If acCpd), thern a ~ az in C.(z).

(b) Suppose that L/Z(L) = HJ. If a¢InnL, then J = L,7),
CovszlJ) =4<a) and a~az in {L,a>. If ae L, then J = A, and
Cini(J)=P=E, If a,e P? then a ~ a, and a ~ az in C.(2).

(e) Suppose that L/ Z(L)= Suz and J/Z(J) = L,(4). Then Z(L)<
Z(J). Also Cyo.(J) = P=E, and a, ~ &,z in L for all a,e P*

Proof. Let L = L/Z(L) and identify L with Inn L.

(a) AutL contains a 4-group, P, with C... . (P) = P x J and
Nuw o P) = (B J)(B with (P, b5 = Dy, (J, B> = S,. As (P x D)(b) ¢
Syl, (Aut L) and D* = 242N (Px D), there exists 7 € Nz(Px D)\ Nz(D)
with PN P? = 1. Thus if (@) = Cx(b), then @* =7 and 27 =Zz. If
@, e P — (@), then al» = a,z, for some z,€ D — (), J,€ Ny(D). Thus
@, ~ @,z in Nz(D). Suppose that | Z(L), = 2. Now b, @ and ab are
noncentral involutions of L. So {a, b) = Q;and @ ~ az in C,(z). Also
@, ~ @@,. So a, and aa, have the same order in L. Thus a, inverts
e and a, ~ a,z in N (D).

(b) Suppose that a ¢ InnL. Then La has only one class of in-
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volutions. Thus we may assume that Z(L)#1. Now Cz(@)=J<3) with
5 a noncentral involution. Thus s has order 4 in I.. As @~as, a and
as have the same order in L. So a inverts s. Thus a~az in {L, a).

Now suppose that aeInn K. Then J = A, and Cz(J) = P = E,.
As @ ~ @, for all a,e P*, P x J = C(@,) for all @ e P%. Thus there
exists 7€ Cg(J) N Nz(P) permuting the elements of P* and (P, 7> X
J=Nz(P). Let EeSyl,(PxJ). Then Nz(P)N Nz(E) has three orbits
on E* with lengths 3,3,9. Asa“ND = @ and EcSyL,(L), |a"*NE|=
12. Thus Nz(E)NCz(D)/E = A,and Nz(E)NCz(D) = O(Nz(E)NCz(D)).
Thus @, ~ @,z, in Cz(D) N Nz(E) for all a,e P%, z,eD. If Z(L) #1,
then P=@Q, and N, (E)NC.(D) is the full inverse image in L of
Nz(E) N Cz(D). Thus a, ~ a,2, in C,(D) for all a,e P — Z(P), 2z, € D.

(¢) Let Siiz be the six-fold cover of Suz and let p be a 12-
dimensional complex representation of S#z. We wish to show that
the inverse image, J, of J in Siiz is a six-fold cover of L,(4). Now
Cs..(J) = P= E, and Ns..(P) = (A, X Ly4))- Z,.

Also P = @, and Z(P) acts as —I. So P must act on a sum of
six isomorphie 2-dimensional modules. Then C,,(S;Z>(p(ﬁ)) is isomorphic
to a subgroup of GL(6, C). Then, by Lindsey [18], J is a six-fold
cover of L,(4). Thus Z(K)< Z(J). If SeSyl,(Nz(P)), then Sc Te
Sy, (L) and PN P7" =1 for 7e Nx(8) — 8. Asoe"nJ =@ and 27 =
InvJ, @ ~az in L. As P=Q, in Siiz, we see as before that a ~ az
in L.

ProposITION 2.5. Let K be isomorphic to A; or to PSp(4, q), ¢
odd. Let N = S; in the former case and let N be the extension of
PSp(4, q) by a diagonal automorphism in the latter case, i.e., N =
SO(5, q) wn the latter case.

(a) If feAutK — N of order 2, then K=PSp{,qd), f is a
JSield automorphism and L(C(f)) = PSp(4, q,).

(b) N has four classes of involutions, two in K and two in
N — K. N has exactly one 2-central class of tnvolutions.

(e¢) If s 1s a 2-central involution of N, then O*Cy(s)) =
SL(2, ¢)+SL(2, q) if K = PSp(4, q) and Cy(s) is solvable if K = A,.

(d) If ac K is a non-2-central involution, and ¢ = +1 so that
4]q + ¢, then

Cy(a) = PGL(2, ¢) X Dyyss

with ¢ = 3 when K = A,.

Also Cpla) = (L x F){a) with L = L,(q), {L, @) = PGL(2, q), F' =
D,.. and (F, a) = Dyq,.-

If zelnv L, then a ~z in K.

(e) If ecInv(N — K), then O*(Cy(e)) is isomorphic to L,(q) or
Lg%, with ¢ = 3 when K = A,. If L(Cy(e)) is a maximal component
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in N, then L(Cy(e))= Ly(q*). If O(Cy(e))=Ly(q), then Cx({e, O*(Cy(e))))=
D,_. with ¢ as in (d).

(f) No proper covering of K has an involutory automorphism
whose centralizer has an L,(q) component.

Proof. The properties of S; are well-known. The conjugacy of
all involutory field automorphism is a well-known consequence of
Lang’s theorem. Properties (b)-(e) may be found in [10], [11] or
deduced directly by matrix ecalculations in N = SO(5, q). Elements
of 2(5, q) with exactly two eigenvalues —1 are known to lift to ele-
ments of order 4 in Spin (5, ¢). (See [24, Lemma 3.1].) If M is an
L,(q) component in K, then the involutions of M have exactly two
eigenvalues —1, whence M= SL(2, ¢) in Spin (5, ).

PropPOSITION 2.6. Same hypotheses as Proposition 2.5. Take
ac€Inv K with a non-2-central and take ecInv(N — K) with L =
L(Cy(e)) = Lyq®. Take SeSyl,(Cy(a)), ScReSyl,(N). Let P=
SNnCyJ), D=SnJ, S,=SNK, P,=PnK, RR=RNnK.

(a) [R, R, is nonabelian; R = 2,(R), R, = 2,(R,).

(b) When K = PSp(4, q), all elements of Inv (P, — {a)) are 2-
central.

(e¢) |R:S|=|R:S,|=2. Foranyrelnv(R—S),a"=z2,2 =a.

(d) d, contains E = E; and all such E are conjugate in N.
Ny(E)/Cy(E) = S; or S; 2 Z,, according as K = PSp 4, q) or As.

(e) Pick QeSyl,(Cyle) with Q< T e Syl,(N) and z € Inv (C.(Q)).
Then Cgle) = L{zt) with T a non-2-central tnvolution in K, T acting
as a field automorphism on L. Further ¢! = e° for some g€ N;(Q) — Q
with ¢*€ Q. Also 27 is 2-central in K and 27, 2, e, ezT represent the
N-classes of involutions.

Proof. We refer the reader to [10], [11] and direct matrix
calculation.

PROPOSITION 2.7. Let K = PSL(4, q), q odd. Let N be a normal
complement im Aut K to the cyclic group of field automorphisms.

(a) If N =+ 0¥ (Aut K), then (Aut K) — N has two classes of
involutions whose fixed points on K contain PSL (4, ¢*) and PSU (4, ¢/?)
respectively.

(b) If g =3 (mod4), then Aut K/Inn K is abelian.

(e) N has six classes of involutions.

(d) If s is a 2-central involution im N, then O¥Cy(s)) =
SL(2, q)*SL(2, q).

(e) N has two classes of diagonal involutions with representa~
tives a and a,. L(Cy(a)) = Ly,(q*) and L(Cy(a,) = L,q). Also a is
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inner if and only if q =3 (mod4). Cq,.x(a)= () X J)o) with
(Y = Zyy,, J = L), o tnverting {t) and. inducing a field auto-
morphism on J. Also if zelnvd and ac K, then a ~ 2z in K. If
a¢ K, then a ~ az in (K, a).

(f) N has three classes of graph automorphisms of order 2 with
representatives b, ¢, d. L(Cy(b)) = PSp (4, q), L(Cy(c)) = L,(¢®) and
O (Cy(d)) = Ly(q) X Ly,(q). Let M be a subgroup of N containing {K, a)
such that L(Cy(a)) is maximal in M. Then be M and {(t) = C,J).
Let M, be a subgroup of N containing (K, ¢y such that L(C.(c)) s
maximal in M,. Then b¢ M, and {c) = C, (L(Cx(c))). Every involu-
tion of Ke is K-conjugate to c¢. In particular, if zeInv(L(Cg(e))),
then ¢ ~ cz in <K, c).

(g) The full coverging group K of K does not admit an in-
volutory automorphism whose centralizer has an IL,(q) component.
Also Z(R) is eyelic of order 2 or 4.

Proof. Most of these facts may be found in [6] and [20], [21].
The rest follow by direct matrix calculation. It is helpful to recall
that L,q) = P2%(6, q). The existence of precisely three classes of
graph automorphisms may be found in [6]. Both b and d lie in the
coset of PQ%(6, q) by a diagonal matrix with precisely one eigenvalue
—1. It follows that all involutions in K¢ are K-conjugate to ¢c. Fact
(g) follows as in Proposition 2.5 from the properties of Spin (6, q).

ProrosiTION 2.8. (1) Let K =PSU(4, q), q odd and N= Aut K.
The assertions of Proposition 2.7 remain true after replacing (b) by:

(b") If ¢ =1(mod4), then Aut K/Inn K is abelian.

And replacing (e) by:

(e') N has two classes of diagonal imvolutions with represent-
atives a and a,. L({Cy(a)) = L,(¢®) and L(Cy(a,) = Uylq). Also a is
inner if and only if g =1 (mod4). C(a)= (&) x J){o) with
(Y = Z,.,, J= Lg%, o inverting {t) and inducing a field auto-
morphism on J. If zelnvJ and ac K, then a~z in K. If a¢ K,
then a ~ az in (K, a).

(2) Let K= A,, N=S, N has one class of involutions with
representative a satisfying L(Cy(a)) = A;. Cyla) = S X Ds. Cgla) =
(J x PXo) with J = A,, P=E,, J{o)=S8,;, P{o) = Ds,. N has one
class of involutions with representative b satisfying L(Cy(b)) = A,.
Cxd) = S;and b¢ K. fiw does not admit an tnvolutory automorphism
whose centralizer has a subnormal subgroup isomorphic to A, or As.

Proof. (1) is handled like Proposition 2.7. The assertions about
S, are trivial. An involution 7 in an A, or A4, subnormal in Cg(s)
for some seInv S, has the property that » is a product of two



66 ROBERT GILMAN AND RONALD SOLOMON
transpositions. Then r lifts to an element of order 4 in ﬁm.

ProPoOsITION 2.9. Let K = A,, L,(q) or UJq) with notation as in
2.7 and 2.8. Suppose that ac K, i.e., K= A, or K=L,(), ¢ =3
(mod 4) or K=U,q), g=1(mod 4). Let S e Syl, (Cy(a)), SCRe Syl,(N).
Let R,=RNK, D=SNJ, P=CxJ). Then

(1) [R,, R,] is nonabelian.

(2) There exists t € Ng(S) — S with t?e S, and DD* = D x D* =
S,.

(3) |D:D'NP|=2anddeD'— P acts as a field automorphism

or transposition on J.

(4) (D'nN P)Xby is dihedral with center {(a).

Proof. Direct calculation. Note that B,= D,. 2 Z, with 2" || ¢*—1.
Here ¢ =3 if K = A,,.

PRrROPOSITION 2.10. Let K be a finite quasisimple group with
K = K|Z(K) = 2:(q).

(1) Z(K) is cyclic of order 2 or 4.

(2) There is a unique class of involutory automorphisms with
representative a such that J = L(Cx(a)) = Ly(q*). If belInv Aut K with
Cx(b) having a maximal component isomorphic to Ly,(r) for any 7,
them b e a*.

(3) Inv(Ka) =a*. In particular, if z€Inv (J), then a ~ azy
in (K, ay for some ye Z(K). Also {a) € Syl,(Csyix(J))-

(4) There ts no involution @ in K with O¥(Cz(@)) of 2-rank 1.

Proof. We refer the reader to [6].

PROPOSITION 2.11. Let G be a finite group of sectional 2-rank 4
with F*(G) simple. Suppose that G has an involution a with L(Cyla))=
L,(g* for some odd q = 8. Suppose also that G G, of index 2 and
beInv Gy (a) with either L(Cyb)) = PSp(4, q) or ¢ = 3 and L(Cyb)) =
As. Then F*(G) = L(q), U(q) or A,.

Proof. We may check the list of conclusions to the Main Theorem
of [12].

ProrosiTION 2.12. Let K = PSp (4, q), L.q), Ulq) or 278, q), g
odd. Suppose that a is an involutory automorphism of K with
L(Cx(a)) =1. Then K = PSp(4,3), L,(3) or U,8). Moreover Cgla)
involves A,.

Proof. The information for PSp (4, q¢), L,(¢) and U,(g) may be
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read off from Propositions 2.5, 2.7 and 2.8. For £2-(8, ¢) one may
check the information in [6] or compute directly in O~ (8, q).

3. Preliminary results. We are principally concerned here with
properties of 2-components. We begin with a reduction of the Un-
balanced Group Conjecture.

LEMMA 3.1. Suppose that every proper section of G satisfies the
Unbalanced Group Conjecture, then either G satisfies the Unbalanced
Group Conjecture or F*(G) is simple.

Proof. Suppose G does not satisfy the U.G.-Conjecture. Take
reInv(@) with D = O(C,(x)) ZO0(G). Minimality implies O(G) = 1,
and by [26, Lemma 2.5] G has an (unbalanced) component L such
that L = [L, D] = [L, x]. By minimality again G = {L, D, x) whence
L= F*G). Itremains only to show Z(L)=1. Suppose @ = Z(L) # 1.
@ is a 2-group, so Cyx) £ 0,(Cs(x)) implies [Cy(x), D] = 1. By Thomp-
son’s A X B lemma, [Q, D] =1. Now Z(G) = Cy(x) # 1, and one sees
easily that G/Z(G) is an unbalanced group. (Note that z¢ Z(G) else
DC O(G) =1.) Since the Unbalanced Group Conjecture holds for
G/Z(@), and L/Z(G) = L(G/Z(®)), we conclude that L is simple.

Next we wish to develop a particular property of 2-components.
Suppose J is a 2-component of Cyla), acInv (@), with ae Z(S), Se
Syl, (Ng(J)). Let P = Cy(J); for any 2-group B< P, B has a conjugate
B*Z P such that Q = Ny(B®) eSyl, (Ns(B*) N Ng(J)). If G satisfies
the B(G)-Conjecture, then J,- = J centralizes O(Cy(B?®)), and Q¢
Syl, (Ng(B®) N Ny(Jz:0(Cy(B?)))). Lemma 3.3 shows that this result
holds if G is a minimal unbalanced group. The next lemma is used
in the proof of Lemma 3.3.

LEMMA 3.2. Suppose all 2-local subgroups of G satisfy the B(G)-
Conjecture. Let J be a 2-component of Cyx(Q), @ a 2-subgroup of G,
and let P and R be 2-subgroups with PZ RZCyQ) N Cu(J/OW)).
Define H = Cy(P), H= HIO(H). The following conditions hold:

(1) Jp=Jg

(ii) If QS R, then J, = 0¥ (Jz0(C,(R))).

Proof. [J, P]SO(J) implies J, = O¥*(C,(P)). Likewise Jp =
0¥(C,;(R)); and it follows that J, <= J, and J, covers J,/O(J,). As
J» is quasisimple by the B(G)-Conjecture, J, covers J,/Z(J,). Since
Jp is perfect, J, = J, and (i) holds.

We prove (ii). By L-Balance J, = J; is a component of Cy(Q).
Let F = O(Cy(R)). As PRQS R, FCC,Q). [Jr FIS[Cu(R), FISF
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implies [J, F1=Fin H. Since F permutes the components of Cz(Q), F'
normalizes Jp. Thus O*(J.F) = Jp = Jp.

LEMMA 3.3. Let G be a group with all 2-local subgrouns satisfy-
ing the B(G)-Conjecture. Suppose J is a 2-component of Cyla), ae
Inv (G), and SeSyl,(Csla) N Ny(J)). Let P = Cy(J/O(J)), and assume

For every belnv (Cx(S)),
Se Sylz (Ca(b) N NG(JbO(CG(b)))) .

Then for every BZ P there exists x € G such that
(i) z=o, -2, and (B =)0y C P, 115 ¢
(ii) Ng(B#o)tnc S, 1<i1 =t
(iii) J50(Ce(B?)) = [J0(Ca(B))];
(iv) Ns(B*) € 8yl, (N(B*) N N4(J5:0(Ce(B*)))).

**)

Proof. TFirst we show that (i) implies (iii). By induction on ¢
we may let x = yx, and suppose JzO(Ce(BY)) = [J;0(Cx(B))]*. Let
2, =2, E=BY and T=(E®); by (i) TS P. By Lemma 3.2 (i)
JzO0(C,(E))=J,0(Cx(E)) and likewise Jz:0(Cx(E*))=J,0(Cs(E*). Now

[JBO(C(;(B))]Z = [JEO(CG(E))]Z = [JTO(CG<E)>]Z = J;:O(Cx(E7))
= Jp:0(Ce(E?)) = Jp=0(Ce(B?)) .

We will now use induction on | P: B| to prove Lemma 3.3 (i), (ii),
(iv). Let X=J,0(C4(B)) and suppose Q@ =N(B) ¢ Syl, (N4(B) N NyHX)).
Pick a 2-group @, with @ =1Q,, Q # Q,, and Q, S Ny(B) N Ny(X). If
B =P, then @ = S and Q, centralizes some b€ Inv (Cyx(S)). @, nor-
malizes 0" (X)O(C4(d)) = J,0(C4x(b)) by Lemma 3.2 (ii) contradicting (**).
Thus B # P. Let T= QN P; we have BC T. By induction we may
assume N(T) € Syl, (N«(T) N Ny(J,O0(C«(T)))), @, normalizes T =
Co(X/O(X)) and Cg(T). By Lemma 3.2 (i) X = J,0(C4(B)) whence
Cx(TY=J(O(Cx(B)NCx(T)). It follows that @, normalizes J,0(Cy(T))=
Cx(TYO(CKT)). Thus Q,S NiT)N NyJOC,T))) and these exists
2 € Ng(T) N Ng(J0(Cy(T))) such that @ = Ng(T'). Clearly (B TSP
and Q7 S Ny(B%) & Ny(B*) N Ny(J5-0(Ce(B?))). As|Q,|>]|Q], repeating
our argument a finite number of times gives (iv).

LEMMA 3.4. Let J be a 2-component of Cyla), a € Inv (G). Suppose
m(J) = 2 and belInv (Cyla)) with [J,b]SO(J). Pick SeSyl,(Cela) N
Ng(J)) with {a, by 1S, and let P = Cx(J|O(J)). Let J correspond to
the 2-component K of Cyb). FEither J corresponds isomorphically to
K or there exists ec Inv (P) such that the following conditions hold:

(1) Cs(b) < Cyle);

(2) If J corresponds to the 2-component L of Cgyle), then
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| L: O(L) | > [ J: O(J) | or m(Ce(e) N Ca(L/O(L))) > m(Ce(a) N Co(J(OJ))))-

Proof. Suppose J does not correspond isomorphically to K. Pick
e € Inv (P) so that Cy(b) S Cs(e) = @ and @ is maximal with respect to
inclusion among choices of ¢ for which J does not correspond isomor-
phically to a 2-component of C,(e). By L-Balance either L = L° or
|[L:O(L)| > |J:O(J)|. We may assume L = L* and |L:O(L)| =
|J: O(J)|. Define M = Cyle), M = M/OM). L =J, implies LL* =
L x L*. By [13, Lemma 2.14], J, = {§¥* | ¥ € L} is isomorphic to L.
As T = QN P centralizes J,/0(J,), T acts on LL* and centralizes J..
It follows that T = (a) X R, R = C,(LL"». Pick FeSyl, (L) so that
(F,Q) is a 2-group. As LNL* =1, FF=F x F* and C:@) =1
implies ' N R = 1. It follows that m(Cy(e) N Co(L)) = m(F) + m(R) =
2+m(R) as m(J)=m(L)=2. Since m(T)=1+m(R), m(Cyle) N Cs(L))>
m(T). If m(T) = m(P) then (2) holds, so assume m(T) < m(P) and
pick we Np(Q) — @ with w*e T. T = C,(e) implies |T| = 4, and if
| T| = 4, then P has maximal class and m(P) = m(T). Thus |T| =8,
|R| =4, and RNR*#1. As R<1Q, RN R"<1{(Q, w) and we can
pick zeInv (R) with (@, w) S Cs2). By choice of ¢, J corresponds
isomorphically to a 2-component V of C,(z). Let J, = J,.,5. It is easy
to see that (Jj*“e*"y = V and {(J%*) = LL*. Likewise the normal
closure of J, in (LL®%, is (LL®, whence (LL%,< L(Cy(z)) implies
(LL*), S (JH%=y = V. But |LL*: OLLY| > |J:0J)| = |V:O0(V)]|
and we see that | T'| = 8 forces T = P and establishes (2).

LEMMmA 3.5. Suppose J is a 2-component of Cyla), a € Inv (G), and
S e Syl, (Cyla) N Ny(J)). Let P = Cy(J/O(J)). Assume that for every
belInv (P) J corresponds isomorphically to a 2-component L of Cyb)
and that if beInv (Cx(S)), then Se Syl, (Csb) N Ny(L)). Under these
conditions J is maximal in G.

Proof. We must show that if J —» K, then J/Z*(J) = K/Z*(K).
We are given a sequence of 2-components J =L, ---,J, = K such
that for each pair L,, L,,, these are involutions a,, b,,, satisfying

(1) L, is a 2-component of C.(a,);

(2) L, is a 2-component of Cu(b,,,);

(3) laybin]l=1;

(4) L;— Ly,

We will show that L, corresponds isomorphically to L,,,, 1 <1 <
r — 1, which will suffice for the proof of the lemma. Assume 7 is
minimum such that for assertion fails. Foranyiwith2<:1<» —1
and x € Ny(L,) we may replace a; by a%, : < j<r — 1, and b;, L; by
bz, L, respectively 7 + 1 < j < » to obtain another sequence of length
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r for which our assertion fails. By (3) we can choose x such that
{aj_y, bj;, ajy is a 2-group. Thus we may assume {a,_, b, a;) is a 2-
group for all 7 with 2 <+ < » — 1.

Pick z,eInv (Z({a.,, b, a;>)) and let L, , correspond to the 2-
component K, of Cy(z;). As 1 < r, each term in the sequence L, ---,
L,_,, K; corresponds isomorphically to the next term. A straight-
forward argument using L-Balance shows that K, corresponds to L,
and L,,,. Thus by replacing b, L, by z, K, respectively we may
assume b, € Z({a;_, b, a;)).

We wish to apply Lemma 3.3. If b eInv (Cp(S)) and J corresponds
to the 2-component L of C,(b), then by hypothesis S € Syl,(C,(b) N Ng(L)).
Thus S normalizes J,0(C;(b)) = LO(C,(b)). As L = L(J,0(C4b))) is
characteristic in J,0(C4(b)), it follows that condition (**) of Lemma
3.3 holds.

Pick TeSyl, (Ng(J)) with SST. S = C,(a) implies Z(T)< Z(S),
so for zelInv (Z(T)) our hypothesis implies Se Syl, (Cs(z) N Ng(L))
where J corresponds isomorphically to the 2-component L of C,(2).
But T normalizes J, whence T normalizes L, and it follows that
S = T. In particular {a, b,)*< P for some x e G and replacing our
sequence of 2-components and involutions by their z-conjugates we
may assume {a,, b,y & P. Clearly we may further assume a, = a. As
b, € P, our hypotheses force » = 3.

Apply Lemma 3.3 to <{b,>. These exists x € G such that for ¢ =
(b,)* we have

(1) ecPh

(2) Csle) = 8Syl, (Cole) N Ni(J.0(Cule))));

(8) J.0(Ce) = (J,,0(C4(b,)))"-

By (8) L(J,0(Cye)) = (L,)*, a 2-component of C,(e). Replacing b; by
bz, L; by (L;)*, 2 <« < r and replacing a; by %, 2=<j<r — 1, we
may deduce from (2) that

Q = CS(bz) € Sylz (Ca<b2) N NG(Lz)) .

As r = 3, we have b,€ Z({a, b,, a,7). Whence (a,)?€Q for some ye
Cy(b,) N Ny(L,). As before we may assume a,€ Q. [a, a,] =1 implies
that we may replace b, by a, and assume b, = a,. Since b, normalizes
L, and centralizes a,, bY € @ for some w e Cyla,) N Ny(L,). Again we
may assume b, € @. Now by hypotheses J corresponds isomorphically
to L,. Thus » =4 and the sequence J = L,, L,, ---, L, = K contradicts
our choice of ».

LEMMA 3.6. Let G be a group in which all 2-local subgroups
satisfy the B(G)-Conjecture. Suppose J is a 2-component of Cyla),
acInv (@), and SeSyl, (Cyla) N Ny(J)). Let P= Cy(J/O(J)). Assume
the followimg conditions:
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(i) If beInv(Cx(8)), then SeSyl, (Cs(b)) N Nu(J,0(Cs(D)))-

(ii) For some belInv (P), J does mot correspond isomorphically
to any 2-component of Cyb).

(iii)) m(J) = 2.
Under these conditions these exists a 2-group B, 1 = B< P for which
the following conclusions hold where H = Ny(B), H = H/O,. ,(H), V =
<JL(II)>.

(1) J, is a component of Cz(@) and is standard in H;

(2) V=[V,a] = LH);

(3) BeSyL(Cy(V/O(V))) and N(B)e Syl, (Na(B) N
Ne(J:0(Cs(B))));

(4) If EC P with |E| > |B| or with | E| = |B| and | Ny(E)| >
| Ny(B) |, then J corresponds isomorphically to a 2-component of Ny(E).

Proof. Pick B, < P maximal in the partial order indicated in (4)
such that H, = Ny(B)) and V, = (J;"V) satisfy V, =[V,, a]. By (ii)
and L-Balance we have that B, 1 and (4) holds. By Lemma 3.3 we
can find x € G such that for Bf = B we have

(a) Ny(B)eSyl, (Ne(B) N No(J50(Ce(B)))).

(b) Ns(B)*<S.

(e) JE0(Ce(B)) = [J5,0(Cs(B))]*.

Let H= NyB) and V = (Jz™). V7 is the normal closure of (J;)”
in L(H). By (c) Vi< ((Jz0C(B))*#>, As Vi is a product of 2-
components of L(H), it follows that VS V. Inparticular|V,: Z*(V)|>
|J: Z*(J)| implies the same for V whence V =[V, a]. Let Q@ = Ny(B).
By (@) @ N Cx(V/O(V)) e Syl, (C(V)O(V)), and maximality of |B| =
| B, | implies B = Co(V/O(V)). Now (2) and (3) are immediate and (b)
implies (4). Also by (3) BeSyl, (0,,(H)).

J5 is a 2-component of Cy(B) N Cyla) = Cy(B{a)). Consequently Jp
is a 2-component of N,(B{a)). From the structure of H, Ny(B{a)) =
Nz(Bla)) = Cz(&@). Thus J; is a 2-component of C3(&). As H satisfies
the B(G)-conjecture, [J, O(J3)] < O(H) whence J, is quasisimple and
J, is a component of Cz(@). We claim that if ¢ € Inv (C5(J5)), then
J, is a component of Cz(f). Let Y=J,0, ,(H). AsJ,OH)=0(Y)L(Y)
is characteristic in Y, (3) implies Q € Syl, (N,(Y)). Accordingly Qe
Syl, (N3(J5)) and we may assume t € Cqo(J;) projects onto £. We have
?e@Q@NO0,(H)=B. Let T= (¢t B); by maximality of |B|, Ng(T)
has a 2-component L with J, S L, J,O(L) = L. Repeating the argu-
ment we used for B{a), we see that L is a component of Cz(t). Since
L is quasisimple, L = J,O(L) implies L = J,. Likewise J, = J; = L
and our claim is proved.

Now by [8, Proposition 4.1] Theorem 5 of [2] applies to a maximal
product of pairwise commuting H-conjugates of J. From (2) and
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hypothesis (iii) we have |J, J"] # 1 for any he H. Further if ¢ ¢
Ci(J) N Cz(J"), then J and J* are components of Cy(f), which forces
J =J*" (else [J, J*] = 1) whence (1) holds.

LEMMA 3.7. Let G be a group with commuting involutions a and
x, and let D = O(Cy(x)) N Cyla). HEither D<= O(Cyla)) or there is a 2-
component J of C,la) such that [J, D] = J = |J, x].

Proof. See [28, Lemma 2.5].

LeMMmA 3.8. Let (a,x, J) be an unbalancing triple of G. Ifbe
Inv (Cyla)) with [b,2] =1, [b, JISOWT) and J corresponds to the 2-
component L of Cyb), then (b, xz, L) is an unbalancing triple of G.

Proof. Let F = O(Cyx)) N Cyla). F acts nontrivially on J/O(J)
and as [J, b] S O(J), |[F, b] centralizes J/O(J). |z, b] = 1 implies that
b acts on F, so F = C,(b)[F,b] and E = C,(b) acts nontrivially on
J/O(J). Hence E acts nontrivially on J,/O(J,) and LL*/O(LL*). Note
that LL® = (J/ %) implies that E normalizes LL°. Likewise {(x)
acts nontrivially on LL*/O(LL"). Now apply Lemma 3.7 to the group
LL*E{a, z, by to obtain the desired conclusion.

LEMMA 3.9. Let G be a group such that all 2-local subgroups
satisfy the B(G)-Conjecture and such that for every wunbalancing
triple (a, z, J), m(J) = 2. For any unbalancing triple (a, x, J) there
exists a maximal unbalancing triple (b, y, L) with J — L.

Proof. It suffices to show that if (a, x, J) is not maximal, then
there is an unbalancing triple (b, ¥, L) with J > L such that one of
the following occurs:

(1) [L:OL)| > [J: 0(])|;

(2) [L:OL)| z|J:0(J)| and m(Cg(b) N Cu(L/O(L))) >
m(Cgla) N Ca(J(O(J)))):;

(8) [L:0(L)| =z [J:0(J)| and m(Cx(b) N Co(L/O(L))) =
m(Cs(a) N Ca(J(O(J)))) and | Cu(d) N Np(L) |, > [Cpla) N Np(J) |
Pick belInv (Cyla) N Cu(J/O(J))) so that condition (1) or (2) of the
definition of maximal unbalancing triple fails. Pick SeSyl, (C;(a) N
N, (J)) with Q = Cy(b) € Syl, (Cs(La, b)) N Ng(J)). Let P = Cy(J/OWT)).

If condition (1) fails, G has an unbalancing triple (b, y, L) such
that J corresponds to L and v € Cyla) N Ng(J). Thus ye Cy({a, b)) N
Ny(J) and we may assume y € Q. If condition (2) fails, then b e Z(S),
and as we may assume by conjugation in C,(a) N Ny(J) that ze S,
Lemma 3.8 guarantees that (b, z, L) is an unbalancing triple where
L is any 2-component of C,(b) to which J corresponds. In either case
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if J does not correspond isomorphically to L, apply Lemma 3.4 to find
b, € Inv (P) with @ < Cy(b,) such that J corresponds to the 2-component
L, of Cy4b,) and either (1) or (2) above holds with b, and L, in place
of b and L respectively. By Lemma 3.8 again either (b, v, L,) or
(b, x, L,) is an unbalancing triple.

Thus we may assume that J corresponds isomorphically to L.
Thus it is condition (2) which fails; b e Z(S) but S ¢ Syl, (C,(b) N N (L)).
But again (b, z, L) is an unbalancing triple, and as J corresponds
isomorphically to L, it is clear that (3) above holds.

Finally, the following result from [25] will be used. For any
group G let G = (g*| g G).

LEMMA 3.10. Let G be a group with Pe Syl, (G) and @ S P weakly
closed im P with respect to G. Suppose x<€Inv(Q N G — NyQ).
Then there exists a group SS Q such that

(1) Cylx)< S.

(2) The transfer Vp.s(x) ¢ 9(Q).

4. Proof of Theorem A. As we noted after Lemma 1.1 it
suffices to prove the Unbalanced Group Conjecture for a minimal
unbalanced group G. Let (a,x,J) be an unbalancing triple in G.
By Lemma 8.1 we may assume F*(G) is simple whence Y =
{x, O(C4x)) N Cyxla), J) is a proper unbalanced subgroup of Gas Y
Cyla) cG. Applying the U.G.-Conjecture to Y, we see that J/Z*(J)
is isomorphic to one of the simple groups listed in the conclusion of
the U.G.-Conjecture: By Theorems 1.2-1.5 J/O(J) is isomorphic to
L,q), q odd, A,, L;(4) or He.

By Lemma 3.9 we may assume that (a, z, J) is a maximal un-
balancing triple in G. Assume Hypothesis S holds. By Theorem B,
either we have the hypotheses of Theorem 1.7 satisfied by G or we
have the hypotheses of Lemma 3.5 satisfied by J and G. In any
case, by applying Theorem 1.7 we may assume that

(1) Either J/Z*(J) = L,(4) or J/O(J) = He.

(2) J is maximal in G.

(3) If (b, y, K) is any unbalancing triple in G, then K/Z*(K)
is isomorphic to L,(5), L,(7), L,(4) or He.

Now G satisfies the hypotheses of Theorem 1.6. Thus F*(G) is
isomorphic either to L,(4) or to He. Thus the Unbalanced Group
Theorem is proved.

5. The proof of Theorem B, Part 1. Throughout this section
and the next, G will be a fixed counterexample to Theorem B and
(@, x, J) will be a fixed maximal unbalancing triple of G with J/O(J)
isomorphic to A, or to L,(q), ¢ odd, or J/Z*(J) isomorphic to L,(4).
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Pick SeSyl,(Cyla) N Ny(J)) with €S and define D=SnJ, P=
Cs(J/O(J)). Conclusion (3)(b) of Theorem B is part of the definition
of maximal unbalancing triple, so we assume that (a, z, J) does not
satisfy conclusion (3)(a). Choose BZ P to satisfy the conclusion of
Lemma 3.6, and let V = (JFWe®5, From conclusion (1) of Lemma
3.6 and Hypothesis (¢) of Theorem B we have that V/O, ,(V) and
hence V itself are products of groups of restricted type. In fact by
L-Balance, V = KK* where K is a 2-component of N,y B) and if
K+ K*, then K/Z*(K) = J/Z*(J). We prove Theorem B by consider-
ing the possibilities for K and showing that each possibility leads to
a contradiction. By Lemma 3.1 we may suppose that F'*(G) is simple.

LEMMA 5.1. BN B* =1.

Proof. If not, then as 2* = 1, we may choose b € Inv (Cp(x)). By
Lemma 3.8 and the definition of maximal unbalancing triple, J cor-
responds isomorphically to a 2-component L of C,(b). In particular
[L, a] < O(L). Now

J, = 0¥(C,(B)) S 0¥(C,(b)) = J, < L.
As L(Ny4(B)) = L(Cy(B)) and L(Cy(B)) = L(C4(b)) by L-Balance, we have
K = <Jl§4(0(;(8))> c <JbL(CG(b))> - L.

From Lemma 3.6, KK*=[KK?* a], whence KK*Z[L, a]=0O(L), which
is impossible. We conclude that BN B® = 1.

We now know that G satisfies the following hypothesis with G
in place of H.

Hypothesis 5.2. H is a group such that

(1) All proper sections of H satisfy the U.G.-Conjecture;

(2) The solution to the standard component problem for L,(q),
q odd, A, and L;(4) in proper sections of H is a central product of
groups of restricted type;

(8) There exists acInv (H) and J a 2-component of Cy(a) with
J/O(J) = Ly(q), q odd, J/OWJ) = A,, or J/Z*(J) = L,(4);

(4) For any SeSyl, (Cyla) N Ny(J)) with P = Cx(J/O(J)), there
exists BC P with B = 1 such that for W= N,(B) and W= W/0,, (W),
J, is a component of C;(@) and is standard in W; and further

(5) For KK® = {(JE™>, we have KK* = [KK", a] = L(W);

(6) BeSyl, (Cy(KK*/O(KK®));

(7) If EC P with either |E| > |B|or |E| = |B|and | Ny(E)| >
| Ng(B) |, then J corresponds isomorphically to a 2-component of N,(E);

(8) There exists x€ S with BN B* =1 and 2*¢ N,(B);
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(9) Ny (B) contains a Sylow 2-subgroup of L(W) N Ny(JzO(W)).

By the hypothesis of Theorem B, G satisfies conditions (1)-(3) of
Hypothesis 5.2. Hypothesis (a) of Theorem B, Lemma 3.6 and the
assumption that G fails conclusion (1) of Theorem B give (4)-(7) and
(9). Lemma 5.1 implies (8).

The advantage of Hypothesis 5.2 is that it is inherited by certain
sections of H. Thus we may argue in certain sections of G which
do not have an unbalancing triple.

LEMMA 5.8. Let H satisfy Hypothesis 5.2 and let a€ S — P for
some g€ Ny(B). The following conditions hold:

(1) B=Cpa®) N Cp(J?/OJT));

(2) a’¢Cyp,n@).

Proof. Leta’=e. Since g € Ny(B), clearly BSCp(e) N Cp(J?/O(J7)).
Suppose that

Bc EcCCre)N CP(Jo/O(Jg))

with | E: B| = 2. By 5.2(7) J corresponds isomorphically to a 2-com-
ponent L of Cy(E). As [e, E] =1 = [e, a], ¢ normalizes J; and so
L*=L. Likewise ec S— P implies L =[L, ¢]. Let M = J? correspond
to the 2-component N of Ny (E). Our conditions imply N = L == N°,
else N=N°= L and M/OM) = J/O(J) = L/O(L) would force e to
centralize L/O(L). Thus [Mg, Jz]S O(N), and defining Y = (M, Jp),
we have

Y/O(Y) = M,0(Y)/O(Y) x J,0(Y)/O(Y) .

Further, O(Y) S O(L(Ny(E))) = O(L(Cx(E))).

Let V=NyB)and V=V/O(V). Since |E:B|=2, ECV. Since
Cy(E) = C,(E) = Cx(E), L(Cy(E)) = L(Cy(E)). By 5.2(1) V satisfies
the B(G)-Conjecture, whence

[L(Cu(E)), O(L(Cx(E)))] =1 .

Consequently [Y, O(Y)] =1 and Y is the central product of J, and
M,. By Lemma 3.2, J,=J, and M, = M, = My = (J,)’. Thus
[Js JE] = 1 contradicting 5.2(4). This proves that there is no such
E and (1) holds.

Suppose e Cp o(x). If x normalizes M = J¢, then x normalizes
Bby 1). But BN B® =1Dby 5.2(8), so M~ is a 2-component of Cy(e)
distinet from M. Thus L(Cy(a)) is a product of 2-components JL,--- L,
with ¢ =1 and we may take L, to be a Cy(a)-conjugate of J. Further
e centralizes L,/O(L,), 1 <1 <t. Let P,= PN L,eSyl, (L,).

Suppose (L,)* = L;; then = normalizes P,P;, so P.J,ZB. As ¢c
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(D, a), [PP;,e] =1, so by (1) P,P; must act nontrivially on M/O(M).
By L-Balance, (L;), or (L;), is a 2-component of L(C,.(a)). As M/O(M)
is known by 5.2(8), L(Cyy«(a)) has at most one component, and it
follows that t =1 or t = 2 and L, = (L,)".

In either case, the 2-components of Cy(a) are all conjugate in
Cy(a) and hence isomorphic. We may assume that P, acts nontrivially
on M/O(M). By L-Balance, (L), S MM*®. If M = M°, then L, cor-
responds isomorphically to M, whence ac B by (1). But this is not
the case. If M # M*, let y =a*". Clearly [y, a] =[a,e]” =1 and
[J, J*]1 S O(L(C4(a))). But now since y € Ny (B), we may argue as in
the proof of (1) with (B, ¥) in the role of E and reach a contradic-
tion to 5.2(4).

Lemma 5.3(2) puts a severe restriction on the fusion of a in Ny(B).
Using this fact and the properties of K listed in Proposition 2.3, we
can immediately rule out many possibilities for K.

LEMMA 5.4. Let H satisfy Hypothesis 5.2. The possibilities for
JIO(J) and KK*/O(KK®) are as follows:

J/0J) KK*/O(KK*®)

(1) A, n=56,1 (1) Apisy Apiy 4,54,

(2) Lyb), L7 (2) A proper covering group of L,(4)

(3) L;(4) (3) A proper covering group of Suz

(4) Lyg*, q odd (4) A proper covering group of L,(q),
Ulq) or 27(8, ¢

(5) Lyq), q odd, ¢ >3 (5) Lg% with no diagonal automor-
phism

(6) Ly9g), q odd g >3 (6) acentral product SL(2, q)*SL(2, q)

(7) Ly9", q odd . (7) PSp(4,9) .

In the remainder of this section we shall develop some more
general lemmas and use these to eliminate cases (1)-(4) on the above
list with the exception of the case J/O(J) = 4,, K/O(K)= A;. Cases
(5)-(7) cause the greatest difficulties and are deferred to the next
sections.

We fix the notation @ = Ny(B), T=Q N P.

LEMMA 5.5. Let H satisfy Hypothesis 5.2. Then KK°/O(KK?®) %
Siz and Z(J/O(J)) = 1.

Proof. By Lemma 5.4, the first assertion implies the second.
Suppose KK*/O(KK*) = Siiz. Then K=K®and by Lemma 5.4, | Z*(K) |
is even. By Proposition 2.4(c), Z*(L(Cy(a))) has even order and lies
in Z*(K). From L-balance, Z*(J) has even order. As B centralizes
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JIOJ), NJ e Syl, (J) and QN Z*(J) e Syl, (Z*(J)). Thus QN Z*(J)=
SN Z*J) is normalized by 2. But QN Z*(J)Z Z*(J,) < Z*(K),
whence Q@ N Z*(J)<S B by 5.2(6), contradicting 5.2(8).

LeMMA 5.6. Let H satisfy Hypothesis 5.2. The following con-
ditions hold:;

(1) Cx(S) =<a)

(2) J=Cya) and SeSyl, (Cyla));

(3) If L is a 2-component of Cyla) distinct from J, then
Z(L/O(L)) + 1.

Proof. From 5.2(9) we see that @ contains a Sylow 2-subgroup
of L(W)N Nu(J,ONy(B))). As J,ONyB)) is characteristic in
J:0y :(Nu(B)), @ N L(W) projects onto a Sylow 2-subgroup of Nzor(J5)
in the notation of 5.2(4). From 5.2(6) we have

B = Co(KK*|O(KK*)) = Co(KK*/0y ,(KK*)) .
It follows now from Proposition 2.3(2) that
Cp(S) < Cr(Q) =<a, B) .

Now (1) follows from Lemma 5.1. If L is as in (3), then 2,(C»(S)) N
(L*) # 1) implies that a € (L*), whence Z({L5)/O({L*))) # 1 and (3)
holds. Then (3) and Lemma 5.5 imply (2).

LEMMA 5.7. Let H satisfy Hypothesis 5.2.
(1) If ge Ny(B) and a’*€ S — P, then Csa®) S Q.
(2) If ge H and a’€{J, a) — {a), then PN P? = 1.

Proof. Let L = a’ and E = Cy4(e). By Lemma 5.6(2), J¢ <1 Cyle);
so K normalizes J?. By Lemma 5.3(1), £ < Ny(B) = €. This proves
L.

Suppose FF= PN P+ 11in (2). As FC P, J, covers J/O(J) and
Jp = O¥(C;(F)). AseeCy,»(F), e {Jp, ay; likewise D e Syl, (J»). By
Lemmas 5.4 and 5.5, J has one class of involutions. Hence by replacing
g by gh for some heJ, we may assume that ee (Cn(S), a) — {a).

By Lemma 5.6(2), SeSyl, (Cs(a)). Likewise as SZCyle), Se
Syl, (Cgle)) and S acts on J?. Thus U = {(F'°) centralizes J/O(J) and
J?/0(J?). Consequently US PN Cy(J?/0(J?)) and U IS implies U N
Z(S) #1. From Lemma 5.6(1) applied to C,(a) and to C,(e) we obtain
(ay = 2,(Cy(S)) = {e), a contradiction. We conclude that PN P¢ = 1.

At this point we know little about the structure of P. When
PZ Q= NyB), B* normalizes B and as BN B =1, we have BB* =
B x B®. Thus B is isomorphic to a subgroup of T/B; in particular,
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if |T:B| =2, then |T| =4 and P has maximal class. In the case
where PZQ, we attempt to recover this advantage in a section of
G. We define an element x,€ S as follows:

x, =« if BP
2,€ P — Np(B) otherwise
with a2e No.(B) .

We ].Et Bo = Bn Bzo, So = Ns(Bo>; Po = So N P; Jo = Jaoy_Go = NG(BO)
and G, = G,/B,. Note [D, B] = 1 implies D = S,N J;,. G, will be the
appropriate section of G.

LEMMA 5.8. G, satisfies Hypothesis 5.2 with H replaced by G,
abya, Jby J, Bby B, Sby S,, K by K, and = by Z,.

Proof. We consider conditions (1)-(9) in turn; 5.2(1) and 5.2(2)
are immediate. Asac B, @¢ B, aclInv(G,). J,is a 2-component of
Co({B,, a)) and hence of N,({B, a)). It follows that J, is a 2-com-
ponent of N ((B, a)) N G, = C;,@). Clearly J/Z*(J) = J,/Z*(J,), 0
5.2(3) holds. Since KK°®= L(N,B)), [KK%, B] =1. Thus KK°®=
L(N,,(B)). As NEO(B) = Ng,(B), it is straightforward to check 5.2(4)-
5.2(6) and 5.2(9). To check 5.2(7) suppose E < P, with |E| > |B| or
|E|=|B| and | N5,(E)| > |Q|. Letting E be the inverse image of
E in P,, we can apply 5.2(7) to obtain that J corresponds isomorphic-
ally to a 2-component L of Ny E). As [L,BJ<[L,E]=1, L is a
2-component of N, (E) whence L is a 2-component of Nz (E). As
Jy = L, lies in C5,({@, E)) and covers J,/O(J,) and L/O(L), it is clear
from L-Balance that J, corresponds isomorphically to L. Finally 5.2(8)
is immediate from our choice of x, and B, and Lemma 5.8 is proved.

It is easy to see that if H satisfies Hypothesis 5.2, then so does
H/O(H). By Lemma 5.8, G,/O(G,) satisfies Hypothesis 5.2 and, by our
choice of z, and B, G,/O(G,) satisfies the following hypothesis.

Hypothesis 5.9. H is a group such that in the notation of
Hypothesis 5.2

(1) H satisfies Hypothesis 5.2;

(2) OH) =1

(3) Either xe N,(Q) or PC @, x2* =1 and O(C,(x)) £ O(J).

LEMMA 5.10. Let H be a group satisfying Hypothesis 5.9. Then
F*(H) is simple.

Proof. Let L = (JX®); by L-Balance, L = L,L} where L, is a
2-component of L(H). As O(H) =1, L, is a component. From 5.2(5),
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KK* = (JE*C L,

as KK*C L(H) by L-Balance. If L = L,, then [KK*, a] = KK* forces
KK* =L and B C,(L). However we claim Cy(L) = 1, whether or
not L =L, As O H) =1, it suffices to show |Cy(L)| is odd. Pick
UeSyl,(H) with SCU. If BV U with [KK® V]S O(KK®), then
VS Ny(B) implies V =B by 5.2(6). Thus B = C,(KK*/O(KK?%),
whence C,(L)S B. By 5.2(8), C,(L) N C,(L)* = 1. As x normalizes J,
L = L* and we have Cy(L) = 1. Because L is subnormal in H, our
claim is proved. But now L = L, and C,(L) = 1 imply that the lemma
is valid.
By the argument of the preceding proof we have

LEMMA 5.11. If H satisfies Hypothesis 5.2, then
BeSyl, (C.(KK*/O(KK®))) .

LemMMA 5.12. Let H satisfy Hypothesis 5.9. The following con-
ditions hold:

(1) (B, B*) = B x Bx;

(2) B is tsomorphic to a subgroup of T/B;

(3) If |T:B| =2, then P is dihedral or semidihedral and T =
{a, b) where B = (b)Y has order 2. Further [S,S1=D x P, [S, S] s
a direct product of two cyclic groups and {a) < 2,([S, S]) =<z, a)
where z < Inv (C,(8S)).

Proof. By 5.98), (B, B*) = Bx B*, AsB*<T = QN P, (2) holds
and implies the first part of (3). By Lemmas 5.4 and 5.5, De Syl, (J)
is dihedral. Pick ceyeclic groups (d) and {(p) to be of maximum order
in D and P respectively and normal in S. As J/O(J) = L,(q) or A,
the structure of Aut (J/O(J)) forces [S, S]S{d)P. As S/Cs({p)) is
abelian,

[S, S]=<d)P N Cs(Kp)) S<d)Cr({®)) -

If |P| =8, Co({p)) = (p) and we are done, so assume P = T = (a, b).
As TS, [b,2] =a and S = {(x)Q where |[S: Q| =2. (Recall Q =
Ny(B).) Consider S = S/D; it suffices to show [S,S]<<(@). From
knowledge of J/O(J), S/T is isomorphic to a subgroup of Z, X Zn.
In particular [S,S]<T. By 5.2(8), #*¢ T, whence 2°e C,(z) = {a).
Thus %7 is an involution and S = ()@ implies

S/T=&ETIT x QT .
In particular Q/T is cyclic, forcing @ to be abelian. As ¥ acts as an
automorphism of order 2 on Q, 7 inverts [Q, ]. As Z does not invert
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b or ba, [Q, ] < (@), and the desired conclusion follows.
Now we return to consideration of the possibilities for K.

LEmMA 5.13. If K = K°, then K/O(K) ts not isomorphic to A,
A, or A,

Proof. Suppose the contrary. By Theorem 1.1 of [25], G has
no 2-subgroup, B,, and 2-component, K,, of CyB,) with K,/O(K)) =
A,.., for any n = 9. In particular, K/O(K) = A,. Recall that T =
QN P=NyB). As |T:B| =2 by Proposition 2.3(1), |[B|=2 by
5.12(2). By Lemmas 5.10 and 5.11, Theorem 1.5 is applicable to
G,/O(G,) and yields L(G,)/0,(L(G,)) = A, or He. As K = K°, we have
JJO(J) = A; by Lemma 5.4. Since He does not admit an action of o
with L(Cy.(a)) having a component of type 4;, L(G,)/0, (L(G,)) = A,.
Hence L(G,)/O(L(G,)) is isomorphic to a covering group of A, As
O(L(G ) L(Cg,(a))/O(L(G,)) = A, we have L(G,)/O(L(G,) = A,, contra-
dicting Theorem 1.1 of [25].

LEMMA 5.14. The case K/Z*(K) = Ly,(4) does not occur in G.

Proof. Assume the contrary. We have J/O(J) = L,5) or L,7)
and by Proposition 2.3(1), |T: B| = 2. By Lemma 5.8 and Hypothesis
5.9, Lemma 5.12 applies to G, so it suffices to show that the assump-
tion that there is a group H satisfying the hypotheses of Lemma 5.12
with K/Z*(K) = L,(4) leads to a contradiction. Assume the notation
of Lemma 5.12 and Hypotheses 5.2 and 5.9.

By Lemma 5.4, Z(K/O(K)) #+ 1 and so Z*(K) = BO(K) by Lemma
511. As |B|=2, m(K)=5>4 = m(S) from Lemma 5.12. Thus
S < UeSyl,(H) and we can find u e N,(S) — Swith #’eS. Asa*+#a
and {a) = PN Z(S) by Lemma 5.5, P*N P =1 and P acts faithfully
on J/O(J). Since P has maximal class, P is dihedral of order < 16.
In particular, J = L(Cy(a)).

By the structure of L,(4), there exists g€ K with a’€azB. By
Lemma 5.7, a’ = azb where <(b) = B. Since b = ab, b*? = az. Let
Y = Cy({a, 2)) and K* = L(Cy(az)). Note that SeSyl, (Y). If a acts
as an inner automorphism on K%, then Y N K% = Cys(a) has 2-rank
5, contrary to m(S) = 4. Thus a is outer on K** whence a ¢ [S, S],
contrary to Lemma 5.12(3).

LEMMA 5.15. The case K/O(K) = A,, does not occur in G.
Proof. In this case T/B = E, by Proposition 2.1(1), and as in

Lemma 5.14 it suffices to show that no H exists satisfying Hypothesis
5.9 with K/O(K) = A,,.
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Suppose such an H exists. By Lemma 5.12(2) B is elementary
abelian of order 2 or 4. By Hypothesis 5.9(8) either xe N,(Q) and
B*CT = NyB)or B<IP, B><1P and P=T. In either case BT,
B*<JTand BN B*=1imply T = E; or E,;. Also x normalizes T in
both cases.

We claim a is not fused to any element of B, for if so, then for
some we H,acB*C S. Let L = L(Cx(B®)) = K*. LJ/O(L)= A,, and
by Lemma 5.11, B*eSyl, (Cx(L/O(L))). But then as J and L are
distinet components, D = SN J< B¥, whence |D| < 4, not the case.

Now consider N= N (T) and let A=TNK=E, Then T=
A x B with NN K inducing an S, on A and centralizing B. If ac A,
then a ~ z in K< Cy(B), contrary to Lemma 5.7. Thus ac T — A.
Further, x acts on T and BN B® = 1.

Suppose first that A = A®; we see that x normalizes (A4, a) =
(4, b) for some be B. But then all elements of (A4, a) — A4 are con-
jugate under (N N K, ), contrary to a + b.

If |ANA®| =2, then AA° = E; and |C, «(x)| =4. If T = AA",
then a € Cy(x) & AA*, while if T = E,;, then |B|=4 and T = B x B*
implies |Cx(x)| = 4 and again ac A4°. But A4” = A X {(b) for some
be B and (NN K, z) acts as GL(3, 2) on AA” contrary to a + b.

Finally suppose |B| =4and T= A X A®. If A* = B, then Ny(B)
contains a 2-element acting nontrivially on B. By Hypotheses 5.2(4)
Ny(B) does not contain an element acting as an outer automorphism
on K/O(K), so by Lemma 5.11, KB contains a Sylow 2-subgroup of
Ny (B). Thus no 2-element acts nontrivially on B, and | A* N B| < 2.
If AN B =2,then (NN K, x) acts as S; on T and every element of
T is fused to B contrary to a + B. Similarly if A*N B =1, then
all involutions of T — B are fused by (NN K,z) and BN B* %1,
again a contradiction.

LEMMA 5.16. The cases K/Z*(K) = L(q), K/Z*(K) = U,(q) and
K/Z*(K) = 27(8, ¢'*) do not occur in G.

Proof. Suppose one of these cases occurs. By Lemma 5.4,
JIO(J) = Ly(g®).

Consider first the possibility that a acts as an outer automorphism
on K/O(K). By Proposition 2.3(3), a ~ azZ*(K) in NygB), so Lemma
5.3 implies O(K)c Z*(K). Asa isouter on K/O(K), we have |T: B| = 2.
Passing to the section G, of Lemma 5.8, it suffices to show that no
group H exists satisfying Hypothesis 5.9 with K/Z*(K) = L,(q) or
UJlq) or 2-(8, ¢"*), a outer on K/Z*(K) and |T: B| = 2.

Suppose H exists. By Propositions 2.7, 2.8 and 2.10 and Lemmas
5.11 and 5.12, Z*(K) = O(K)B with B = (b) cyclic. Further, as
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|T: B| = 2, B has order 2, P has maximal class and a ~ azb in C,(b).
Thus b ~ab~az in H. Consider ¥ = Cy({a, az)). Clearly Se Syl (Y)
and S acts on L = L({Cyaz) =K. Now let M= 0YC.a) =
0¥ (Crioyan(az). As J ZCyla), Cyla) acts on J and a Sylow 2-sub-
group of 0*(C.(a)) must centralize J/O(J). Thus a Sylow 2-subgroup
of (M, a) is isomorphic to a subgroup of P, a group of maximal class.
Let ReSyl,(M). As [R,a] =1 and (R, a) is of maximal class, a €
Z(R). Thus ac Z*(M) and M/O(M) = SL(2, r), r odd, or fL. By
Propositions 2.7, 2.8 and 2.10 there is no involutory automorphism «
of L with ae0¥(C,(a)) = SL(2, ) or 4, a contradiction.

We have proved that a does not act as an outer automorphism
on K/O(K). Thus K/Z*(K) is isomorphic to L,(¢) with ¢ = 3 (mod 4)
or to U,(q) with ¢ =1 (mod 4). By Hypotheses 5.2(6) and the structure
of K, TN K is cyclic of order at least 4. Again it suffices to show
that no H exists satisfying Hypothesis 5.9 with K and a as above.

Suppose such an H exists. As J/OJ) = Lg%, Z*(K) = O(K).
If a€ K, then a ~ z in K by Proposition 2.2, contrary to Lemma 5.3.
Thus a € KB — B. By Proposition 2.1, T/B is cyclic; so by Lemma
5.12, Bis cyclic. Wehave KB= K x B, T= (TN K) X Band {ab) =
Q(Tn K). As (x> normalizes T = Np(B) by 5.9(8), b = ab implies
B=TnK.

From the structure of K/O(K) we know TN K = Z,» where
2°|lq + ¢ with ¢ = —1 when K/O(K) = L,(q) and ¢ = 1 when K/O(K) =
Ulg). If Se¢Syl,(H), then we could find UeSyl, (H) with ScU and
€ Ny (S) —S. As before P* would act faithfully on J/O(J). But
T=Z,: X Z, cannot act faithfully on L,(¢%.

Thus SeSyl, (H). By Proposition 2.2(2), (ab)’ = z. As b® = ab,
b** = z. Consider the action of S on L = K**<JC,(z). By Proposi-
tions 2.7 and 2.8 and the congruences on ¢, the outer automorphism
group of L/O(L) is abelian. As ae|[B, 2] =[S, S], @ is inner on L/O(L).
Let L, = O¥(C.(a)). By Propositions 2.7 and 2.8, L,/O(L,) is isomor-
phic to SL(2, ¢)«SL(2, ¢) or to L,(¢*). As zeJ, we argue as before
that either [J, L, S O(Cx«a)) or L, is solvable and if R, < Syl, (C,(L,)),
then [J, R,] S O(Cy(a)). Thus either [D, L] O(L,) or [D, R] =1 for
some R, e Syl, (Cs(L,)). Since B*? = Cy(L/O(L)) is cyclic with (z) =
2,(B*9), {a,ey acts faithfully on L/O(L) for any ecInv (D — {z)).
From [L,, ¢]< O(L), we deduce by Propositions 2.7 and 2.8 that
L(C,,0:,(e)) = PSp (4, ¢). But by 5.24), J, projects to a standard
component in K/O(K), whence Ny(B) does not contain an involution
f with L(Cg,0,(f)) = PSp (4, ¢). This contradicts the existence of e,
completing the proof of Lemma 5.16.

We conclude this section by collecting the results of Lemmas 5.4,
5.5 and 5.13-5.16.
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LEMMA 5.17. The possibilities for J/O(J) and KK*/O(KK®) are
as follows:
JI0(J) KK*/O(KK*)

(1) A, or L,q), q odd, ¢ >3 (1) A central product ]L*ff, or
SL(2, q)=SL(2, q)

(2) Lyq), q odd, ¢ > 3 (2) Lyg* with no diagonal auto-
morphism
(38) A= Ly9) (3) 4s
. (4) Ly9"), q odd . (4) PSp(4,q) .

An immediate corollary of Lemmas 5.11 and 5.17 and Proposition
2.3(1) is the following.

COROLLARY 5.18. Np(B) = B X {a).

6. The choice of B,. In this section, we do some technical
refinement of the choice of B, which is useful in the remaining cases.
We first pick x, as follows:

Ly = X if B P
2,6 (Z,(8)N P) — Nx(B) otherwise .
with 7 minimum and
xi€ Np(B) .

Assume henceforth that B P. By Corollary 5.18, we have
Np(B) = B x <a) and <a) = Z(S)N P. Thus ¢+ = 2 and if 1 = 2, then
[B, x,] = {a). Suppose that ¢ > 2. Then Z,S)N P<B x {a). As
[Z(S)N P, z]=<a) and B*N B =1, we have Z,(S) N P = {a, b) with
b* = 1,b" = ab. Repeating this argument we see that Z,(S)N (B, a)) =
{a, by. Thus z,€ Z,(S)N P, zie{a, by and [B, z,] = {a, b).

DEFINITION. If ¢ =2, let b =1. If © =3, let b be the element
of B*N Z,(S) described above.

LEMMA 6.1. Omne of the following holds:

(1) e Zy(S)N P and [B, 2] = <a).

(2) x2,eZ(S)NP, Z(S)N P=a,b), be B, [B, 2] =<a, b) and
| S: Cs(b) | = 2.

Proof. It remains only to show that be B,. If not, then 5% =
ab and D = (b, x,y is dihedral of order 8. As D<IS and {a, b) IS,
every element of S induces an inner automorphism on D. Thus S is
a central product D«Cy(D). If PNCy(D) # <a), thenas P S, Z,(S)N
PN Cy(D)<%<ay, contrary to fact. Thus P= D and z,€ Z,(S)N P.
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We would like to have
(*) Ns(B,) € Syly (No(B,) N Col{a)[B, x])) -

NOTATION. Set E = {a)[B, #,]. Note that B = <{a) or E = {a, b).

Agsume that (*) does not hold and let T eSyl, (N, (B, N C.(H))
with Ny(B,) &T. Note [S, b]< (a), so [N(B,), b)]=<ay N B,=1. Piek
g€ Co(E) so that TS Cy(E) e Syl, (C,(E)). Replace B by BY, x, by
xf, B, by Bf. Since J =1Cya), Jz < Cy(E) and Cy(J/0(J5) N Co(E) <
C4E). Thus, as geCyH), B'CCyJy/0J)) NCs(E)=CpE). It
follows that BY satisfies the conclusions of Lemma 3.6. In particular,
Ny(B) S Ng(B,), s0 | Ny(B% | = | Ng(B)|. We have proved the follow-
ing.

PROPOSITION 6.2. We may choose B, x, and B, in such a way
that the following hold:

(1) Hypothesis 5.2 holds for G.

(2) Hypothesis 5.9 holds for G,.

(8) Ns(B,) € Syl, (No(By) N Cu(H)), where E = {a)[B, ,].

(4) Either [B, #,] = {a) or [B, @] = {a, b> with be Cy(x,), {a, b> =
Z,8S)n P.

7. The cases K/O(K) = Ly(¢*) and K = K*. In this section we
obtain the following reduction of Theorem B.

LEMMA 7.1. The cases K/O(K) = Lyq*) and K #+ K* do not occur
n G.

Combining this with Lemma 5.17, we have the following im-
mediate corollary.

COROLLARY 7.2. J/O(J) = L,(¢®) and either K/O(K) = PSp (4, q)
or ¢ =3 and K/O(K) = A,.

We continue the notation and hypotheses of §5. Moreover we
assume throughout this section that eithen K/O(K) = L,(¢*) or K +
K°. We prove Lemma 7.1 via a sequence of reductions.

(1) |B| > 2.

Proof. Assume that |B|=2. If K/O(K) = L,g%, then by Lemma
5.11, one of the conclusions of Theorem B holds. If K # K* then
m(K) =1 by Lemma 5.4 and F*(G) is known by Theorem 1.3. Again
Theorem B holds.
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(2) By,#1. B=<(b) has order 2. F*(G,)/O(F*(G,) is isomorphic
to PSp (4, q).

Proof. We have |T: B| = 2; so B B® =1 implies T P. Thus
G, is proper, B, = 1 and B = (b)) has order 2. If K/O(K) = Lyq),
Lemma 5.11 and the conditions of Lemma 5.8 imply that K is a
standard component in G,. Now |P,: B,] =8 and by Lemma 5.12(3),
P, has maximal class. By Lemma 5.8, P, contains a Sylow 2-sub-
group of Cr.z,)(@) N Cray(J/O,). By the hypotheses of Theorem
B, if K/O(K) = L,¢*, then F*(G,)/O(F*(G,) is simple of restricted
type and we conclude

F*(Go)/OF*(Gy)) = PSp (4, q) -

If K=+ K° then m(K) =1 and Theorem 1.3 lead to the same con-
clusion.

(3) We may assume that K = K°.

Proof. Assume K/O(K) = L,(¢®). We shall find B, < P, satisfying
the conclusions of Lemma 3.6 and with ((J;)"“¢*") = K K¢ with K,
of 2-rank 1.

By Lemma 5.12(3) and the structure of Aut PSp (4, ¢), it is clear
that

") P, € 8yl, (Cz,(@) N C,(Jo/O,)) -

Further our knowledge of PSp (4, q) tells us that P, contains an in-
volution b, which is 2-central in G,. Pick b,€ P, so that b, projects
to b, and define B, = (b,, B). Clearly

() I, B1<O0(J), and L(Cy«(B)/O(L(Cs(By) = SL(2, )+SL(2, q) .

Let @, = N;,(B,). As (51_, b,y & _Po and P, is of maximal class (with
(@) = Z(Py), | 8,: Cs,(b) | = |85 C3,(by) |, whence [Q,| =|Q]|. We claim

%) Q. € SYL(Nu(B,) N Ne(J5,0(Co(By))))

If not, apply Lemma 3.3 to find a conjugate, B;, of B, with B, P
and | Ny(B;) | > | Q.| = |Q|. By Lemma 3.6(4) applied to B, J, must
correspond isomorphically to a 2-component of Ng(B;), not the case.
Thus (***) holds and as Q,< G,, the structure of PSp (4, ¢) implies

(***%) B, € 8y, (Co(L(Co(B)))/O(I(Cy(By)))) -

Finally the conclusions of Lemma 3.6 follow easily from (**), (***)
and (****)

NoTATION. Let L = L(Cy4B,)). Note that by Proposition 6.2,
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SN L eS8yl (Cya)).

(4) Ny(S) & Cola) .

Proof. Suppose that N (S)ZCia). We have C,(S) = <a) by
Lemma 5.5 and C,(a) contains an involution acting on L(C;,,.,(e)) and
hence on J/O(J) as an outer diagonal automorphism. Accordingly,
Z(S) = {z,a) and a"¢ {z, az}, for some u € Ng(S). Then (PN Z(S)) N
(P*NZ(S) =<adn<a*y =1. So PN P*=1 and P* acts faithfully
on J/O(J). Consequently P is isomorphic to a subgroup of Aut (L,(q)).
As Ny(B,) contains a Sylow 2-subgroup of C.(a) we may see in L that
Np(B)2 D, x B, with D, = D. The structure of Aut (L,(q)) forces
|B,| =2 and D< PP*.

Let FF = J,(S). As PP*= P x P*, m(S8) = 6 and FFC PP*. Like-
wise D x D*C F. Let B, = <{b). Since b* acts on J/O(J) as a field
automorphism, [D]| =8. We have F= 0D x {(b*) Xx D* x <b). If a
is fused in G to az, then we may take a* = az, whence P*ND =1,
P* centralizes D and by the structure of Aut (I,(q)), | P*| =< 4. As
|P|=|D||B,| =16, we see that a is not G-conjugate to az. Thus
a* =2z and u*e S.

Pick U Syl (G) with (S, u) S U and N,(F')e Syl, (Ng(F)). Our
conditions imply {a, z) = 2,({F, F']), whence | N,(F'): S|=2. It follows
easily that F = J,(N,(F)) and |U:S|= 2. Consequently fusion in
Z(F) = {a, 2, b, b*) is controlled in N (F'). We have a* =2, b* = ab
and b = b*2. The last equation holds because first [b%, #]€2P by
properties of Aut (L.(q)) and second, [b* x]e P* N Z(F) = {2, b*). So
far we have the following fusion information:

(A a® N Z(F) = {a, z}.

(B) (ar)* N Z(F) = {az}.

(C) b ~Db*~ b2 ~ ab.

(D) baz ~ b az ~ b*a ~ bz.

(E) bb* ~ bb*az and bb*a ~ bb*z.

Pick R e Syl, (Cub)) with Cyb) S R. Since ac|F, F] and FC Cyb) <
R, ac RS L and Z(R) = {az, by. Z(U) = {az), so b is not 2-central
inGand RcVeSylL(G). Letve N,(R) — R. As F<]V, x centralizes
{az) = [F, F]1N Z(R) and we have 0" = baz. Thus C, = {p°} N Z(F)
contains at least 8 involutions. If |C,| =8, then |U: C,(b)| = 8. But
b* acts on J/O(J) as a field automorphism, and [S, b*]< P* implies
1 S: Cs(0*)| = 2. Thus |U: Cy(d)| = |U: Cy(d*)| = 4 and |C,| > 8. Our
conditions imply |C,| = 10 or 12. As Ny (F') normalizes the series 1<
[F, F1< Z(F'), no element of order 5 can act nontrivially on Z(F'),
whence |[C,| = 12 and

(¥) N Z(F) = Z(F) —{a, 2) .
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Let N = Ny F) and N = N/Cy(Z(F)). N normalizes the series 1<
(az) S{a, z) S Z(F') and we have S = O,(N), N/S=S,. Suppose xe N
with [A| =8 and [A| = 8™ for some m = 1. Clearly \ centralizes a,
and it follows that ) acts on J and normalizes D = FnNJand FN P =
Cx(J/O(J)). But then A\ normalizes {a, b) = Z(F') N P, whence |b7| =
4, a contradiction.

(5) ZZ(S)QP:<a,b>’ xera(S)ﬂP, beBo'

Proof. If not, then by §6, x,€ Z,(S) and [x,, B] = <a), [2,, B,] <
B,Nn<{a) =1. Then B=(BNKK®* x B, with BN KK*C L. But
then <a) =[BN KK*, ]S L and a ~z in L. Then a ~ 2z in NgS),
not the case.

(6) abeL and ab ~ z in CyiB,) .

Proof. [BN KK* xS LN<a,b). As beB, beL. The argu-
ment in (5) shows a¢ L. Thus abe L and ab ~ z in L.

NOTATION. U = Cg(adb), N = N (Z(U)), C = Cx(Z(U)).
(7) Z(U) =<z,a,b) .

Proof. We have |S:U| = 2 and Ng(B,) normalizes B,N U = <{b),
so Ny(B,) S U. Ny B, contains a 2-element acting as an outer diagonal
automorphism on J/O(J), so Z(U)< <{z)P where {z) = Cy(D). Also
Z(S) = Cyun(x) = {z, ay, forcing Z(U) = {7, a, b).

(8) N/C=8, The G-classes of Z(U) are:
a~z2b~azb; b~ab~2z; az.

Proof. First, by the structure of PSp (4, ¢), {ab, z) is normal in
a Sylow 2-subgroup; R, of L. (Note that L/O(L) = PSp (4, q¢) not
Sp (4, q) because KK°*/O(KK®*) = SL(2, ¢)*SL(2, q).) Further, for some
reInv (R), (ab)” = z, whence 7 normalizes {ab, z) and centralizes b € B,.
Thus re N and (ab)" =%2. Now SSN and |S:SNC|=|S:U| =2,
so |N:C|,=2. Further Ny S)Z Cy(a) and the structure of C,la)
imply that none of the involutions in Z(S) are G-conjugate. Thus
N ={r,2,C)», N/C = S, and the G-classes of Z(U) are as described.

(9) Z(U) has at most two G-classes of involutions.

Proof. As C<Cy(a, 2)), C acts on J and centralizes z. It follows
that C/Cy(J/O(J)) has a normal 2-complement. Further if X is the
largest subgroup of C.(J/O(J)) normal in N, then C,(J/O(J)) N Z(U) =
{a, by forces XN Z(U) = 1, whence XS O(C). We conclude that C =
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UO(C) and U acts faithfully on a direct product of 3 copies of J/O(J).
Roughly speaking each pair of copies generates a PSp (4, ¢).

Let N, = N, (U). Clearly N, covers N/O(C) and x€ N,. Further
rw =geN, for some weO(C). As g centralizes B,0(C)/O(C) and
normalizes U, (g, r) centralizes B, and acts on L. Also ¢* centralizes
U and we can find a conjugate, ¥, of g such that {g, ¥> acts on U
as a dihedral group of order 6. In particular, {g, ¥) covers N/C and
we may assume that [y, o] = 1.

It follows from ye Cyla) that D = D* whence | N;: Ny (D)| = 3.
As DN Z(U) =<z) and D?n Z(U) = {ab), DD? is a direct product.
Let P,=DD*NP. As DD*C L, b¢ DD’, whence DD’ D* =1 and
E =DD*D® = D x D x D, Looking in PSp(4,q) we see that
DD?* = D x P, with {ab) = P,N Z(U). Since P,<qU and (ab)’ = b,
PPy = P, x PY< PN E, as y normalizes PNU. Thus|PNU| = |P,*=
|D* and as DP= D x P, wehave E =D x (PN E). Weclaim B, =
(PNEYN(PNE)Y<B, Indeed,since[B, gl=1, B,.S(PNU)NEPNU)".
Suppose B,<IVZ (PNU)N(PNU)’. Then V centralizes J/O(J) and
J?/O(J?). Consequently V centralizes J,/O(J5,) and J§/O(JE). But

(J5,0(L)/O(L) ,  JE,0(L)/O(L)) = L/O(L) .

It is immediate from Lemma 5.11 that B, < Syl (C,(L/O(L))) and we
conclude that B, =V, whence (PN U)N (PN U)< B, and our claim
is valid.

Now |B:B,| < |D|? and D x D'C L force F = D x D¢ x B, with
D= E/DD*= B,. Then DD‘C L implies B.=ENB, As B 2U
and [g, B]] =1, we have | N;: Ny (B)| =1 or 8. As Bn Z(U) = {b),
BB! = B, X BY and |N;: Ny(B)|=3. Now BB!C P, so E=D X
(ENnP)=D x B, x BY. Also P, B,B! and DD*= PP/ imply D<
{B{&%y. We conclude

E =B, x B x By*.
Pick a foursgroup A, in B,. Since [B, g] = 1, we have
A= (AP = A X Al X A" = E, .

Consequently AN L = AN DD’ = E, and, looking in PSp (4, q), we
see that N, (A N DD? = N,(A) acts as A, or S; on AN DD’ and
centralizes A,. More precisely we have:

(a) ANDD*NP=DD*N(ANP)=DD'N A Al = A{.

(b) Every involution in DD’ is N,(A)-fused into AY.

(ec) AY contains two L-classes of involutions.
Repeating this argument with A?AY in place of A,AY, we see that
all the involutions in A are N (A)-fused into A?°, whence A intersects
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at most 2 G-classes of involutions. As Z(U)Z A, we are done.

Since (8) and (9) contradict each other, we have proved Lemma
7.1.

8. The case K/O(K)=PSp(4,q) or A;. In this section we
handle the remaining possibilities for K and thus complete the proof
of Theorem B. In Lemma 8.1, we determine the structure of G, in
the case when | P| = 8. In particular, this determines G if |P| =8
and |B| =2, since G = G, if |B| = 2. In Lemma 8.2, we use this
information to completely eliminate the case | P| = 8 and in Lemma
8.3 we treat the case | P| = 4.

LEMMA 8.1. Suppose that | P|=8. Then F*(G,/O(Gy) = Ay, L(q)
or Ulq).

Proof. For simplicity of notation, we shall write H = G, and
use the notation of Hypothesis 5.9. Our first task will be to determine
a Sylow 2-subgroup of H. By Lemma 5.12, T'= K, and P has maximal
class and [S, S] is abelian. Looking in K, we see that S¢Syl (H).
Since J/O(J) = A, or L,(¢*), we must have Z*(K) = O(K). Let F =
J,(S) and pick UeSyl, (H) with Sc U and N,(F)e Syl, (N (F)).

(1) U:S|=2.

Proof. Let B = (b). As we have noted in similar circumstances
above, Q € Syl,(Cx({a, b))). Looking in K we see that @,=QnN K{a, b)=
D x () x {a) x <{b), where 7 is a non-2-central involution of K and
7 acts as a transposition or field automorphism on J/O(J). For later
use we record the existence of ge Ng(Q) with a? = a7, (a7)’ = a.

Returning to S, we have m(S) =5 and F =D x {(t)(F N P). Since
{a, by = Cx(7), either = or b centralizes a cyclic subgroup of order
at least 4in P. Thus |FNP|=z8,andas FNPIP,|P:FNnP|=2.
Consequently Q([F, F)) = 2(S, S]) = <a, z). (Note that |D| =8.)
From {a, 2)<IN,(F"), we deduce | N,(F): S|=2. Weclaim F=J (N (F)).
If not we could find A = E,, with ze¢ 4, ve Ny(F) — S. Since PN
P =1, AnP=1 and AN S acts faithfully on J/O(J). But this
is impossible because m(A N S) =4. Thus F = J,(N.(F)), whence
|U: S| = 2.

(2) Z(F)={a,z tby. We can divide Z(Q)* into the following sets
of H-conjugates:

C,=a"N Z(Q): 22alarle

C, = (az)" N Z(Q): az Loare 2 2r

Gy athb L ab < b
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C,.: atbz 2 abz < bz ~ 7b
Cy: 7bz.

Proof. Picking ve U — S, we have a' =2z or a’ = az. In the
latter case, PN P =1 = P’ D, whence P’ acts faithfully on J/O(J)
and centralizes D, forcing |P’| < 4. Thus " = 2. As P still acts
faithfully on J/O(J) and has maximal class, |P’|=|P|<2]|D].
Further az is 2-central in H.

Let (») be the ecyclic subgroup of index 2 in P and consider how
the fours group (7, b) acts on {(p). If (z, b) acts unfaithfully, then
F =D xJ,t)P) = D x {t)2,(P), and Z(F) = {z, 0, a) with g € {z, 7b}.
If {(z, b) acts faithfully, F' = D x {z, b){p*) and again Z(F') = {z, g, a)
with o€ {7, tb}. As N,(F') controls fusion in Z(F')and Z(F)N[F, F]=
{#z, @), We see

") o N Z(F) = {a, b} ; (a2)" N Z(F) = {az} .

Consider the action of (x,9) on Z(Q)= (z,17,a,b). As () =
2,(Q, Q]), we have

2=z, b=0b, a’'=at, (@7 =a.

In particular, ar ~ o implies ar ¢ Z(F'), whence ¢ = zb. Since 7
normalizes Np({a, b)) = <a, b, x) and {a, b, x) = D,, it follows that
xe F and [z,0] =1. We have

*=z, b*=ba, a*=a, T°=7Ta.

Since ¢ = tbe Z(F'), atbe Z(F) and we can pick R e Syl, (Cy(ath))
with FC R. As atb ~ b and (b) e Syl, (Cx(K/O(K))), we know that
Z(R) = E,. Thus <{az) = C,(R) and a ~ z in R. Consequently

b = a(ath) ~ zard

in R. This gives all of the desired fusion. Since C, through C; have
representatives in Z(F'), we have a? N Z(Q) = C,, (a2)? N Z(Q) = C..

(3) C,+C,.

Proof. Suppose that C, ~ C,; then b ~ bz. Let Y = Cy({a, bz)).
We will show that Y/O(Y) is a 2-group, contradicting any possible
action of a on L(Cx(bz)) = K.

If L(Cy(a)) = J, then as P has maximal class, Lemma 5.6 implies
that L(Cy(a)) contains a single additional 2-component, L, with L/O(L)
isomorphic to A, or SL(2, ¢,) for some odd prime ¢,. Further ae
Syl, (Z*(L)) and P is semidihedral with {a) = Cx(L/O(L)). Now T =
Np({b)) = E, implies b acts as an outer diagonal automorphism on
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L/O(L). We have
Crrr0un(02) = Crounyown(®) X Crowwiown(d)

is a product of two dihedral groups. As JLO(Cy(a))/O(Cy(a)) is self-
centralizing in Cy(a)/0(Cy(a)), it follows from the structure of Aut L,(q)
that Y/O(Y) is a 2-group.

If L(Cy(a)) = J, Pcontains a Sylow 2-subgroup of Cy(a) N Cx(J/O(J))
and Cy(a) N Cx(J/O(J)) is 2-constrained. Clearly a € O, ,(Cx(a)) and as
b~ a, we obtain

Cu(a) N Cu(JIOWJ))/O(Cp(a)) = P or S,
with b ¢ 0, ,(Cx(a)) in the latter case. Thus
Cy(JIOWJ)N/ Y N O(Cx(a)) = E, or S,.

Again a + b precludes the possibility that a 3-element acts on the E,.
Again we achieve Y/O(Y) a 2-group.

(4) C,=(@h)"n ZAKQ) .

Proof. As Ny(F') stabilizes the series 1 < {ab) S <a, z) & {a, %, tb),
Ny (F') acts on Z(F') as a 2-group. Two elements of the coset <a, 2)7b
are H-conjugate and two are not. The only further fusion possible
is tba ~ tbz.

(5) P=D and PCF.

Proof. We have F= D x (PN F) x {o) and as z is fused to a
in Ng(F), we have D= PN F. It suffices to show |P|<|D|. As-
sume the contrary. As P’ acts faithfully on J/O(J) and P has maximal
class, | P| = 2| D]|. Further | P:Cy(o)| < 2; so [P, ¢] # 1 implies ¢ ~
ga, i.e., b ~ tha, not the case. Thus P and (P, P*) centralize Z(F') =
{a, 2,0). As o acts as a field automorphism on J/O(J), (P, P’) acts
as inner or field automorphisms, but not as diagonal automorphisms.
Thus (P, P’y = Px P'<D X {¢) X P forces |P| < |D|.

(6) We may assume that b7 N Z(Q) = C, U C,.

Proof. Suppose not. Then zba is 2-central in N, (F'), so b is 2-
central in H. We know that a acts as an outer automorphism on K
and that the K-classes of involutions in K{(a) are represented by a,
azt, %, 2. Thus every involution in K{a) is H-fused into C, U C,.
In particular, b + K{a). If a 2-element 7 acts on K as a field auto-
morphism, then m(F)=m(H)=>5 implies 2,({1))=<b), else m(Cy(b))=6.
Pick » with | ()| as large as possible. If no 2-element acts as a
field automorphism, set 7 = b. We see that K{a){%) contains a Sylow
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2-subgroup of Cy(b) and of H. As a ~z2e KS O*(H) and b + K{a),
transfer gives (K, a, 7) N O(H) = (K, a). As K{a) has sectional 2-
rank 4, we have by Lemma 5.10 and Proposition 2.11,

F*(H) = L«(Q) ’ U4(Q) or Aw ’
and we are done in this case.

(7) There exists y e U with (zb2)* = tba, with C,(y) = {a, z) and
with y acting nontrivially on both D/[D, D] and P/[P, P]. P —
{a) = P b".

Proof. As {tbzt,ba) S Z(F) and U covers Nyj(Z(F))/Cx(Z(F")),
~ there is an element y € U such that (zbz2)* = tha. At this point the
action of N,(Z(F)) on Z(F') is completely determined. In particular
U/C,(Z(F)) = E, and we can choose y so that either C,,,(¥) = <a, 2)
or so that C,\(y) = {ar, az). We choose it so that C,;,(¥) = {a, 2).

Now y acts on J and normalizes D. Further since thz acts as a
field automorphism on J/O(J) and (zbz)" = tba, the structure of
Aut (J/O(J)) forces y to act nontrivially on D/[D, D].

Cleary y normalizes P. As atbe Z(F), Ny(F') contains a Sylow
2-subgroup of Cy(azh). Since N, (Z(F')) acts as a 2-group on Z(F'),
any Sylow 2-subgroup of N,(Z(F')) contains a Sylow 2-subgroup of
Cy(azb). In particular R = C,(azb) € Syl, (Cx(azh)). As we have seen,
we can choose v e R such that a” = z. Note that U = SR with Sn
R =C,(Z(F)) and |U:S|=|U:R|=2. Now D’eSyl,(J"), so the
reasoning in the previous paragraph shows that y acts nontrivially
on D*/[D*, D*]. Let E = D{az, atb). We have D'E = F and D’N
E = (a). Since y normalizes D", y acts nontrivially on the com-
mutator quotient of F/E. But also PE = Fand PN E = {a) =[P, P],
so our claim is valid.

(8) K/O(K) = PSp (4, q) for some odd ¢ = 3.

Proof. Suppose K/O(K) = A,. Then L/O(L)= A; where L =
L(Cy(azh)). Now RN L{atb) contains A = E,, with

N, (A)/C(A) = 8,2 Z, .

Further N, (4) fuses every involution in C,,.;(C,(azb)/0(C,(azh))) to a.
Thus every involution in C,(J/O(J)) — {azb) is fused to @ or zb. But
C(J/OJ)) = AN P = E,, and so must contain two involutions fused
to b, contrary to a + b +« 7b.

(9) L(Cy(laz,a))=1. If q¢q =3, Cy(az, a)) = Cx(az)S, where X =
O(Cy(a)).
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Proof. As PeSyl,(Cx(J/O(J))) and P is dihedral with Inv P =
(PN b%) U {a}, Cx(J/O(J)) has a normal 2-complement. Thus by the
structure of Aut L.(¢%,

0¥ (Cy(@)/0(Cu(a))) = SJO(Cyx(a))/O(Cyla)) .

Moreover if ¢g=38, Cy(a)/O(Cx(a))=SJO(Cx(a))/0(Cr(a)). As Cyo(az)
is dihedral and is of order 8 if ¢ = 3, the claims follow.

NOTATION. Set F = Cylaz), F = F/{O(F){az)>, L = L(Cy({az,
ath))).

(10) q=3.

Proof. Suppose that ¢ > 3. As C.(arb) covers a subgroup of
index 2 of Cz(atd), L is subnormal in Cy(azd) and we conclude that
L(C#(atd)) = L = Lyq) X Lxg). Suppose that L is not subnormal in
F. LetJ, be a summand of L which is not subnormal in 7. As @
normalizes J,, @ normalizes a Sylow 2-subgroup, P,, of Cz(J,). Let
E be a maximal (@)-invariant subgroup of P, satisfying:

J, is not subnormal in N#X) .

As F satisfies the B(G)-Conjecture, it follows easily that J, projects
to a standard component of Nz(E)/E. Thus K, = (J,L(N#(E))) is a
central product of restricted quasi-simple groups. Let & be an in-
volution of order 4 in F, ath + atbe. By Proposition 2.3(4), the
possibilities for K, are:

SL(zy q) *SL(Z, Q); Lz(qz); A7y AB’ As; Alo ’
L;(4), PSp 4,V q), L;(V'q), U (V'q), 278, ¥q) .

Now @ normalizes K, hence K, As L(Cz(@)) =1, a quasisimple
component of K, must be isomorphic to SL(2, q)*SL(2, q), Ly(¢?), A,
A, A, A, L,(4), PSp (4, 8), L,(3) or U 3) by Proposition 2.12. As
aze Z(K,), K, # A, for » =8 by Theorem 1.1 of [22].

If K, = L,(4), then as e has order 4 in F, K,/O(K,) is a 16-fold
covering group of L,(4). As F satisfies the B(G)-Conjecture, this is
impossible by [22]. Suppose that K,/O(K,) has a component isomor-
phic to SL(2, q), SL(2, ¢°) or A,. If this component is subnormal in
F/O(F'), then it is intrinsic and H is known by the main theorem of
[4]. This we may repeat our earlier argument to produce a com-
ponent K, with K, not isomorphic to SL(2, q), Ly(¢®) or A,. But then
we must have K, = PSp (4, 8), L,(8) or U,3). Then necessarily ¢ = 9
and J = L,81). It follows that C,({a, az)) is 2-nilpotent, but the
fixed point subgroup of every involutory automorphism of PSp (4, 3),
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L,3) or U,3) involves 4, by Proposition 2.12, a contradiction.
Thus L is subnormal in F and, again, H is known by the main
theorem of [4].

(11) q+3.

Proof. Let R = Cy(azb). Since ¢ = 3, K{ay{b) contains a Sylow
2-subgroup of Cy(b). Thus R < L{r){arb) for some r ¢ Inv (R) with
r ~a. We see that R = 2,(R) and we can pick veInv (RN L) — F)
with FFnNL{r) = F, X (F)’, F,= D. The coset vF contains 2| D]
involutions and | R: Cx(v)| = | D|. If Cp(v) = Cy(v), then | U: Cy(v)| =
2| D} and all involutions in vF are conjugate. By inspection v ~,a
or az and, correspondingly wvatb ~,7bh or tbz. As a +« b and az +
bz, we conclude that v + varb. Thus Ci(v) C Cy(v). It follows that
U= FCy(v) and S = FCy(v). As F'= PX P’ x {atb), we have S =
PCS(’U), Pn Cs(?)) = 1.

Recall that there exists y e U with {a, 2) S C,(y) and (atdb)* = z7b.
As ¢ = 3, we must have S/P isomorphic to a full Sylow 2-subgroup
of Aut (J/O(J)). It is now clear that we can choose y so that ye
Inv (Cs(v)) and v acts as a diagonal automorphism on J/O(J).

Now U = PC,(v) and as v¢ &(U), C,(v) = R, x {v) with R, iso-
morphic to a Sylow 2-subgroup of Aut L,(9). Let P, = C,pv(v). Then
P, = Dy and P, £ C,(v). As

C:(v)/P, = {Path, Py, Pv)
with [ath, y]e P, and v ¢ C,(v)", we have C,(v)/P, = E; = U/PP’. In
particular, athb¢ @(U). We have seen that N,(F') = O(Nz(F))U and
F' is weakly closed in U. Thus as atbe Z(F') and azb ¢ N, (F) Ny(F),
we have atb¢ H' by Lemma 3.10. As ar ~zcH, bg H'. Thus
PNH = Z, and J is maximal in H. Thus H is of restricted type

and our conclusion follows by inspection of the possibilities.
As (9) and (10) exhaust all cases, we are done.

LEmMMaA 8.2. |P| = 4.

Proof. Suppose that | P| = 8. By Lemma 8.1, | B| = 4 and, as
BN B*=1, | P| 216. Further, | Ny(B): B| = 2, so B is not normal
in P.

We let z,, B, be as in §6. As A 4 P, Proposition 8.2 holds for
B, z, and B,. Let L = L(Cy(B,) <1G, = N4B,). As @e Z({x, B)), a
acts as an inner automorphism on L. Thus, by Lemma 8.1, we have

L/O(L) = L(g) q=3(mod4), or
Ul ¢g=1(mod4), or
Alo .
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By Proposition 6.3(3),
Ns(By) € Syl (Ne(By) N Ce({a)[B, x.])) ,

where [B, x,] =<a, b). It follows from the structure of L as described
in Proposition 2.9 that there exists an element ¢ with the following
properties:

(a) teN(S,) — S, and t*€ S,.

(b) DDt=Dx D*=LnNS,.

(e) D! acts on J/O(J) as a field automorphism.

(d) D*Nn P =Cu(J/O(J)) is eyclic of index 2 in D’.

(e) (DN P)B/B, is dihedral and a € (2,(D'N P))B, — B,.

We assume for the next few steps that Ny(S)< Cu(a).

(1) =z, acts nontrivially on D¢,

Proof. Clearly z,€ P,=S,N P, so x, acts on D*=<]S,. Further
P,/B, has maximal class by Lemma 5.12 and {z, B)/B, = D,. As
D! P is cyclic of order at least 4 and projects isomorphically onto
P,/B,, either z, inverts D*N P or x,€ (DN P)B,. In the latter case

%, ¢ {a, B,) implies that x, acts nontrivially on D¢,

(2) Let {a;> = Z(D"). Then beB,N Zy(S) and a, = ab.

Proof. Now <{a,) S[D%, xS, x]NP. If x,eZ,S), then as
{a) = Z(S)N P, a, = a, whence a is fused to z in N,(S), contrary
to Ng(S)SCela). Thus 2x,€ Zy(S) and a,€l[S, z]NP=<a,b). As
be B, a, = ab.

(8) Let A={a,zb), N= Ny,<A), C=Cy(a). Then N/C =S, and
z2~az~b, a~bz~baz in N; aze Z(N).

Proof. Let U = Cya,). Clearly |S:U| = 2. Now ¢ interchanges
z and ab and fixes b. Since {a, 2) S Z(S), AS Z(U) and U = Cy4(A).
Picking ye S — U, we have ¥ = a, 2 = 2z and as {(a, b) IS, b’ = ab.
Thus (¥, t) acts on A as S,. Since Ng(S)<= Cyla), Ng(S) centralizes
{a, z). So a# 2+ az in G. The conclusion follows.

We may copy the argument in the proof of Lemma 7.1 to conclude
that C acts on J and centralizes z. Thus C/Cy(J/O(J)) has a normal
2-complement.

(4) C = UO(C) .
Proof. Let X be the largest subgroup of C,(J/O(J)) which is

normal in N. Clearly C/X has a normal 2-complement. We claim
| X|is odd. If not,thenl s XN UU implies E = XN 2,(Z(U)) 1.
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As X centralizes J/O(J), XN UZ P so that EC P. S acts as an in-
volution on E and Cx(S)<S Z(S) N P implies Cx(S) = {a). Thus |E| <
4. But X< N implies £ <I N whence | E| = |[{a”)| = 8, a contradic-
tion.

(5) Let N, = Ng(U), E=(D"). Then E= D x D' x D¥. Every
involution in DD*® is conjugate to z or a.

Proof. As N, covers N/O(C), N,/Cy(A)=8S,. As DS, D has
3 N;-conjugates with centers (z), {ab), (b) and as each conjugate is
normal in U, E is a direct sum of the conjugates of D. Since te N,
one of the N;-conjugates of D projects onto D*O(C)/O(C). But D*C
S, S U and U projects isomorphically onto UO(C)/O(C), so Dt is one of
the N,-conjugates of D. Since y normalizes U, we have F = D X
D* x D*, Since DD'S L, Inv (DD*) S z" U (abz)". As abz ~ a in N,
our claim is valid.

(6) az° N DDt = @ .

Proof. Pick ve N, so that (v) covers O(NV,/Cy, (4)) = Z, and so
that |v| is a power of 3. From the structure of N, »*¢ N, N O(C)
forces v*e Cy(U). Since D' acts on J/O(J) as a field automorphism
of order 2, we can pick E, = <z, e, < D so that

| By N L(CAD)) | = 2.

Letting {e,, e, ¢;} be the {(v)-conjugates of ¢,, we see that (v) normalizes
F = {2, e,ab, e, b, e,y = E,,, and we may assume that with respect
to the basis {z, e, ab, e, b, e;}, v is represented by

10
01
EUN
01

10
01

where omitted entries are zero. F acts on J as a group of order 8
and N,(F) acts as S, on F. We can pick e Ny(F') — F so that »

acts as

11
01

M, =
10
01
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and we can pick we F so that |w| is a power of 8 and {r, w) acts
on E, as S,. Clearly w centralizes F'N P2 {ab, b) and by our choice
of E, [w, e,] #1. From the structure of Aut L,(¢*), w must centralize
e,2. Likewise w centralizes e; or e;2. We have F = E;, x C,(w) with
Cy(w) equal to <ab, b, ez, ¢,y or {ab,b, ez, e;zy. In either case the
action of w on E, determines its action on F, and we may assume

01 | 01 | 0c
11 | 01 | 0e

10

M. = 01
10
01

where e = 0 or 1. In any event
M, (M,M,)az) = ez € DD* .

But now (5) and (6) yield a contradiction, as z + az # a. Thus
Ng(S)ZECyla). NgS) acts on <a, z) =[S, S]N Z(S). If a* = az for
u € Ng(S), then P*NP=1= P*N D implies [P* D] =1, whence P*
acts faithfully on J/O(J) as a fours group, contrary to | P| > 8. Thus
we have the following.

(7) Let UeSyl,(G) with ScU. Then |N,(S):U|=2 and if ue
Ny(S) — S, then a* = z and P* acts faithfully on J/O(J).

(8) B, =<by with ?=1.
Proof. Recall the existence of te N, (Ny(B,) with D x Dt =
Ng(By) N L and DN P cyclic of index 2 in D*. [(D'N P) x B,]* acts

faithfully on J/O(J). The claim is immediate from the structure of
Aut (Ly(q%).

(9) b* acts on J/O(J) as a field automorphism and b 3 ba.
Proof. The first assertion isclear. Asb¢ Z(S)NP, b* ¢ Z(S)N P+,

whence some element, ¥, of S acts as a diagonal outer automorphism
on J/O(J). Considering the action of ¥ on P* we have

b* TSJ b z

and conjugating y by u gives

bfgba.

10) ZJ,(S) =<z, b*a, by and |U:S|=2.
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Proof. Since P*is faithful in J/O(J), m(P*)=m(P)<8. [D, D*]=
1 implies D* must act on J/O(J) as a subgroup of {z, b*>. As<{z, b*)*=
{a, by S P, {(z, b*) S P*, whence

D* < (z, b*>PZ PP" .

Now Pn Z(S) =<ay and P*N Z(S) = (), so PN P* =1 and PP* =
P x P*., Further, D{*> N P =1, as D<{b*) acts faithfully on J/O(J).
Thus P* contains a subgroup isomorphic to D{b*), whence m(P*) =
3 = m(P) and m(S) = 6. Clearly J,(S) = J(P) x J,(P*) = D x {b*) X
D x <b*). In particular Z(J,(S)) = E, Also exactly as in the proof
of Lemma 7.1, |U: S| = 2.

Set = J,(S), A= Z(F). Fusion in A is controlled by N (F)
and {a,z) =[F, F]N A is invariant under Ny F'). Thus

(az)* N A = {az}
a®NA={a,z.

The following fusion occurs in U:
ab~b~b*~ b2, zb~azb~ azb*~ ab".

11) @ ~ 2z in Ng(F) N Cygb). Thus ab ~ bz .

Proof. C4b) =G, and we know that F*(G,/O(G,)) is simple, where
Gy = GJ(b). As FSG, a@ec[F,F]<L. Thus acL or abeL. In
the latter case a ~ b, contrary to a¢°N A = {a,2}). Thus aeL and
a ~,2. Thus a ~ 2 in Ng (F).

Now 8=|bv°nNA|=12. C,(u)={az, bb*) and, as bb* acts on J/O(J)
as a fleld automorphism, vb* ¢ Z(S). Thus C,(U)=<az). Consequently
any involution in A which is 2-central in G is fused to az, and so b
is not 2-central in G. Since b, a) =ANPCS and |U:S| =2,
[U:Cy(b)] £2|8:Cs(b)] = 4. Thus [b°N A| =10 or 12. Clearly no
5-element acts on F, so |b°N A| = 12 and

b'NA=A—{a,z.

Consequently there exists A e Ny (F) of order 3° acting nontrivially
on A. As centralizes {a, b}, N must normalize PN A = {a, b), whence
A centralizes {(a, z, by, a contradiction.

This completes the proof of Lemma 8.2.

Lemma 8.3. |P| =+ 4.
Proof. Assume that | P| = 4 and let P = {a, b). It is clear that

x, the unbalancing involution, acts nontrivially on P with [b, 2] = a.
Thus z acts as an outer diagonal automorphism on J/O(J). Since Q=



FINITE GROUPS WITH SMALL UNBALANCING 2-COMPONENTS 99

Ny(B) e Syl, (Cg(a) N Ng(B)), we know from the structure of PSp (4, q)
and A; described in Proposition 2.6 that there exists ge N (Q) — Q
such that ¢g’c @ and a’ = ar where 7 is a non-2-central involution of
K acting on J/O(J) as a field automorphism and 7z is 2-central in K.
In particular, 2,(S) = DP{x, t).

(1) be FX(G) .

Proof. By the minimality of G, G = (F*(G),z) with F*G)
simple. Thus if b¢ F*(G), then F'*(G) is a balanced group. Then
J is simple and <{a) = Cp.(J). Thus J is a standard component in
F*(G), whence G satisfies one of the conclusions of Theorem B.

(2) q=3.

Proof. Suppose ¢ =5. We have b*? = (ba)?’ = bar. Consider H =
Cs({a, bat)). Since |P| =4 and a # b, Cy,(J/O(J])) is 2-constrained;
S0

Cop(JI0()) = O(Cs(a))P .

It follows that L(C,(bat))P covers L(H)O, ,(H)/H N O(Cya)). In par-
ticular

(a) O(H)<=0(Cgla)), and

(b) P(HN O(Cyla)) = Cu(L(H)/O(L(H))). _
Now look at the action of @ on L = L(Cy(bat)). Let L = L/O(L) =
PSp (4, q). As L(H)/O(L(H)) = LJq), ¢ =5, we know by L-Balance
and structure of Aut (PSp (4, q)) that C:(a) contains L(H) X Zion
where e = 1. If g+¢ is not a power of 2, then HNO(Cya)) covers
the odd part of the Z,,.,, whence (baz, a, L) is an unbalancing triple,
contrary to the hypothesis of Theorem B. Thus ¢+¢ is a power of
2 and, as the Z,,.,, must be isomorphic to a subgroup of P, we have
qg+¢e=2or 4, whence ¢ =3 or 5. Further, we know by the action
of @ on K that there is a conjugate, ¢ of a acting on L as an outer
diagonal automorphism on L. If @ acts as an inner automorphism
on L, then C¢ .50 (a) contains a cyclic group of order 4. Since P
is elementary, we conclude that a acts as an outer automorphism.
In this case ¢ + & =2 and ¢ = 3.

(3) S=DP{x,7z)and Q = DP{t) = D, X E,. Z(Q) = {z,a,b,7)and
we have
(i) aar~arz L az
(i) b~ ab 2 abr < bz

(i) b < rzab L abz ~ bz
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. X
v T& ~T ~ 2.
(iv) =

Proof. Everything but the fusion is clear. Recall that in
N (Q) — @ we have an element g with ¢*c¢ Q and a’ = ar. Further
b*=b,7" =7and 2 = 2. We know b* = ba, a¢®* = a, 2° = z and from
the structure of Aut (I,(¢?), z*€7zP. Since |z| =2, t°¢c{rz, t2a}.
In the latter case (r2)*? = (ra)’ = a. But |S| =2, while K{a, d)
contains a Sylow 2-subgroup of Cub) of order 2® and zz is 2-central
in K{a,b). Thus a #4472z and 7° = zz.

Likewise a #4b. Further zz lies in the commutator subgroup
of a Sylow 2-subgroup of Cy({zz, b)), while b¢ [Cub), Cs4b)]. Thus
b A2,

We now see that (x, g> acts as a dihedral group of order 8 on
Z(@) with the indicated fusion. Further z ~ ¢ in K.

(4) No two of a, b, bz, 7z are fused in G.

Proof. From the remarks in (3), it suffices to show that bz is
not fused to any of the other involutions. Pick R e Syl, (C4(b)) with
Q, 9> S R. R, = Cgbz)eSyl,(Ce(<b, b2))) with B, = Dy x D, x Z,. If
bz ~ga, then | R,| = | S| implies R, € Syl,(Cx(bz)). But a e[S, S] while
bz ¢ |R,, R,], so a ¢ bz.

Suppose b ~; bz and consider H = Cy({a, bz)). As in (2), we see
that H/H N O(C4(a)) is a 2-group. On the other hand, a cannot act
on L = L(C4(2)) in such a way that C.(a) = O, ,(C.(a)). Thus b +4 bz.

Finally, suppose bz ~, 27 and pick 7T eSyl, (Cg(b2)) with R, & T.
We know 27 ~;2 and ze Z({Q, =, g>). Thus |T| = 2°. In particular,
R,cT. Letwve Ni(R,. Since v normalizes 0'(R,) = {z, 7y and b ~;bz ~
br (and b # b°), we have b” = bzr. Hence

| No(Ry): By | = | Nr(Ry): No(Ro) N C(b) | = 2

and B, = J,(N{(R,). But now T = Ny (R,), whence |T| <28 a con-
tradiction.

(5) Let E, be the unique E;in RNK. Let FE = (K, b), N = Ng(FE),
N = N/Cy(E). Then N = S..

Proof. NN Kla)=S; or S,2 Z, according as K/O(K)=PSp(4, 3)
or A;. Further |R| = 2° implies b is not 2-central in G, so we may
pick UeSyl, (G) with R c U and Ny(E)e Sy, (N). Pickve Ny(R) — R
with v*e R. As Z(R) = {zt, by, b =bzr. The NN K{a)-classes of
involutions are represented by z and zz in K, and b, bz, bzr in E — E,.
We see that E, is strongly closed in E with respect to G. Further
bz ~gbzr. Letting C,, denote the N N K{ay-class of bz, etc. we see
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that C,, and C,,. U {b} are N-classes.

Suppose K/O(K) = PSp (4, 3). Then|C,.| =|C,,| =5and |C,| =
|Gy.| = 10. Further {C,,., b) = E so that, considering the action of
N on C,,.U{b}, we see that N acts as a subgroup of S,. As
NN Klay = S; and NN Klay < N, it follows that N = S,.

Next suppose K/O(K) = A;,. Then |C,.| =1|C,.;] =|C,.,| =9 and
|C.| =1G,,| =6. Now {C,,> = E and considering the action of N on
C,, we again obtain N = S,.

(6) Define C = {e, e, €, e, e, ¢;} to be the elements of the N-class
of size 6 in E — E,. Let W = N,(E). Then C,(E) = E and if
w e Inv (N) acts as a transposition on C, then W ~,a, b or bz.

Proof. Since N acts as S, on C, it is clear that as an S;-module,
E is the quotient of the permutation module by its 1-dimensional
fixed subspace. In.particular, all involutions of E, are fused in N.

One shows by direct ecalculation that |[F, a]| =2. Indeed
{[E, v]] = 2foranyvelnv(R — (RNK)E). Asfa,b]=1,|[E a]|=2
and a acts on C as a transposition. Let W = N (E). Since Cx(E) =
E and C,(E)Z Cyb), we have E = C,(E).

Let w be any involution of N acting as a transposition on C.
Clearly w is N-fused to aCy(H) = oK. The K{a)-classes of Ka are
represented by o and azz. Thus any involution in aF is K<{a)-con-
jugate to a, ab, azzr, azzhb or b. The claim follows.

(7) W=U.

Proof. Assume W = U and let N, be the inverse image in G of
N’. Since ac N — N, and a<[S, S], it follows that ¢ has a G-con-
jugate in N,. N, contains just one class of involutions and from the
structure of NN K{a) it follows that N, N K contains involutions.
Thus R N K contains involutions, whence @ is conjugate in N to e
RN K. It follows that a ~ec (RN K)E. But every involution in
(RN K)E is K{a)-fused to z, zb, zz, 2tb, or b none of which is G-con-
jugate to a. Thus W = U.

(8) Let ye Ny (W) — W. Then we may assume that
(i) Ev=<Q2), (34), (56))
(ii) EY = {(12)(34), (12)(56),
(ii) ENEY={e + e,e, + e
(iv) E,EY is isomorphic to a Sylow 2-subgroup of L,(4).

Proof. We may assume that W acts on C as {(12)(34), (13)(24),
(12), (66)>. Every involution in F, is fused to z, whence E? contains
no transpositions. Suppose | EN E¥] =16. Thene’c EY — K acts on
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E as a transposition and every involution of Ee' lies in E?. Then
we may assume that ¢’ ~ a, not the case ase ~z,borbz. As W =
D, x Z,, E" is elementary of order at most 8 and E*<IW. One now
verifies the claim in a straightforward way.

(9) |INAWY:W|=2.

Proof. Let ue N, (W) — (WU Wy). Since y was arbitrary in
(8), E'=FE* and ENE*'=ENE*=ENE*“". Thus |[E*NE*|=
|EN E*| =4. Since all involutions of E,E} lie in EU E", this yields
|E*NEEy|=4. We know from the fusion of involutions that E,<IN.
Thus E,E? is normal of index 4 in EEY. Our conditions imply
EEY = EE*, a contradiction.

(10) EE"* is weakly closed in N (W) with respect to G.

Proof. Let F = E* be a G-conjugate of E with FFC N,y,(W) and
Fy=E}. Suppose FZW. Then Fn EEY lies in X, the inverse image
in EEY of Cggv/pnm(f), where feF — W. Now |X: ENEY| =8 and
| X: XN EE!| =2. As all involutions of XN EEY lie in E,N EY =
EnNnEY we conclude | XN F|<8. As|Ny(W):EE*| =2'and |F| =
2°, we must have | XN F'| = 8, whence £ N E*Z F. But also F covers
N(W)/EE® and EEY = C,(EN EY)C W, a contradiction. Thus FC W.

We assume FZ EEY. Then F is elementary and F& F?, so F
contains at least one of

(13)(24) (13)(24)(56) (14)(23) (14)(28)(56) .

The last two possibilities are handled in the same way as the first
two, so assume F' contains (13)(24) or (13)(24)(56). Consequently

Ce(F) S Cp(K(13)(24))) = {es + €5, &; + €y, €5
or
Cp(F) S Co({(13)(24)(56))) = Ces + 5, &, + ey €. + €. + €5 .
In either case E N F < Cx(F) implies
|ENF|<|C/F)|<8 and |[F|z4.

If |F| =8, then F' = ((12)(34), (13)(24), (56)) and | C,(F)| = 2, forcing
| F| <16, not the case. Thus ENF =CyF). As (e, + e, e + e,
e, + €, + e,y is not centralized by a fours group in W, we must have
Co(F) = {e, + ey, e, + €, ¢;y and F = ((13), (24).

We know that E, is strongly closed in F whence EN F,C E,.
Thus
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IEﬂFolélEonCE(F)lz‘l;

whence F, = F'. But then some element of F, acts as a transposi-
tion on ¥ and so some element of E, is G-fused to a, b, bz, not the
case.

(11) U= Ny(W).

Proof. By (10) it suffices to show N, (W) = Ny(EEY). Assume
not and pick we (Ny(EE"Y) N NN, (W))) — NAW), with w?e N (W).
B contains no element acting on E as a transposition, whence E¥ C

EEy. Likewise Ey* < EE?, whence Ef C EV'E,= E'E,. Thus Ef <
EE! N EYE, = E,E?. Replacing w by wy if necessary we may assume
Er = E,. As W acts faithfully on E,, we have

Ew;CEEﬂ(Eo) =K ’
contrary to our choice of w.

(12) beG®.

Proof. Let M = Ng(EEY). For any we M the preceding argu-
ment has shown E¥ C E,E?. Since the same argument shows E¢* C
E,E?, we conclude E,EY <M. Let M = M/E,E}. Since ENn E* =
Z(EEY) <1U and W acts nontrivially on EN E?, we have

(a) U=WU,

(b) U,=C(ENEY

(¢) WNU,= KEE".

In particular, any element of U, — EEY permutes E and EY, whence
U, = D,. Further EIW, E*<IW imply that W is abelian, and it
follows that U = D, X Z, or D;xZ,. Let ecInv(E — E,). We have
in either case ¢ U2 Also Cx(EE")/EE" has a Sylow 2-subgroup of
order two, whence C3(FEY) has a normal 2-complement. Once we
show M/Cz(EEY) = Z, we have M = UO(M) and e¢ M?. The only
other possibility is M/Cz(EE") = S,, in which case e M of order 3"
with A\ acting nontrivially on EEY/E,E¢. But the structure of E B}
implies that A normalizes E, and E/Y, hence normalizes E = Cgz.(E,)
and Y. But then M\ acts trivially on FEY/E,E?.

Now suppose e € G’ and apply Lemma 3.10. There exists Vc EE?
such that

(2) The transfer V., (e) ¢ O(EEY) .

Choosing ¢ =¢; € ' — E,, we see that | EE": Cupi(es) | =2 and O(Cyziles)) =
ENE'=@(EE"). Thus V=Cyzle;) and | EE?: V |=2. Hence Vggzi_r(e;) €
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O(EE"Y) = ®(V), contrary to Lemma 3.10. Thus ¢; ¢ G

Now ¢; is Ny(E)-fused to b or bz. As z € G?, we conclude in either
case that b¢ G®. But by (1), be FF*(G) = G? a contradiction.

This completes the proof of Lemma 8.3. As Lemmas 8.2 and 8.3
are mutually contradictory, the proof of Theorem B is complete.

9. The proof of Corollary C. In this section G will be a fixed
counterexample to Corollary C and (a, x, J) will be a fixed unbalancing
triple satisfying

(1) JIOW) = A,.

(2) xzeE, a fours subgroup of Cg(a) N Ny(J) with 4 = Ce(a) N
(eQ# O(Ca(e))> and [J, 4] = J.

(8) |Csla) N Ng(J) |, is maximal subject to (1) and (2).

Suppose that (a, x, J) is 2 maximal unbalancing triple in G. Then
either conclusion (1) or (8) of Theorem B must hold. If (1) holds,
then as G is not 2-balanced, F'*(G) = A, for some odd » = 11. If
(3) holds, then by Lemma 3.5, J is maximal in G. Now by Theorem
1.5 and the main theorems of [7], [16] and [18], F'*(G) is isomorphic
to A, A, or He. Again, as G is not 2-balanced, F'*(G) = A,,.

Thus we may assume that (a, x, J) is not a maximal unbalancing
triple in G. Thus one of the two conditions in the definition of
maximal unbalancing triple must fail to hold. Let .SeSyl, (Cya) N
Ng(J)) and let P = Cy(J/O(J)), D=SNJ. Let belnvCy(S) and let
K be a 2-component of (J*%«"%  The proof of Lemma 3.8 shows
that if 4, = C,(b), then [K, 4,] = K = [K, E]. Thus Ny(K) is not 2-
balanced and, as G is a2 minimal counterexample to the Unbalanced
Group Conjecture, K/Z*(K) = A, for some odd » = 7. By [25] and
[28], K/O(K) = A,. Thus (b, 2, K) has the same properties as (a, «, J)
with |Ce(d) N No(K) |, = | S|. It follows from the choice of (a, z, J)
that S € Syl, (C4(b) N Ng(K)) for all beInv Cp(S). Thus condition 1 in
the definition of a maximal unbalancing triple fails to hold.

Now pick BZ Cu() to satisfy the conclusions of Lemma 3.6 and
let K be a component of (Ji¢®% Then NgK) is unbalanced and
as above K/Z*(K) # A, for any n. On the other hand J; projects
onto a standard component of K/Z*(K). Thus K/O(K) = He. As in
§5, Nx(B) = {a) X B and BN B° = (1) for some e¢c E, since Aut He
is 2-balanced. Thus {a) = Cx(S). Also a ~az in K{(a). Hence a ~az
in Ng(S). Let ne NgS) with a® = az. Then PN P* =<1y = DN P".
Thus P* acts faithfully on J/O(J) and centralizes D. So P™ is iso-
morphic to Z, x Z,. But ES D x P and E does not centralize B, a
contradiction.
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